NIST Special Publication 500-279

Static Analysis Tool Exposition (SATE)
2008

Vadim Okun
Romain Gaucher
Paul E. Black

N ErNulionul Institute of Standards and Technology ¢ U.S. Department of Commerce

NIST Special Publication 500-279

Static Analysis Tool Exposition
(SATE) 2008

Vadim Okun

Romain Gaucher

Paul E. Black

Software and Systems Division
Information Technology Laboratory

June 2009

U.S. Department of Commerce
Gary Locke, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Deputy Director

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor isit intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Special Publication 500-279
Natl. Inst. Stand. Technol. Spec. Publ. 500-279, 64 pages (June 2009)
CODEN: NSPUE2

Abstract:

The NIST SAMATE project conducted the first Static Analysis Tool Exposition
(SATE) in 2008 to advance research in static analysis tools that find security
defects in source code. The main goals of SATE were to enable empirical
research based on large test sets and to encourage improvement and speed
adoption of tools. The exposition was planned to be an annual event.

Briefly, participating tool makers ran their tool on a set of programs. Researchers
led by NIST performed a partial analysis of tool reports. The results and
experiences were reported at the Static Analysis Workshop in Tucson, AZ, in
June, 2008. The tool reports and analysis were made publicly available in 2009.

This special publication consists of the following papers. “Review of the First
Static Analysis Tool Exposition (SATE 2008),” by Vadim Okun, Romain
Gaucher, and Paul E. Black, describes the SATE procedure, provides observations
based on the data collected, and critiques the exposition, including the lessons
learned that may help future expositions. Paul Anderson’s “Commentary on
CodeSonar’s SATE Results” has comments by one of the participating tool
makers. Steve Christey presents his experiences in analysis of tool reports and
discusses the SATE issues in “Static Analysis Tool Exposition (SATE 2008)
Lessons Learned: Considerations for Future Directions from the Perspective of a
Third Party Analyst”.

Keywords:
Software security; static analysis tools; security weaknesses; vulnerability

Any commercial product mentioned is for information only. It does not imply
recommendation or endorsement by NIST nor does it imply that the products mentioned
are necessarily the best available for the purpose.

NIST SP 500-279 -2-

Table of Contents

Review of the First Static Analysis Tool Exposition (SATE 2008)ccoovivennne 4
Vadim Okun, Romain Gaucher, and Paul E. Black

Commentary on CodeSonar’s SATE Resultsooiiiiiiiiiiiiii e 38
Paul Anderson

Static Analysis Tool Exposition (SATE 2008) Lessons Learned: Considerations for

Future Directions from the Perspective of a Third Party Analyst 41

Steve Christey

NIST SP 500-279 -3-

Review of the First Static Analysis Tool Exposition

(SATE 2008)
Vadim Okun Romain Gaucher' Paul E. Black
vadim.okun@nist.gov rgaucher@cigital.com paul.black@nist.gov

National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract

The NIST SAMATE project conducted the first Static Analysis Tool Exposition (SATE)
in 2008 to advance research in static analysis tools that find security defects in source
code. The main goals of SATE were to enable empirical research based on large test sets
and to encourage improvement and speed adoption of tools. The exposition was planned
to be an annual event.

Briefly, participating tool makers ran their tool on a set of programs. Researchers led by
NIST performed a partial analysis of tool reports. The results and experiences were
reported at the Static Analysis Workshop in Tucson, AZ, in June, 2008. The tool reports
and analysis were made publicly available in 2009.

This paper describes the SATE procedure, provides our observations based on the data
collected, and critiques the exposition, including the lessons learned that may help future
expositions. This paper also identifies several ways in which the released data and
analysis are useful. First, the output from running many tools on production software can
be used for empirical research. Second, the analysis of tool reports indicates weaknesses
that exist in the software and that are reported by the tools. Finally, the analysis may also
be used as a building block for a further study of the weaknesses and of static analysis.

Disclaimer

Certain instruments, software, materials, and organizations are identified in this paper to
specify the exposition adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the
instruments, software, or materials are necessarily the best available for the purpose.

! Romain Gaucher is currently with Cigital, Inc. When SATE was conducted, he was with NIST.

NIST SP 500-279 -4 -

Cautions on Interpreting and Using the SATE Data

SATE 2008 was the first such exposition that we conducted, and it taught us many
valuable lessons. Most importantly, our analysis should NOT be used as a direct source
for rating or choosing tools; this was never the goal of SATE.

There is no metric or set of metrics that is considered by the research community to
indicate all aspects of tool performance. We caution readers not to apply unjustified
metrics based on the SATE data.

Due to the variety and different nature of security weaknesses, defining clear and
comprehensive analysis criteria is difficult. As SATE progressed, we realized that our
analysis criteria were not adequate, so we adjusted the criteria during the analysis phase.
As a result, the criteria were not applied consistently. For instance, we were inconsistent
in marking the severity of the warnings where we disagreed with tool’s assessment.

The test data and analysis procedure employed have serious limitations and may not
indicate how these tools perform in practice. The results may not generalize to other
software because the choice of test cases, as well as the size of test cases, can greatly
influence tool performance. Also, we analyzed a small, non-random subset of tool
warnings and in many cases did not associate warnings that refer to the same weakness.

The tools were used in this exposition differently from their use in practice. In practice,
users write special rules, suppress false positives, and write code in certain ways to
minimize tool warnings.

We did not consider the user interface, integration with the development environment,
and many other aspects of the tools. In particular, the tool interface is important for a user
to efficiently and correctly understand a weakness report.

Participants ran their tools against the test sets in February 2008. The tools continue to
progress rapidly, so some observations from the SATE data may already be obsolete.

Because of the above limitations, SATE should not be interpreted as a tool testing
exercise. The results should not be used to make conclusions regarding which tools are
best for a particular application or the general benefit of using static analysis tools. In this
paper, specifically Section 5, we suggest ways in which the SATE data might be used.

NIST SP 500-279 -5-

1 Introduction

Static Analysis Tool Exposition (SATE) was designed to advance research in static
analysis tools that find security-relevant defects in source code. Briefly, participating tool
makers ran their tool on a set of programs. Researchers led by NIST performed a partial
analysis of tool reports. The results and experiences were reported at the Static Analysis
Workshop (SAW) [20]. The tool reports and analysis were made publicly available in
2009. SATE had these goals:

e To enable empirical research based on large test sets

o To encourage improvement of tools

o To speed adoption of the tools by objectively demonstrating their use on
production software

Our goal was not to evaluate nor choose the "best" tools.

SATE was aimed at exploring the following characteristics of tools: relevance of
warnings to security, their correctness, and prioritization. Due to the way SATE was
organized, we considered the textual report produced by the tool, not its user interface. A
tool’s user interface is very important for understanding weaknesses. There are many
other factors in determining which tool (or tools) is appropriate in each situation

SATE was focused on static analysis tools that examine source code to detect and report
weaknesses that can lead to security vulnerabilities. Tools that examine other artifacts,
like requirements, byte code or binary, and tools that dynamically execute code were not
included.

SATE was organized and led by the NIST SAMATE team [15]. The tool reports were
analyzed by a small group of analysts, consisting, primarily, of the NIST and MITRE
researchers. The supporting infrastructure for analysis was developed by the NIST
researchers. Since the authors of this report were among the organizers and the analysts,
we sometimes use the first person plural (we) to refer to analyst or organizer actions.

In this paper, we use the following terminology. A vulnerability is a property of system
security requirements, design, implementation, or operation that could be accidentally
triggered or intentionally exploited and result in a security failure [18]. A vulnerability is
the result of one or more weaknesses in requirements, design, implementation, or
operation. A warning is an issue (usually, a weakness) identified by a tool. A (tool)
report is the output from a single run of a tool on a test case. A tool report consists of
warnings.

Researchers have studied static analysis tools and collected test sets. Zheng et. al [23]
analyzed the effectiveness of static analysis tools by looking at test and customer-
reported failures for three large-scale network service software systems. They concluded
that static analysis tools are effective at identifying code-level defects. Several collections
of test cases with known security flaws are available [11] [24] [12] [16]. Several
assessments of open-source projects by static analysis tools have been reported recently
[1][5]1[9]. A number of studies have compared different static analysis tools for finding
security defects, e.g., [14] [11] [24] [10] [13] [4]. SATE is different in that many

NIST SP 500-279 -6-

participants ran their own tools on a set of open source programs. Also, SATE’s goal is to
accumulate test data, not to compare tools.

The rest of the paper is organized as follows. Section 2 describes the SATE 2008
procedure. Since we made considerable changes and clarifications to the SATE procedure
after it started, Section 2 also describes the procedure in its final form. See Section 4 for a
discussion of some of the changes to the procedure and the reasons for making them.
Appendix A contains the SATE plan that participants faced early on.

Section 3 gives our observations based on the data collected. In particular, our
observations on the difficulty of differentiating weakness instances are in Section 3.4.
Section 4 is our review of the exposition. It describes reasons for our choices, changes to
the procedure that we made, and also lists the limitations of the exposition. Section 5
summarizes conclusions and outlines future plans.

2 SATE Organization

The exposition had two language tracks: C track and Java track. At the time of
registration, participants specified which track(s) they wished to enter. We performed
separate analysis and reporting for each track. Also at the time of registration,
participants specified the version of the tool that they intended to run on the test set(s).
We required the tool version to have a release or build date that is earlier than the date
when they received the test set(s).

2.1 Steps in the SATE procedure

The following summarizes the steps in the SATE procedure. Deadlines are given in
parentheses.

e Step 1 Prepare
o Step la Organizers choose test sets
o Step 1b Tool makers sign up to participate (by 8 Feb 2008)
e Step 2 Organizers provide test sets via SATE web site (15 Feb 2008)
e Step 3 Participants run their tool on the test set(s) and return their report(s) (by 29
Feb 2008)
o Step 3a (optional) Participants return their review of their tool's report(s)
(by 15 Mar 2008)
e Step 4 Organizers analyze the reports, provide the analysis to the participants (by
15 April 2008)
o Step 4a (Optional) Participants return their corrections to the analysis (by
29 April 2008)
o Step 4b Participants receive an updated analysis (by 13 May 2008)
o Step 4c Participants submit a report for SAW (by 30 May 2008)
e Step 5 Report comparisons at SAW (June 2008)
e Step 6 Publish results (Originally planned for Dec 2008, but delayed until June
2009)

NIST SP 500-279 -7 -

2.2 Test Sets

We list the test cases we selected, along with some statistics for each test case, in Table 1.

The last two columns give the number of files and the number of non-blank, non-

comment lines of code (LOC) for the test cases. The counts for C test cases include
source (.c) and header (.h) files. The counts for the Java test cases include Java (.java)
and JSP (.jsp) files. The counts do not include source files of other types: make files,
shell scripts, Perl, PHP, and SQL. The lines of code were counted using SLOCCount by

David A. Wheeler [22].

Test case | Track | Description Version # Files | # LOC

Naim C Console instant messenger 0.11.8.3.1 44 | 23,210
Nagios C Host, service and network monitoring | 2.10 73 65,133
Lighttpd C Web server 1.4.18 144 | 38,306
OpenNMS Java Network management system 1.2.9 1065 | 131,507
MvnForum | Java Forum 1.1 839 | 128,784
DSpace Java Document management system 1.4.2 388 53,847

Table 1 Test cases

The links to the test case developer web sites, as well as links to download the versions

analyzed, are available at the SATE web page [19].

2.3 Participants

Table 2 lists, alphabetically, the participating tools and the tracks in which the tools were

applied. Although our focus is on automated tools, one of the participants, Aspect

Security, performed a human code review. Another participant, Veracode, performed a

human review of its reports to remove anomalies such as high false positives in a

particular weakness category.

2.4 Tool Runs and Submissions

Participants ran their tools and submitted reports following specified conditions.

e Participants did not modify the code of the test cases.
e For each test case, participants did one or more runs and submitted the report(s).

See below for more details.

e Except for Aspect Security and Veracode, the participants did not do any hand
editing of tool reports. Aspect Security performed a manual review. Veracode
performed a human quality review of its reports to remove anomalies such as high
false positives in a particular weakness category. This quality review did not add

any new results.

e Participants converted the reports to a common XML format. See Section 2.6.1

for description of the format.

e Participants specified the environment (including the operating system and

version of compiler) in which they ran the tool. These details can be found in the

SATE tool reports available at [19].

NIST SP 500-279 -8-

Tool Version Tracks
Aspect Security ASC* 2.0 Java
Checkmarx CxSuite 243 Java
Flawfinder’ 1.27 C
Fortify SCA 5.0.0.0267 C, Java
Grammatech CodeSonar 3.0p0 C

HP DevInspect™ 5.0.5612.0 Java
SofCheck Inspector for Java 2.1.2 Java
University of Maryland FindBugs 1.3.1 Java
Veracode SecurityReview® As 0f 02/15/2008 | C, Java

Table 2 Participating tools

Most participants submitted one tool report per test case for the track(s) that they
participated in. HP DevInspect analyzed DSpace only. They were not able to setup
analysis of the other Java test cases before the deadline.

Fortify submitted additional runs of their tool with the —findbugs option. Due to lack of
time we did not analyze the output from these runs. For MvnForum, Fortify used a
custom rule, which was included in their submission. No other tool used custom rules. In
all, we analyzed the output from 31 tool runs: 6 each from Fortify and Veracode (each
participated in 2 tracks), 1 from HP DevlInspect, and 3 each from the other 6 tools.

Several participants also submitted the original reports from their tools, in addition to the
reports in the SATE output format. During our analysis, we used some of the information
(details of weakness paths) from some of the original reports to better understand the
warnings.

Grammatech CodeSonar uses rank (a combination of severity and likelihood) instead of
severity. All warnings in their submitted reports had severity 1. We changed the severity
field for some warning classes in the CodeSonar reports based on the weakness names.

2.5 Analysis of Tool Reports

For selected tool warnings, we analyzed up to three of the following characteristics. First,
we associated together warnings that refer to the same weakness. (See Section 3.4 for a
discussion of what constitutes a weakness.) Second, we assigned severity to warnings
when we disagreed with the severity assigned by the tool. Often, we gave a lower
severity to indicate that in our view, the warning was not relevant to security. Third, we
analyzed correctness of the warnings. During the analysis phase, we marked the warnings
as true or false positive. Later, we decided not to use the true/false positive markings.
Instead, we marked as "confirmed" the warnings that we determined to be correctly
reporting a weakness. We marked as "unconfirmed" the rest of the warnings that we
analyzed or associated. In particular, this category includes the warnings that we analyzed

? Performed a manual review, used only static analysis for SATE; ASC stands for Application Security
Consultant — there is no actual product by that name

* Romain Gaucher ran David Wheeler’s Flawfinder

* A hybrid static/dynamic analysis tool, but used only static part of the tool for SATE

> Analyzed one test case - DSpace

% A service

NIST SP 500-279 -9-

but were not sure whether they were correct. We discuss the reasons for using confirmed
and unconfirmed in Section 4.2. Also, we included our comments about warnings.

2.5.1 Analysis Procedure

We used both human and (partially) automated analyses. Humans analyzed warnings
using the following procedure. First, an analyst searched for warnings. We focused our
efforts on warnings with severity 1 or 2 (as reported by the tools). We analyzed some
lower severity warnings, either because they were associated with higher severity
warnings or because we found them interesting. An analyst usually concentrated his
efforts on a specific test case, since the knowledge of the test case that he gained enabled
him to analyze other warnings for the same test case faster. Similarly, an analyst often
concentrated textually, e.g., choosing warnings near by in the same source file. An
analyst also tended to concentrate on warnings of the same type.

After choosing a particular warning, the analyst studied the relevant parts of the source
code. If he formed an opinion, he marked correctness, severity, and/or added comments.
If he was unsure about an interesting case, he may have investigated further by, for
instance, extracting relevant code into a simple example and/or executing the code. Then
the analyst proceeded to the next warning.

Below are two common scenarios for an analyst’s work.

Search — View list of warnings — Choose a warning to work on — View source code of
the file — Return to the warning — Submit an evaluation

Search — View list of warnings — Select several warnings — Associate the selected
warnings

Sometimes, an analyst may have returned to a warning that had already been analyzed,
either because he changed his opinion after analyzing similar warnings or for other
reasons.

To save time, we used heuristics to partially automate the analysis of some similar
warnings. For example, when we determined that a particular source file is executed
during installation only, we downgraded severity of certain warning types referring to
that source file.

Additionally, a tool to automate the analysis of buffer warnings reported by Flawfinder
was developed by one of the authors [6]. The tool determined source and destination
buffers, identified the lines of code involving these buffers, and analyzed several types of
actions on the buffers, including allocation, reallocation, computing buffer size,
comparisons, and test for NULL after allocation. The tool then made a conclusion
(sometimes incorrectly) about correctness of the warning. The conclusions were reviewed
manually.

2.5.2 Practical Analysis Aids

To simplify querying of tool reports, we imported all reports into a relational database
designed for this purpose.

NIST SP 500-279 -10 -

To support human analysis of warnings, we developed a web interface which allows
searching the warnings based on different search criteria, viewing individual warnings,
marking a warning with human analysis which includes opinion of correctness, severity,
and comments, studying relevant source code files, associating warnings that refer to the
same weakness, etc.

2.5.3 Optional Steps

We asked participants to review their tool reports and provide their findings (optional
step 3a in Section 2.1). SofCheck submitted a review of their tool’s warnings.

We also asked participants to review our analysis of their tool warnings (optional step 4a
in Section 2.1). Grammatech submitted a review of our analysis. Based on Grammatech’s
comments, we re-examined our analysis for the relevant warnings and changed our
conclusions for some of the warnings.

2.5.4 Analysis Criteria

This section describes the criteria that we used for associating warnings that refer to the
same weakness and also for marking correctness and severity of the warnings. We
marked severity of a warning whenever we disagreed with the tool. The limitations of the
criteria are discussed in Section 4.2.

Correctness and severity are orthogonal. Confirmed means that we determined that the
warning correctly reports a weakness. Severity attempts to address security relevance.

Criteria for analysis of correctness
In our analysis we assumed that

e A tool has (or should have) perfect knowledge of control/data flow that is
explicitly in the code.

o For example, if a tool reports an error caused by unfiltered input, but in
fact the input is filtered correctly, mark it as false.

o If the input is filtered, but the filtering is not complete, mark it as true.
This is often the case for cross-site scripting weaknesses.

o If a warning says that a function can be called with a bad parameter, but in
the test case it is always called with safe values, mark the warning as false.

e A tool does not know about context or environment and may assume the worst
case.

o For example, if a tool reports a weakness that is caused by unfiltered input
from command line or from local files, mark it as true. The reason is that
the test cases are general purpose software, and we did not provide any
environmental information to the participants.

Criteria for analysis of severity

We used an ordinal scale of 1 to 5, with 1 - the highest severity. We assigned severity 4
or 5 to warnings that were not likely to be security relevant.

NIST SP 500-279 -11-

We focused our analysis on issues with severity 1 and 2. We left the severity assigned by
the tool when we agreed with the tool. We assigned severity to a warning when we
disagreed with the tool.

Specifically, we downgraded severity in these cases:

e A warning applies to functionality which may or may not be used securely. If the
tool does not analyze the use of the functionality in the specific case, but provides
a generic warning, we downgrade the severity to 4 or 5. For example, we
downgrade severity of general warnings about use of getenv.
e A weakness is unlikely to be exploitable in the usage context. Note that the tool
does not know about the environment, so it is correct in reporting such issues.
o For example, if input comes from configuration file during installation, we
downgrade severity.
o We assume that regular users cannot be trusted, so we do not downgrade
severity if input comes from a user with regular login credentials.

e We believe that a class of weaknesses is less relevant to security.
Correctness and severity criteria applied to XSS

After analyzing different cross-site scripting (XSS) warnings, we realized that it is often
very hard to show that an XSS warning is false (i.e., show that the filtering is complete).
The following are the cases where an XSS warning can be shown to be false (based on
our observations of the SATE test cases).

e Typecasting — the input string is converted to a specific type, such as Boolean,
integer, or other immutable and simple type. For example, Integer::parselnt
method is considered safe since it returns a value with an integer type.

e Enumerated type - a variable can have a limited set of possible values.
We used the following criteria for assigning severity.
e Severity 1 —no basic validation, e.g., the characters “<>” are not filtered.

e Severity 2 — vulnerable to common attack vectors, e.g., there is no special
characters replacement (CR, LF), no extensive charset checking.

e Severity 3 — vulnerable to specific attacks, for example, exploiting the date
format.

e Severity 4 — needs specific credential to inject, for example, attack assumes that
the administrator inserted malicious content into the database.

e Severity 5 —not a security problem, for example, a tainted variable is never
printed in XSS sensitive context, meaning, HTML, XML, CSS, JSON, etc.

Criteria for associating warnings

Tool warnings may refer to the same weakness. (The notion of distinct weaknesses may
be unrealistic. See Section 3.4 for a discussion.) In this case, we associated them, so that
any analysis for one warning applied to every warning.

NIST SP 500-279 -12-

The following criteria apply to weaknesses that can be described using source-to-sink
paths. A source is where user input can enter a program. A sink is where the input is
used.

e [ftwo warnings have the same sink, but the sources are two different variables, do
not associate these warnings.

e Iftwo warnings have the same source and sink, but paths are different, associate
these warnings, unless the paths involve different filters.

e If the tool reports only the sink, and two warnings refer to the same sink and use
the same weakness name, associate these warnings, since we may have no way of
knowing which variable they refer to.

2.6 SATE Data Format

All participants converted their tool output to the common SATE XML format. Section
2.6.1 describes this tool output format. Section 2.6.2 describes the extension of the SATE
format for storing our analysis of the warnings. Section 2.6.3 describes the format for
storing the lists of associations of warnings.

2.6.1 Tool Output Format

In devising the tool output format, we tried to capture aspects reported textually by most
tools. In the SATE tool output format, each warning includes:

Id - a simple counter.
(Optional) tool specific id.
One or more locations, where each location is line number and pathname.
Name (class) of the weakness, e.g., “buffer overflow”.
(Optional) CWE id, where applicable.
Weakness grade (assigned by the tool):
o Severity on the scale 1 to 5, with 1 - the highest.
o (Optional) probability that the problem is a true positive, from O to 1.
e Output - original message from the tool about the weakness, either in plain text,
HTML, or XML.
e (Optional) An evaluation of the issue by a human; not considered to be part of
tool output. Note that each of the following fields is optional.
o Severity as assigned by the human; assigned by the human whenever the
human disagrees with the severity assigned by tool.
o Opinion of whether the warning is a false positive: 1 — false positive, 0 —
true positive.
o Comments.

The XML schema file for the tool output format and an example are available at the
SATE web page [19].

2.6.2 Evaluated Tool Output Format

The evaluated tool output format, including our analysis of tool warnings, has several
fields in addition to the tool output format above. Specifically, each warning has another

NIST SP 500-279 -13-

id (UID), which is unique across all tool reports. Also, the evaluation section has these
additional optional fields:

e Confirmed — “yes” means that the human determined that the warning is correctly
reporting a weakness.

e Stage — a number that roughly corresponds to the step of the SATE procedure, in
which the evaluation was added:

o Stage 3 — (optional) participants’ review of their own tool’s report.

o Stage 4 — review by the SATE analysts.

o Stage 5 — (optional) corrections by the participants. No participant
submitted corrections in the xml format at that stage; however,
Grammatech submitted a detailed document with corrections to our
analysis of their tool’s warnings.

o Stage 6 —updates by the SATE analysts.

e Author — author of the evaluation. For each warning, the evaluations by SATE
analysts were combined together and a generic name — “evaluators” - was used.

Additionally, the evaluated tool output format allows for more than one evaluation
section per warning.

2.6.3 Association List Format

The association list consists of sets of unique warning ids (UID), where each set
represents a group of associated warnings. (See Section 3.4 for a discussion of the
concept of unique weaknesses.) There is one list per test case. Each set occupies a single
line, which is a tab separated list of UIDs. For example, if we determined that UID 441,
754, and 33201 refer to the same weakness, we associated them. They are represented as:

441 754 33201

3 Data and Observations

This section describes our observations based on our analysis of the data collected.

3.1 Warning Categories

The tool outputs contain 104 different valid CWE ids; in addition, there are 126 weakness
names for warnings that do not have a valid CWE id. In all, there are 291 different
weakness names. This exceeds 104+126, since tools sometimes use different weakness
names for the same CWE id. In order to simplify the presentation of data in this report,
we placed warnings into categories based on the CWE id and the weakness name, as
assigned by tools.

Table 3 describes the weakness categories. The detailed list is part of the released data
available at the SATE web page [19]. Some categories are individual weakness classes
such as XSS; others are broad groups of weaknesses. We included categories based on
their prevalence and severity. The categories are derived from [3], [21], and other
taxonomies. We designed this list specifically for presenting the SATE data only and do
not consider it to be a generally applicable classification. We use abbreviations of
weakness category names (the second column of Table 3) in Sections 3.2 and 3.3.

NIST SP 500-279 -14 -

Name Abbre- | Description Example types of
viation weaknesses
Cross-site XSS The software does not sufficiently validate, Reflected XSS,
scripting filter, escape, and encode user-controllable stored XSS
(XSS). input before it is placed in output that is used
as a web page that is served to other users.
SQL sql-inj The software dynamically generates an SQL Blind SQL injection,
injection query based on user input, but it does not second order SQL
sufficiently prevent the input from modifying injection
the intended structure of the query.
Buffer errors | buf Buffer overflows (reading or writing data Buffer overflow and
beyond the bounds of allocated memory) and | underflow,
use of functions that lead to buffer overflows unchecked array
indexing, improper
null termination
Numeric num-err Improper calculation or conversion of Integer overflow,
errors numbers incorrect numeric
conversion, divide by
zero
Command cmd-inj The software fails to adequately filter OS command
injection command (control plane) syntax from user- injection
controlled input (data plane) and then allows
potentially injected commands to execute
within its context.
Cross-site csrf The web application does not, or can not,
request sufficiently verify whether a well-formed, valid,
forgery consistent request was intentionally provided
(CSRF) by the user who submitted the request.
Race race The code requires that certain state not be File system race
condition modified between two operations, but a timing | condition, signal
window exists in which the state can be handling
modified by an unexpected actor or process.
Information info-leak | The intentional or unintentional disclosure of Verbose error
leak information to an actor that is not explicitly reporting, system

authorized to have access to that information

information leak

Broad categories

Improper input-val | Absent or incorrect protection mechanism that | Log forging, LDAP
input fails to properly validate input injection, resource
validation injection, file injec-
tion, path manipula-
tion, HTTP response
splitting, uncontrolled
format string
Security sec-feat Security features, such as authentication, Hard-coded
features access control, confidentiality, cryptography, password, insecure
and privilege management randomness, least
privilege violation
Improper err-handl | An application does not properly handle Incomplete, missing
error errors that occur during processing error handling,
handling missing check
against null
Insufficient encaps The software does not sufficiently Trust boundary
encapsula- encapsulate critical data or functionality violation, leftover
tion debug code

NIST SP 500-279

-15 -

Name Abbre- | Description Example types of

viation weaknesses
APl abuse api- The software uses an API in a manner Heap inspection, use
abuse contrary to its intended use of inherently
dangerous function
Time and time- Improper management of time and state in an | Concurrency weak-
state state environment that supports simultaneous or nesses, session
near-simultaneous computation by multiple management
systems, processes, or threads problems
Quality quality Features that indicate that the software has Null pointer dere-
problems not been carefully developed or maintained ference, dead code,

uninitialized variable,
resource manage-
ment problems, incl.
denial of service due
to unreleased re-
sources, use after
free, double unlock,
memory leak

Uncatego- uncateg Other issues that we could not easily assign
rized to any category

Table 3 Weakness categories

Some weakness categories in Table 3 are subcategories of other, broader, categories.
First, Cross-site scripting (XSS), SQL injection, and Command injection are kinds of
improper input validation. Second, Race condition is a kind of Time and state weakness
category. Due to their prevalence, we decided to use separate categories for these
weaknesses.

When a weakness type had properties of more than one weakness category, we tried to
assign it to the most closely related category.

3.2 Test Case and Tool Properties

In this section, we present the division of tool warnings by test case and by severity, as
well as the division of reported tool warnings and confirmed tool warnings by weakness
category. We then consider which of the SANS/CWE Top 25 weakness categories [17]
are reported by tools. We also discuss some qualitative properties of test cases and tools.

Naim [] 1748
Nagios |] 6460
Lighttpd [T] 3886
OpenNMS] 21540
MvnForum [18066
Dspace |]6205

Figure 1 Warnings by test case (total 47925)

NIST SP 500-279 - 16 -

Figure 1 presents the numbers of tool warnings by test case. Almost half of the total
warnings were for OpenNMS. We attribute it to the fact that the version of OpenNMS
chosen for analysis was written prior to a major security overhaul [7].

Figure 2 presents the numbers of tool warnings by severity as determined by the tool.
Grammatech CodeSonar uses rank (a combination of severity and likelihood) instead of
severity. All warnings in their submitted reports had severity 1. We changed the severity
field for some warning classes in the CodeSonar reports based on the weakness names.
The numbers in Figure 2 and elsewhere in the report reflect this change.

1 [FT

2 @iz

3 12344

4 12040

5 16186

Figure 2 Warnings by severity (total 47925)

Weakness C track Java track
category | AllC | Naim | Nagios | Lighttpd | All Java | OpenNMS | MvnForum | DSpace
XSS 0 0 0 0 2636 1748 471 417
sql-inj 0 0 0 0 715 179 483 53
buf 4525 674 2604 1247 0 0 0 0
num-err 958 155 560 243 438 174 196 68
cmd-inj 65 5 40 20 37 37 0 0
csrf 0 0 0 0 146 8 136 2
race 61 3 17 41 344 38 282 24
info-leak 1862 4 766 1092 1290 653 296 341
input-val 337 59 85 193 1851 670 303 878
sec-feat 59 30 8 21 5175 4021 333 821
quality 3030 431 1932 667 12019 8450 2380 1189
err-hand| 674 113 302 259 7885 3923 2725 1237
encaps 0 0 0 0 1636 566 230 840
api-abuse 413 259 112 42 529 430 11 88
time-state 9 0 5 4 365 298 26 41
uncateg 101 15 29 57 765 365 194 206
Total | 12094 | 1748 6460 3886 35831 21560 8066 6205

Table 4 Reported warnings by weakness category

Table 4 presents the numbers of reported tool warnings by weakness category for the C
and Java tracks, as well as for individual test cases. The weakness categories are
described in Table 3. Figure 3 plots the “All C” column of Table 4. Figure 4 plots the

NIST SP 500-279 -17 -

“All Java” column. The figures do not show categories with no warnings for the
corresponding track.

For the C track, there were no xss, sql-inj, csrf, and encaps warnings. In fact, Nagios has
a web interface, and we found at least one instance of xss in the file cgi/status.c.
However, since it is uncommon to write web applications in C, the tools tend not to look
for web application vulnerabilities in the C code. For the Java track, there were no buf
warnings - most buffer errors are not possible in Java.

buf
num-err
cmd-inj
race
info-leak
input-val
sec-feat
quality
err-handl
api-abuse
time-state
uncateg

] 45

1958

] 65

| 61
11862
[337

| 59

13030

1674

1413
9

1101

25

Figure 3 Reported warnings by weakness category - C track (total 12094)

XSS
sql-inj
num-err
cmd-inj
csrf

race
info-leak
input-val
sec-feat
quality
err-hand|
encaps
api-abuse
time-state
uncateg

12636
1715

] 438

37

| 146

] 344

11290
11851
15175

112019

] 7885

11636
] 529
] 365

] 765

Figure 4 Reported warnings by weakness category - Java track (total 35831)

Table 5 presents the numbers of weaknesses confirmed by the analysts by weakness
category for the C and Java tracks, as well as for individual test cases. Figure 5 plots the
“All C” column of Table 5. Figure 6 plots the “All Java” column. The figures do not
show categories with no confirmed weaknesses for the corresponding track. The numbers

NIST SP 500-279

- 18-

reflect our focus on analyzing severity 1 and 2 warnings and also the concentration of our
efforts on a few weakness categories.

Weakness C track Java track
category | AllC | Naim | Nagios | Lighttpd | All Java | OpenNMS | MvnForum | DSpace
XSS 0 0 0 0 711 167 448 96
sql-inj 0 0 0 0 57 40 6 11
buf 167 11 150 6 0 0 0 0
num-err 3 0 0 3 0 0 0 0
cmd-inj 9 3 5 1 9 9 0 0
csrf 0 0 0 0 138 1 136 1
race 21 2 6 13 24 0 0 24
info-leak 21 1 0 20 36 0 0 36
input-val 4 1 1 2 219 12 173 34
sec-feat 3 1 0 2 14 7 3 4
quality 206 40 26 140 11 10 0 1
err-handl| 114 37 21 56 0 0 0 0
encaps 0 0 0 0 3 0 2 1
api-abuse 20 18 1 1 0 0 0 0
time-state 0 0 0 0 7 0 7 0
uncateg 4 1 0 3 0 0 0 0
Total 572 115 210 247 1229 246 775 208

Table 5 Confirmed weaknesses by weakness category

The tools are capable of finding weaknesses in a variety of categories. These include not

just XSS, SQL injection and other input validation problems, but also some classes of

authentication errors (e.g., hard-coded password, insecure randomness, and least privilege
violation) and information disclosure problems.

buf
num-err
cmd-inj
race
info-leak
input-val
sec-feat
quality
err-handl
api-abuse
uncateg

1167

i 3
19
121
121
[4

] 3

] 206

1 20

4

1114

Figure 5 Confirmed weaknesses by weakness category - C track (total 572)

NIST SP 500-279

-19-

XSS
sql-inj
cmd-inj
csrf

race
info-leak
input-val
sec-feat
quality
encaps
time-state

1 711

=1 57
19
—1138

0 24

0 36
1219
014

11

Figure 6 Confirmed weaknesses by weakness category - Java track (total 1229)

The 2009 SANS/CWE Top 25 Most Dangerous Programming Errors [17] is a list,
selected by a group of software security experts, of the most significant weaknesses that
can lead to serious software vulnerabilities. They organized the weaknesses into three
high-level categories. They also selected some related CWE ids (not a comprehensive
list) for each of the Top 25 weaknesses. Table 6 presents the CWE id and name of the
weakness, and also related CWE 1ids.

CWE id

| Weakness name

| Related CWE ids

Insecure Interaction Between Components

20

Improper Input Validation

184 74 79 89 95

116

Improper Encoding or Escaping of Output

7478 79 88 89 93

89

Failure to Preserve SQL Query Structure (aka 'SQL
Injection’)

564 566 619 90

Failure to Preserve Web Page Structure (aka 'Cross-site

79 | Scripting') 692 82 85 87
Failure to Preserve OS Command Structure (aka 'OS
78 | Command Injection") 88
319 | Cleartext Transmission of Sensitive Information 312614
352 | Cross-Site Request Forgery (CSRF) 346 441
362 | Race Condition 364 366 367 370 421
209 | Error Message Information Leak 204 210 538

Risky Resource Management

Failure to Constrain Operations within the Bounds of a

119 | Memory Buffer 120 129 130 131 415 416
642 | External Control of Critical State Data 472 565
73 | External Control of File Name or Path 22 434 59 98
426 | Untrusted Search Path 427 428
Failure to Control Generation of Code (aka 'Code
94 | Injection") 470 95 96 98
494 | Download of Code Without Integrity Check 247 292 346 350
14 226 262 299 401 415
404 | Improper Resource Shutdown or Release 416 568 590
665 | Improper Initialization 453 454 456
131 135 190 193 369 467
682 | Incorrect Calculation 681

NIST SP 500-279

-20 -

CWE id | Weakness name Related CWE ids
Porous Defenses

285 | Improper Access Control (Authorization) 425 749

327 | Use of a Broken or Risky Cryptographic Algorithm 320 329 331 338

259 | Hard-Coded Password 256 257 260 321

732 | Insecure Permission Assignment for Critical Resource 276 277 279

329 331 334 336 337 338

330 | Use of Insufficiently Random Values 341

250 | Execution with Unnecessary Privileges 272 273 653

602 | Client-Side Enforcement of Server-Side Security 20 642

Table 6 SANS/CWE Top 25 Weaknesses

Warnings reported by tools
CWE id | This CWE only | Incl. related CWEs

20 X X
116 X

89 X X

79 X X

78 X X
319
352 X X
362 X X
209 X X
119 X X
642 X

73 X X
426

94 X
494 X
404 X X
665 X
682 X
285
327
259 X X
732 X
330 X X
250 X X
602 X

Table 7 Top 25 weaknesses reported by SATE tools

Table 7 illustrates which of the Top 25 weaknesses are reported by automated tools in
SATE. The first column indicates the CWE id, the second column has a check mark if
any tool reported warnings with this CWE 1id, the third column has a check mark if any
tool reported warnings with this or related CWE id. For example, no tool reported CWE
id 116, but tools reported related CWE ids. Since Aspect Security did not mark most of

NIST SP 500-279 -21 -

their warnings with CWE ids, the data in Table 7 is the same whether Aspect Security
warnings are included or not.

The tools reported 13 of the Top 25 CWE ids. When related CWE ids are included, the
tools reported 21 of the 25 CWE ids. Since the list of related CWE ids is not
comprehensive and only about 75% of tool warnings have a CWE id, this table may
underestimate the proportion of the Top 25 weaknesses reported by tools.

While some of the Top 25 weaknesses, such as Cleartext Transmission of Sensitive
Information, are hard to find using static analysis tools, Table 7 suggests that the tools
can help find weaknesses in most of the Top 25 weakness categories.

The human review by Aspect Security highlights the differences and synergies between
human and automated reporting and analysis. While human review is needed for some
types of weaknesses (e.g., some authorization problems), tools can quickly find hundreds
of weaknesses. Sometimes the human describes the cause of the problem at a high level,
while the tool provides the specific vulnerable paths for the instances of the problem. An
example is in Section 3.4.4.

Overall, tools handled the code well, which is not an easy task for the test cases of this
size. Some tools in the Java track had difficulty processing Java Server Pages (JSP) files,
so they missed weaknesses in those files.

Project developers’ programming style affects the ability of tools to detect problems and
the ability of users to analyze the tool reports, as noted in [8]. This observation is
supported by the SATE data. For example in Nagios, the return value of malloc, strdup,
or other memory allocation functions is not checked for NULL immediately, instead, it is
checked for NULL before each use. While this practice can produce quality code, the
analysis has to account for all places where the variable is used.

Using black lists to filter input is not adequate. This observation is supported by the
following example from MvnForum, which uses two types of filtering:

e For inserting data in HTML pages:

o DisableHtmlTagFilter.filter (in
myvietnam\src\net\myvietnam\mvncore\filter\DisableHtmITagFilter.java)
converts the special characters <>”& into their HTML entities. There is no
check for special encoding.

o urlResolver.encodeURL converts non-alphanumeric characters except ._-
into the corresponding hex values.

e For checking file names: checkGoodFileName throws an exception if it finds any
of the following characters: <>&:\0/*?|.

Also, MvnForum sets Charset to UTF-8 using the meta tag in the JSP files.

For example, UID 27926 reports line 79 in
mvnforum/srcweb/mvnplugin/mvnforum/admin/editgroupinfosuccess.jsp:

79 <td>» <a class="command"
href="<%=urlResolver.encodeURL(request, response, "viewgroup?group="
+ ParamUtil.getParameterFilter(request, ""group"))%>"><fmt:message

NIST SP 500-279 -22-

key="mvnforum.admin.success.return_to view_group"/> (<fmt:message
key="mvnforum.common.success.automatic"/>)</td>

Function getParameterFilter applies DisableHtmlTagFilter.filter to its parameters. Since
DisableHtmlTagFilter.filter converts only a few characters and there is no check for
special encoding, we concluded that the warning is true and assigned it severity 2 (See
the analysis criteria in Section 2.5.4).

3.3 On our Analysis of Tool Warnings

We analyzed (associated or marked as confirmed or unconfirmed) 5,899 warnings. This
is about 12% of the total number of warnings (47,925). It is a non-random subset of tool
warnings. In this section, we present data on what portions of test cases and weakness
categories were analyzed. We also describe the effort that we spent on the analysis.

Figure 7 presents, by test case and for all test cases, the percentage of warnings of
severity 1 and 2 (as determined by the tools) that were analyzed. It also gives, on the bars,
the numbers of warnings that were analyzed/not analyzed. As the figure shows, we
analyzed almost all severity 1 and 2 warnings for all test cases, except OpenNMS.

Figure 8 presents, by weakness category and for all categories, the percentage of
warnings that were analyzed. It also gives, on the bars, the numbers of warnings that were
analyzed/not analyzed. We use abbreviations of weakness category names from Table 3.
As the figure shows, we analyzed a relatively large portion of xss, sql-inj, buf, cmd-inj,
and csrf categories. These are among the most common categories of weaknesses. We
were able to analyze almost all cmd-inj and csrf warnings because there were not a lot of
them.

Naim

Nagios

Lighttpd

OpenNMS

MvnForum [1229 13

DSpace [753 12

Al [392 ! ! _

0% 25% 50% 75% 100%

OAnalyzed ENot analyzed |

Figure 7 Severity 1, 2 warnings analyzed, by test case

Six people analyzed the tool warnings (spending anywhere from a few hours to a few
weeks). All analysts were competent software engineers with knowledge of security;
however, most of the analysts were only casual users of static analysis tools. 1,743 of
5,899 warnings (30%) were analyzed manually; the rest of the analysis was partially
automated.

NIST SP 500-279 -23-

Xss

sql-inj
buf

num-err

cmd-inj

csrf

race
info-leak
input-val
sec-feat
quality
err-handl
encaps
api-abuse
time-state
uncateg

All

0% 25% 50% 75% 100%

|I:IAnaIyzed E Not analyzed |

Figure 8 Warnings analyzed, by weakness category

The SATE analysis interface recorded when an analyst chose to view a warning and
when he submitted an evaluation for a warning. According to these records, the analysis
time for an individual warning ranged from less than 1 minute to well over 30 minutes.
On average, the analysts spent between 4 and 10 minutes per warning analyzed manually.

We did not have a controlled environment for the analysis phase, so these numbers are
approximate and may not reflect the actual time the analysts spent. Also, these numbers
are not indicative of the time tool users can be expected to spend, because we used the
tools differently and had different goals in our analysis.

3.4 On Differentiating Weakness Instances

We wanted to merge warnings that refer to the same weakness instance. Originally, we
thought that each problem in the code had a unique manifestat