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Electromagnetically induced transparency in a superconducting three-level system
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When a three-level quantum system is irradiated by an intense coupling field resonant with two
of the three possible transitions, the resonant absorption of the system from its ground state by
an additional radiation field is suppressed. This effect, where the population is trapped in the
ground state, is known in quantum optics as ”electromagnetically induced transparency”. When
the coupling field is detuned from resonance, the resonant absorption peak splits to form an ”Autler-
Townes doublet”. We observe these phenomena in a superconducting Josephson phase qubit, which
can be considered an ”artificial atom” with a multilevel quantum structure. These observations are
qualitatively described by a simple model restricted to three energy levels. A full solution of the
master equation including higher levels provides excellent agreement with all the experimental data.

PACS numbers: 67.57.Fg, 47.32.-y

Superconducting qubits [1] have recently been em-
ployed as a testing ground for quantum mechanics in a
nearly macroscopic system. The interaction of the ef-
fective two-level system with a resonant cavity has at-
tracted a lot of attention [2, 3, 4, 5]. However, Josephson
junction-based quantum systems can also possess higher
quantum states or energy levels, beyond the two-level ap-
proximation, and these have received much less attention.
For driven Rabi oscillations between the lowest two levels
of a phase qubit, these higher states can reduce the ap-
parent Rabi frequency at large drive powers [6, 7] as the
energy leaks out of the subspace spanned by the ground
state |0〉 and the first excited state |1〉. Recently, the sec-
ond excited state |2〉 has been used in order to help char-
acterize the fidelity of single quantum bit (qubit) gate
operations [8].

In atomic physics and quantum optics, various exper-
iments have utilized the naturally occurring multilevel
state structure of ”real” atoms. A system accessing just
three energy levels can display a rich variety of phenom-
ena. Coherent population trapping, electromagnetically
induced transparency (EIT) [10], Autler-Townes splitting
[11], and stimulated Raman adiabatic passage [12], have
been thoroughly investigated with atoms, and recently,
also with solid-state quantum dots [13, 14]. It is in-
triguing to demonstrate some of these phenomena using
macroscopic quantum states in a superconducting-based
framework. Phase qubits in particular are well-suited
for this purpose because they have a simple ladder-type
energy level structure as well as a measurement process
that is fast and state specific.

In a phase qubit (see Fig. 1(a)), a single Josephson
junction, capacitively shunted with CJ , having an effec-
tive linear inductance LJ = (Φ0/2π)

2
/EJ , where EJ

is the Josephson energy, and Φ0 is the flux quantum,
has been inserted into a superconducting loop. The
loop inductance L > LJ is chosen so that local min-

ima are formed in a one-dimensional energy potential
Epot = (Φ − Φext)

2/2L − EJ cos(2πΦ/Φ0) controllable
by an externally applied flux Φext. For this experiment,
there are approximately ten energy levels residing within
one of these local minima as shown in Fig. 1(b).

Consider the three lowest energy levels in Fig. 1(b). We
denote the transition frequencies between energy levels i
and j as ωji = 2πfji. Two microwave fields are present;
a weak probe tone ωp that is nearly resonant with ω10

and detuned an amount ∆p = ω10 − ωp, and a strong
coupling tone ωc that is nearly resonant with ω21 (de-
tuned by ∆c = ω21 − ωc). The amplitude of these tones
leads to corresponding Rabi ”flopping” frequencies de-
noted by Ω21 and Ω10. In atomic physics, the occupation
of higher energy levels will often decay into a continuum
of states, but here, the occupation of the higher levels
will decay merely to the lower levels of this ladder or
cascade-type configuration as seen in Fig. 1(b). This can
be contrasted with the so-called ”lambda” configuration
familiar in atomic systems, where the state |2〉 would be
lower in energy than the state |1〉 . We denote the inter-
level relaxation rates in our system by Γ21 and Γ10. The
rate Γ20 is a forbidden dipole transition due to the an-
harmonicity of the energy potential.

In the qubit’s eigenbasis |n〉, the Hamiltonian takes

the form H =
∑2

n=0 En|n〉〈n| + Ωp cos(ωpt)|1〉〈0| +
Ωc cos(ωct)|2〉〈1|+ h.c. In the rotating frame, neglecting
counter-rotating terms, the Hamiltonian takes the form

H =





0 Ωp/2 0
Ωp/2 ∆p Ωc/2

0 Ωc/2 ∆p + ∆c



 . (1)

This Hamiltonian is familiar in atomic physics and has
been used to describe coherent population trapping [15]
and EIT [10]. Analogous phenomena have been predicted
for superconducting qubits [16, 17], however, experimen-
tal measurements have not been forthcoming until now
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FIG. 1: (a) Schematics of the phase qubit and a nearby dc-
squid for single-shot readout [9, 19] and on-chip flux coil; (b)
Energy levels in the local potential minimum at Φ ∼ Φ0 given
for the flux bias point Φext ∼ −0.42 Φ0 used in the experi-
ment. The zoom illustrates the cascade configuration of the
three lowest levels used to generate electromagnetically in-
duced transparency and the Autler-Townes splitting. The
(strong) coupling field ωc connects connects energy levels |2〉
and |1〉, and the weaker probe field fp, whose resonant ab-
sorption becomes blocked due to the coupling field, connects
|1〉 and |0〉. The corresponding Rabi drive amplitudes are de-
noted by Ωc and Ωp, respectively. Generally, both tones are
detuned from the respective transitions by ∆c and ∆p; (c)
Two-tone microwave spectroscopy to reveal the two lowest
transitions f10 = 8.135 GHz and f21 = 7.975 GHz (see text
for details).

[18].

When both the coupling and probe tones are resonant
with their corresponding transitions (∆c = ∆p = 0),
one of the eigenstates of Eq. (1) is the ”dark state”
Ψ0 = cos(Θ)|0〉 − sin(Θ)|2〉, where tan(Θ) = Ωp/Ωc.
Note that this expression does not include the interme-
diate state |1〉. Thus, under these conditions, the system
can no longer absorb radiation at the probe tone and
becomes ”transparent”. Next, we describe experiments
demonstrating this phenomenon for the multilevel super-
conducting phase qubit shown in Fig. 1.

The qubit sample was made by the use of optical
lithography and standard Al-AlOx-Al ion-mill tunnel
junctions on a sapphire substrate. As compared to
Ref. [3], the junction size was reduced by a factor of two
in order to reduce the number of microscopic TLS defects
within the tunnel barrier [19]. The experiments were per-

formed at 25 mK in a dilution cryostat. The qubit state is
measured with a nanosecond-wide flux pulse as described
in Ref. [3]. The measure pulse reduces the potential bar-
rier ∆U (Fig. 1(b)) so that the resultant energy level at
the top of this barrier, if occupied, has a high probability
of tunneling out of the local minimum. Calibration of the
measure pulse amplitude for the first excited state gives
its population P1, and also leads to a residual tunneling
probability P0 out of the ground state of approximately
5%. Using this calibration, we also measure the popu-
lation P1 + P2, when the second excited state |2〉 is oc-
cupied. To measure P2 independently, we calibrate the
measure pulse amplitude so that the residual tunneling
probability P1 out of |1〉 is approximately 5%.
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FIG. 2: Driven Rabi oscillations between energy levels |2〉
and |1〉. (a) Excited state probability P2 as a function of the
width of a pulse resonant with f21 (this pulse follows a π pulse
resonant with f10, see text); (b) the frequency of the Rabi
oscillations Ω21 as a function of the coupling drive amplitude
Ωc. The dashed line is a fit to the linear portion of the data.

We operate the phase qubit at a center frequency
f10 = 8.135 GHz where there are no visible TLS defects
over a 1 GHz bandwidth. At high microwave powers, we
spectroscopically observe a two-photon absorption peak,
f20/2 = 8.06 GHz. In order to identify the transition fre-
quency f21, we simultaneously apply two weak microwave
tones. We set the probe tone fp to resonantly pump the
f10 transition while we vary the coupling tone fc. We
obtain a peak in the spectrum when fc = f21 = 7.975
GHz for different measure pulse calibrations as shown in
Fig. 1(c). The full spectroscopic data (not shown) for
f10 and f21 as a function of the dc flux bias can be fit
well to theory in order to extract the qubit parameters
LJ and CJ , including any flux offsets. We also perform
time-domain measurements (Fig. 2) by first applying a
π pulse at f10 in order to populate |1〉 followed immedi-
ately by a pulse resonant with f21 of varying length. We
obtain coherent Rabi oscillations of the second excited
state P2, where the population flops between |2〉 and |1〉.
In Fig. 2(b), we show the Rabi frequency Ω21 of these os-
cillations for several different coupling drive amplitudes
Ωc. A linear relationship between the Rabi frequency and
drive amplitude survives up to about Ω21 ∼ 70 MHz, in-
dicating that a three-level model is sufficient to describe
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the dynamics up to this drive [6, 7].

We made independent measurements of the inter-level
decay rates Γ21 and Γ10 (Fig. 1(b)) by preparing popu-
lation in either |2〉 or |1〉, using sufficiently slow (∼ 10
ns wide) π pulses in order to avoid population leakage
to the higher levels, and observing energy decay in time
domain. This gave Γ21 = 11 MHz and Γ10 = 7 MHz.
The widths δfij of the spectroscopy peaks in Fig. 1 (c)
give the pure dephasing rates Γϕ

10 = 3.5 MHz, Γϕ
21 = 6

MHz, according to δfij = Γij + 2Γϕ
ij .
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FIG. 3: Demonstration of electromagnetically induced trans-
parency (EIT) in a multilevel phase qubit system. Plotted is
the excited-level population P1 + P2 at different amplitudes
of the coupling field, which cancels the resonant absorption
of a weak probe field Ωp = 3 MHz. (a) experiment; (b) the-
ory. Solid lines are the full simulation (see text), dashed lines
(shifted vertically) represent the analytical line-shape from
Eq. (2); (c) splitting as a function of the independently mea-
sured Rabi frequency Ω21 (from Fig. 2(b)). The solid line
demonstrates the expected identity between the two quanti-
ties.

As discussed earlier, the ”dark state” is expected to oc-
cur when both the coupling and probe tones are resonant
with their corresponding transitions (∆c = ∆p = 0). We
expect this condition to be visible as a reduced popu-
lation of the first excited state P1. In our cascade level
configuration, energy decay from |2〉 reduces the effective-
ness of the transparency by populating |1〉. Therefore, we
increase the coupling tone amplitude so that Ωc ≫ Ωp,
and the dark state approximates the ground state. We
find that the probe tone absorption peak begins to split,

forming a dip at fp = f10. The fact that the linewidth
of this dip is broader than the linewidth of the f10 ab-
sorption peak, is another indication of the middle level
|1〉 receiving population.

The characteristic features of EIT can be investi-
gated further by determining the stationary states of the
driven multilevel system by use of the Markovian mas-
ter equation for the qubit’s reduced density matrix ρ:
i~ρ̇ = [H, ρ] + L[ρ]. The relaxation term L[ρ] includes
the measured inter-level relaxation rates Γ21 and Γ10 as
well as pure dephasing. If we restrict ourselves to the
first three energy levels, neglect fast oscillating terms,
assume ∆c = 0, a relatively large coupling amplitude
(Ωc ≫ (Ωp, Γ21, Γ10)), and solve the resulting algebraic
equations, we obtain a measured excited state popula-
tion:

P1 + P2 = ρ11 + ρ22 =
Ω2

p

Γ10

×

×
4∆2

p (λ10 + Γϕ
10) + Ω2

c (Γ10 + 2λ21)

16∆4
p + [Ω2

c + 4λ21λ10]
2 − 8∆2

p [Ω2
c−2 (λ2

21 + λ2
10)]

(2)

where λij = Γij+Γϕ
ij . The splitting of the absorption peak

has a characteristic line shape which is not just a sum of
two Lorenzians. The stationary off-diagonal elements of
the density matrix when ∆c = ∆p = 0 indicate the co-
herence of the trapped population: ρ01 = 2iΓ10ρ11/Ωp.
In Fig. 3(b), we find good agreement between the exper-
imental data and the predictions from Eq. (2). In order
to get the best fit, we have adjusted the value of Ωc by
about +10% from that of the independently measured
Rabi frequency Ω21.

The size of the splitting can be understood in terms of
the Autler-Townes doublet [11, 21, 22] known in atomic
physics. If we treat the amplitude of the probe tone as
a small perturbation in Eq. (1), we obtain eigenenergies
of the driven system: ǫ± = ω10 + ∆c/2 ±

√

∆2
c + Ω2

c/2.
These energy levels are excited from the ground state
using the probe tone. When ∆c = 0, the doublet is
spaced by the coupling Rabi amplitude Ωc. In Fig. 3(c),
this splitting is plotted as a function of the independently
measured Ω21 (from Fig. 2 (b)), confirming their identity.
By scanning the frequencies of the probe and coupling
tones, one expects to find that the Autler-Townes doublet
will exhibit an avoided crossing centered at (ω10, ω21).
We display the results from this type of a measurement
in Fig. 4 with the Autler-Townes eigenvalues plotted as
white solid lines. Here, the experiment is performed with
the same coupling amplitude as for the middle (black)
curve shown in Fig. 2(a). Again we find good agreement
for the simple three-level model when operating in the
linear regime of the driven Rabi oscillations at Ω21 = 36
MHz (Fig. 2(b)).

The vanishing intensity of the lower right leg of the
Autler-Townes avoided crossing in Fig. 4 can be ex-
plained by considering the matrix element sin(φ/2) con-
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FIG. 4: Autler-Townes splitting in the three-level phase qubit,
for a corresponding coupling field amplitude of Ωc → Ω21 =
36 MHz, and probe amplitude Ωp = 5 MHz. Resonances in
the driven system exhibit an avoided crossing as a function
of the detuning of the coupling field (vertical axis) and the
probe field (horizontal axis). The white lines mark the ex-
pected transitions from the three-level Autler-Townes model.
(a) measured excited-level population P1 + P2; (b) five-level
simulation.

necting the driven eigenstates with the ground state,
where the mixing angle is given by tan(φ) = Ωc/2∆c.
As the detuning ∆c increases, this matrix element de-
creases so that the intensity of the split peak on the
right also decreases, in agreement with the experimen-
tal data. However, the opposite, upper left leg shows a
decreasing then increasing intensity with detuning. This
can be attributed to an additional two-photon process,
which becomes favorable when the probe tone reaches
the two-photon resonance at 8.06 GHz, also causing an
enhancement of the base level.

For the Hamiltonian of Eq. (1), we have assumed that
both microwave fields couple only to their intended tran-
sitions, namely the coupling tone ωc drives ω21 and the
probe ωp drives ω10. In reality, the microwave fields cross-
couple to both transitions. The strong coupling tone
drives the f10 transition with a cross-coupling strength
Ωx

c , which contributes to the occupation of the first ex-

cited state, P1 = 1
2
Ω2

c/
[

(∆c + ω10 − ω21)
2

+ Ω2
c

]

, rais-

ing the base-level in Fig. 3(b) when far from f10. For our
weakly anharmonic potential, we estimate that the cross-
coupling is Ωx

c ≃ Ωc/
√

2. When Ω21 = 36 MHz, (mid-
dle (black) curve in Fig. 3, Fig. 4), the cross-coupling is

negligible. However, for strong coupling amplitudes cor-
responding to Ωc = 66 MHz (top (red) curves in Fig. 3)
approaching the limitations of the three-level model, we
must include the cross-coupling in order to correctly
account for the position and symmetry of the Autler-
Townes doublet.

Thus far, our simple three-level model has qualitatively
accounted for the EIT behavior and the resulting Autler-
Townes splitting in good agreement with the experimen-
tal data. Next, we provide a more accurate description
of the system based on a full simulation that can quan-
titatively account for the multilevel nature of the phase
qubit system. We solve the Markovian master equation
including the first five energy levels of the system and
also including the cross-coupling of the drive tones. The
results are shown along side the experimental data in
Fig. 3(b) and Fig. 4(b). We find excellent agreement
without any fitting parameters. The simulation correctly
captures the asymmetry of the splitting (Fig. 3(a)), which
is a combination of the effects of the higher levels and
cross-coupling, as well as the intensity vanishing of the
left and right branches as a function of detuning as seen
in Fig. 4(b).

In summary, we have observed phenomena character-
istic of three-level systems familiar in atomic physics,
namely electromagnetically induced transparency and
Autler-Townes splitting, but in a superconducting
Josephson junction-based quantum system. The results
contribute to a general scientific effort that seeks to
demonstrate quantum mechanical behavior in progres-
sively more macroscopic and diverse systems. They also
pave the way towards quantum information processing
using higher-dimensional Hilbert spaces [23].

This work was financially supported by the Academy
of Finland. NIST collaborators are supported by NIST
and IARPA.
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