
An Approximation Algorithm for the
Coefficients of the Reliability Polynomial∗

Isabel Beichl and Brian Cloteaux
National Institute of Standards and Technology

Gaithersburg, Maryland, USA

{isabel.beichl,brian.cloteaux}@nist.gov

Francis Sullivan
Institute for Defense Analyses Center for Computational Sciences

Bowie, Maryland, USA

fran@super.org

Abstract

The reliability polynomial gives the probability that a graph remains con-
nected given that each edge in it can fail independently with an identical
probability. While in general determining the coefficients of this polynomial
is #P-complete, we give a randomized algorithm for approximating its coef-
ficients. When compared to the known approximation method of Colbourn,
Debroni and Myrvold, our method empirically shows a much faster rate of
convergence.

1 The reliability polynomial
A classic problem in network research, the all-terminal reliability problem, looks
to provide a simplified measure of the reliability of a network by giving the prob-
ability that a network stays connected given that each edge in it can fail with some
identical probability. More formally, a network is modeled as an undirected graph
G = (V,E) where V is a set of vertices and E is a set of edges. The problem as-
sumes that the vertices of the network are always reliable, while each edge can
independently fail with a probability 1− p. For this model, the all-terminal relia-
bility R(G; p) is the probability that G is connected when the edges are allowed to
fail.
∗Official contribution of the National Institute of Standards and Technology; not subject to copy-

right in the United States.

1

Computation of the all-terminal reliability problem has a simple recursive
form. For any e ∈ E, we can express the probability of remaining connected as

R(G; p) = (1− p) ·R(G−{e}; p)+ p ·R(G\{e}; p)

where G−{e} is the graph where the edge e is deleted from G, and G\{e} rep-
resents the graph (not necessarily simple) where the edge e is contracted in G.
From this form, it is easy to show inductively that the probability over all p is
a polynomial (often called the reliability polynomial). It is also easy to see that
this recursive formulation potentially requires an exponential number of evalua-
tions. Unfortunately, there is strong evidence that no polynomial time algorithm
for computing the reliability polynomial exists since the computational complex-
ity of the all-terminal reliability problem has been shown to be #P-complete [7].
Thus if we are interested in computing the values of the reliability polynomial, the
best we can expect to do, in general, is to approximate the values of the polyno-
mial.

Much of the research in approximating the reliability polynomial has been
in providing point estimates of the polynomial. In a breakthrough result, Karger
produced a fully polynomial randomized approximation scheme (fpras) for esti-
mating the point values of the reliability polynomial [3, 4]. However, for directly
estimating the coefficients of the reliability polynomial, there is a much smaller
body of literature. The principal result is from Colbourn, Debroni, and Myrvold
[2] who provided a routine which reduces the variance over simple sampling in
estimating the coefficients. Nel and Colbourn [6] then went on to explore how to
combine theoretical bounds with approximation methods. We extend this line of
research by providing a new algorithm for directly estimating the coefficients. We
then compare the speed of our algorithm to the method of Colbourn, Debroni, and
Myrvold.

2 Computing the reliability polynomial by counting
nodes in a tree

The reliability polynomial has been long studied and a number of equivalent forms
of the polynomial that have been discovered [1]. One form of reliability polyno-
mial which we will focus on to describe our result is

R(G; p) =
|E|

∑
i=0

Ci pi(1− p)|E|−i

where Ci is the number of spanning connected subgraphs of G having exactly i
edges. Since the all-terminal reliability problem is #P-complete, we can deduce
that computing the number of spanning connected subgraphs must also be #P-
complete for certain values of i. Throughout the remainder of this paper, when

2

we speak of estimating the coefficients of the reliability polynomial, we are ac-
tually speaking of estimating the Ci values for the above form of the reliability
polynomial.

Our approach to approximating the reliability polynomial is based on the ob-
servation that we can convert the original problem into an equivalent problem of
counting the number of nodes at each level of a certain type of rooted tree. To
show this, we define a structure that we call the connected subgraph tree. For any
simple connected graph G, there is an associated connected subgraph tree T . This
tree T is a rooted directed tree and every node in the tree is a connected subgraph
in G. The root node is the graph G itself. Each directed edge in the tree T goes
from the node G1 to G2 if and only if there exists an edge e such that e ∈ G1 and
G1−{e}= G2. An example of the construction of this tree is shown in Figure 1.

The reason we are interested in this formulation is because of the following
important property of the connected subgraph tree: Starting with level 0 as the
root node, each level i is composed of exactly i! copies of each of the connected
subgraphs having exactly |E| − i edges. Thus each level of the tree has exactly
i! ·C|E|−i nodes. We can prove this observation using induction starting by noticing
that the base case trivially follows from the definition of its root node. If we
assume that the statement holds for level n of the tree, then we can consider the
nodes for level n + 1. From the induction hypothesis and the definition of the
connected subgraph tree, every node on level n+1 must be a connected subgraph
with exactly |E|−n−1 edges. Since every connected subgraph is a subgraph of
G, then for any connected graph G′ with |E|−n−1 edges there are n+1 edges in
G that are not in G′. Every permutation of those n + 1 edges defines a path from
the root node G, to a node G′ on level n+1. Thus there are (n+1)! different paths
from G to G′ defining (n + 1)! copies of G′ on level n + 1 and establishing our
premise.

This formulation reduces the problem of estimating each of the coefficients to
estimating the number of nodes on each level of a connected subgraph tree. Knuth
gave a randomized algorithm for counting the number of nodes in a tree [5] which
we use in order to estimate the number of nodes on each level of the connected
subgraph tree. This resulting scheme is detailed in Algorithm 1. The proof that
our algorithm converges to the number of connected subgraphs follows directly
from the correctness proof in Knuth’s paper.

In examining the time complexity for Algorithm 1, we see that iterating through
all the coefficients requires O(|E|) steps. For each iteration, the time is dominated
by the check for edges in the graph that are bridges (i.e. edges whose removal dis-
connect the graph). By decomposing the graph into its biconnected components,
we can check if any component has exactly one edge and thus is a bridge. Using
Tarjan’s algorithm [9], we can check for bridges in O(|V |+ |E|) time which gives
a total running time for the algorithm of O(|E|2).

A more difficult question and one that is still open is exactly how fast our al-
gorithm is able to converge. In Knuth’s original paper, he showed a large variance

3

(a) The
example
graph G

(b) The connected subgraph tree for the graph G

Figure 1: An example of the connected subgraph tree for the graph G

for his scheme for counting the nodes of general trees. Stockmeyer later expanded
this result by showing that for some highly unbalanced trees the number of sam-
ples using Knuth’s algorithm needed to estimate the tree size is Ω(

√
n) where n is

the number of nodes [8]. In other words, for some trees an exponential number of
samples in the height of the tree is required for the method to converge. We point
out that the lower bound of Stockmeyer does not necessarily apply to our problem
since the class of the trees we are estimating are highly structured. Most notice-
ably, all connected subgraph trees are balanced, in other words every path from
the root to a leaf node has equal length. From empirical evidence presented in
the next section, we speculate that our algorithm may even be a fully polynomial
randomized approximation scheme.

3 Comparison with the Colbourn, Debroni, and Myr-
vold algorithm

Since the variance of our sampling method is still open, we look to compare the
rate of convergence of our method to the established method of Colbourn, De-
broni, and Myrvold (CDM). We performed a series of computational experiments
over three classes of random graphs. Our experiments consisted of generating a
random graph and computing a set of 20 point estimates with .99 confidence in-

4

Input: a graph G = (V,E)
Output: vector of coefficients C
a0← 11

for k← 1 to |E|− |V |+1 do2

D is the set of all edges which if removed do not disconnect G3

ak← |D|4

Uniformly select an edge e from the set D5

G← G−{e}6

end7

for k← 0 to |E|− |V |+1 do8

C|E|−k←
∏0≤i≤k ai

k!9

end10

for k← 0 to |V |−2 do11

Ck← 012

end13

return C14

Algorithm 1: Scheme for estimating the coefficients for the graph G

tervals of the reliability polynomial. We then iterated our algorithm and the CDM
algorithm until both produced a reliability polynomial where the 20 points were
within the confidence interval we had computed. We repeated this test over a
series of graphs and averaged the results.

Two of the three classes of random graphs that we compared against were
suggested by Karger and Tai [4]. The first class is a set of Delaunay graphs which
are created by randomly placing n points on the unit square and then computing
the Delaunay triangulation of those points. The second class, which is related
to the Delaunay graphs, are the near neighbor graphs. These are also produced
by placing n random points on the unit square, but now each point is randomly
connected to d out of its r nearest neighbors using Euclidean distance. For our
tests, we used the values r = 8 and d = 4 as suggested in the Karger and Tai paper.
Finally, since the first two classes produce sparse graphs, we decided to generate a
third class of dense graphs. We generated a series of Erdős-Renyi random graphs
with edge probabilities of 0.75. The results of these experiments are shown in
Figure 2.

The results of our tests seem to suggest that our algorithm converges to within
the confidence interval in a logarithmic number of samples to the number of nodes
in the graph, while the CDM algorithm requires a linear number of samples. This
observation seems to hold whether the graphs are sparse or dense.

5

(a) Delaunay graphs (b) Erdős-Renyi graphs

(c) Nearest neighbor graphs

Figure 2: Comparison of the average number of iterations required for both algo-
rithms

4 Handling large coefficients
When computing the number of connected subgraphs using the above approxi-
mation scheme, the sizes of these values, even for moderately sized graphs, can
quickly overflow the word size of a computer. In order to maintain these values
efficiently, we present a simple method for storing the coefficient values as log-
arithms while still being able to average the values between samples of Knuth’s
method.

While descending the connected subgraph tree, we are estimating the value
i! ·Ci with the product series a1 · a2 · ... · ai. In computing the average, we denote

6

the sth sample of ar as ar,s while the average of s samples of ar is 〈ar〉s, i.e.

〈ar〉s =
∑

s
i=1 ar,i

s

What we are interested in is a scheme to compute log〈a1 ·a2 ·a3 · ... ·an〉. To
accomplish this, we can convert this problem to the easier problem of saving the
running averages of the values 〈a1〉 ,〈a2〉 , ...,〈an〉 throughout the computation.
These running averages can be updated after every sample with the formula

〈ar〉n+1 = 〈ar〉n ·
n

n+1
+

ar,n+1

n+1

We then can rewrite the computation as

log〈a1 ·a2 · ... ·an〉= log〈a1〉+ log〈a2〉+ log〈an〉+X

Thus the main idea is to find an efficient method to compute X . Towards this, for
each ar, we compute an additional value Sr where

Sr =

{
1 if r = 1,
〈a1·a2·...·ar〉
〈a1〉〈a2〉...〈ar〉 otherwise

Thus in general the nth iteration of Sr is

Sr,n =
〈a1 ·a2 · ... ·ar〉n

〈a1〉n · 〈a2〉n · ... · 〈ar〉n
We can compute Sr,n in terms of Sr,n−1 and the values for ai,n for 1≤ i≤ r.

T =
k

k +1
·Si,k +

1
k +1

(
a1,k+1 ·a2,k+1 · ... ·ai,k+1

〈a1〉k · 〈a2〉k · ... · 〈ai〉k

)

Si,k+1 = T ·
〈a1〉k · 〈a2〉k · ... · 〈ai〉k

〈a1〉k+1 · 〈a2〉k+1 · ... · 〈ai〉k+1

In order to simplify the computation of T and S, we use the intermediate values P
and Q where

Ql,i =

{
1 if l = 0,
Ql−1,i ·

al,i
〈al〉i−1

otherwise

Pl,i =

{
1 if l = 0,

Pl−1,i ·
〈al〉i−1
〈al〉i

otherwise

We can compute both values as we increment through the values during the sam-
pling process. Thus computing Si,k+1 becomes

T =
k

k +1
·Si,k +

1
k +1

·Qi,k+1

7

Si,k+1 = T ·Pi,k+1

We also note that for the first sample, Si,1 = 1 for all i. By treating this sample as a
special case, it allows us to avoid overflow problems with Q and P when sampling
extremely large instances.

Now, by setting X = logSn, we can compute the logarithm of the average

log〈a1 ·a2 · ... ·an〉= log〈a1〉+ log〈a2〉+ ...+ log〈an〉+ logSn

By integrating this method for handling large coefficients into our approximation
algorithm, we have been able to approximate the reliability polynomial for net-
works with well over 1000 nodes and 6000 edges.

5 Conclusion
We have outlined a new method to estimate the coefficients of the reliability poly-
nomial. This approach has shown several advantages. The first is that while there
are several algorithms which provide point approximations of the polynomial, our
approach directly approximates the actual coefficients of the polynomial itself.
Secondly, when compared to the known approximation method of Colbourn et
al., our method has shown a much faster rate of convergence.

The major open question left from our investigation is establishing the vari-
ance of our sampling routine. Because of the structure of the connected subgraph
trees, we have pointed out that known lower bounds do not seem to apply in this
instance. We speculate that this algorithm may even be the first fully polynomial
randomized approximation scheme to directly compute the coefficients of the re-
liability polynomial.

6 Acknowledgments
We would like to thank Javier Bernal and Desh Ranjan for their helpful comments
on our manuscript.

References
[1] C. J. COLBOURN, The Combinatorics of Network Reliability, Oxford Univer-

sity Press, Inc., New York, NY, USA, 1987.

[2] C. J. COLBOURN, B. M. DEBRONI, AND W. J. MYRVOLD, Estimating
the coefficients of the reliability polynomial, Congressus Numerantium, 62
(1988), pp. 217–223.

8

[3] D. R. KARGER, A randomized fully polynomial time approximation scheme
for the all-terminal network reliability problem, SIAM Journal on Computing,
29 (1999), pp. 492–514.

[4] D. R. KARGER AND R. P. TAI, Implementing a fully polynomial time approx-
imation scheme for all terminal network reliability, in SODA ’97: Proceed-
ings of the eighth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, 1997, Society for Industrial and Applied Mathemat-
ics, pp. 334–343.

[5] D. E. KNUTH, Estimating the efficiency of backtrack programs, Mathematics
of Computation, 29 (1975), pp. 121–136.

[6] L. D. NEL AND C. J. COLBOURN, Combining Monte Carlo estimates and
bounds for network reliability, Networks, 20 (1990), pp. 277–298.

[7] J. S. PROVAN AND M. O. BALL, The complexity of counting cuts and of
computing the probability that a graph is connected, SIAM Journal on Com-
puting, 12 (1983), pp. 777–788.

[8] L. J. STOCKMEYER, On approximation algorithms for #P, SIAM Journal on
Computing, 14 (1985), pp. 849–861.

[9] R. TARJAN, Depth-first search and linear graph algorithms, SIAM Journal
on Computing, 1 (1972), pp. 146–160.

9

