
Rendering UML Activity Diagrams as Human-Readable Text

David Flater1, Philippe A. Martin2, and Michelle L. Crane3

1National Institute of Standards and Technology, U.S.A.
2Griffith University, Australia
3Queen’s University, Canada

Abstract— We describe a modification of the Petri Net Lin-
ear Form notation to support the rendering of Unified Model-
ing Language (UML) Activity Diagrams as human-readable
text. This new notation, called the Activity Diagram Linear
Form, allows UML Activity Diagrams to be expressed in an
alternate form with the superior accessibility, compatibility,
and simplicity of use of a plain text representation. For some
applications, these benefits greatly outweigh the æsthetical
and pedagogical advantages of a visual representation.

Keywords: Activity Diagram, linear form, text, UML

1. Introduction
An Activity Diagram as defined by the Unified Model-

ing Language (UML) [1] models procedural actions, the
sequencing of actions (control flow), and conditions for
coordinating behaviors. Basic Activity Diagrams may be
elaborated with UML features to describe the object flow
between actions (inputs and outputs) and other relevant
information.

A human-readable text form of Activity Diagrams may be
used for any number of reasons, such as:

• Graphical representations require special tooling to
work with, are time-consuming to create, require con-
version for embedding in e-mail or documents, take up
a lot of space on a screen, and are often resistant to
standard searching or copy/paste operations.

• Graphical representations are not processable by screen
readers (assistive technology that converts documents to
speech).

• For a programmer who is building new applications,
getting a prototype running with a human-readable
text format for input or output takes significantly less
up-front investment of effort than starting out with a
graphical representation or a full-featured interchange
format.

• Extensible Markup Language (XML) [2] based lan-
guages are cumbersome to use for this purpose because
XML syntax rules prevent the definition of specialized
punctuation and force graphically adjacent elements
to be separated from one another more often than a
specialized notation would.

In this document, we describe the Activity Diagram Linear
Form (ADLF), a modification of the Petri Net Linear Form

(PNLF) [3]. Note that PNLF and ADLF were developed for
specific applications. No attempt has been made to handle
every possible UML feature that may legally appear in
an Activity Diagram. Only the notation pertinent to those
features that were required in the original application is
defined.

This document is structured as follows: Section 2 dis-
cusses related work. Section 3 briefly describes PNLF and
provides an example. Section 4 describes the differences
between ADLF and PNLF and provides examples of the
new notation. Section 5 mentions two grammars suitable for
recognizing ADLF, which are available separately. Finally,
Section 6 gives the conclusion.

Henceforth, familiarity with Activity Diagrams [1] and
Petri Nets [4] is assumed.

2. Related Work
PNLF was invented by Philippe Martin to address usabil-

ity and convenience issues that occurred in dealing with both
graphical and XML-based Petri Net notations. Inspired by
the Conceptual Graph Linear Form [5], it represents both the
graph structure (places, transitions, and arcs) and execution
state (explicit tokens) of “plain old” (non-extended) Petri
Nets.

There are several relevant XML-based interchange for-
mats that are not intended to be human-readable. For Petri
Nets there is the Petri Net Markup Language [6]. For UML
there is the XML Metadata Interchange (XMI) Specification
[7] and the Diagram Interchange Specification [8].

The UML Human-Usable Textual Notation [9] is designed
to conform to human-usability criteria. However, it is defined
in terms of the Meta Object Facility (MOF), which only
directly supports class modelling. While any UML concept
can ultimately be abstracted using classes and expressed
using the MOF, for Activity Diagrams this would entail
significant obfuscation.

Semantic differences between Petri Nets and UML Activ-
ity Diagrams are explored by Störrle and Hausmann [10].
These differences are substantial enough that one cannot
define a clean notation that merges concepts from Petri
Nets and Activity Diagrams; hence the present work is an
adaptation of PNLF rather than an extension or application
of it.



3. PNLF Notation
In the following discussion of PNLF and plain Petri Nets,

the term node refers to either a place or a transition.
The mathematical formalism of plain Petri Nets does

not include node names, so node names have no formal
meaning in plain Petri Nets. However, node names are
commonly used in the graphical representations of Petri Nets
to associate nodes informally with types or concepts relevant
to the states and processes being modelled. These external
types or concepts are separate from the Petri Nets per se
and should not be confused with place or transition types
that are defined formally within extended Petri Nets such as
High-Level Petri Nets [11].

As described by Martin [3], PNLF defines the following:
• The entire Petri Net is represented as one or more

statements separated by semicolons. The last statement
ends with a period.

• Places are represented by the place name enclosed
within parenthesis ().

• Transitions are represented by the transition name en-
closed within square brackets [].

• Arcs are represented by ASCII arrows (-> and <-).
• Each token is represented by the @ character.
• Multiple branches to or from a node are grouped to-

gether by curly brackets {} and separated by commas.
• Coreference variables are used for multiple references

to the same place or transition, which unavoidably
result from the linearization of the graph. They are
represented by an identifier preceded by an asterisk (*).

• Identifiers may be enclosed within matching single
or double quote characters or may be left unquoted.
An unquoted identifier can normally contain only al-
phanumeric characters, hyphens, and underscores, and
may not begin or end with a hyphen. However, the
backslash-escape convention may be used to embed any
character at any position within a quoted or unquoted
identifier.

• Informal notes and commentary extend from the first
occurrence of a double slash (//) to the end of the line,
as in the C++ programming language, or between /*
and */ delimiters, as in the C programming language.

3.1 Example 1
The Petri Net in Figure 1 is translated to the PNLF in

Figure 2.
This example demonstrates several elements of PNLF

style:
• For best readability, all the outputs of a node should be

presented together. Some inputs may also be given.
• All the outputs of an implicit OR-split (where arcs lead

from a given place to two or more transitions, result-
ing in nondeterministic execution) should be presented
together.

Figure 1: Petri Net for Example 1 (used by permission from
Wil van der Aalst [12])

[red_yellow *ry]
{ <-(c1 *c1 @),

->(red *r @)
{ ->[*ry], ->[yellow_green *yg] },

->(yellow *y)
{ ->[yellow_red *yr]

{ ->(*c1), ->(*r) },
->[*yg]->(green)->[green_yellow]

{ ->(*y), ->(c2)->[*yr] }
}

}.

Figure 2: PNLF translation of Example 1

• When a coreference variable is referenced after its
initial appearance, the node name need not be repeated.
Different nodes can have the same name but a corefer-
ence variable is unique to a node.

• Paths should be explored/presented as soon as read-
ability permits it. (The arcs to and from *yr could
have been presented later, but this would have made
the understanding of the graph more difficult.)

More examples using PNLF can be found at the cited
location [3].

4. ADLF Notation
While PNLF is suitable for describing Petri Nets, ADLF

is used for describing UML Activity Diagrams. To create
ADLF, PNLF was adapted in the following ways:



• Since they do not appear in Activity Diagrams, explicit
tokens (@) are not supported.

• Action nodes are represented by the node name in
parenthesis (), which imitates the rounded shape of
action nodes in Activity Diagrams.

• Object nodes are represented by the node name in
square brackets [], which imitates the rectangular
shape of object nodes in Activity Diagrams.

• Both sequential control and object flows are indicated
with ASCII arrows (-> and <-).1

– A guard condition qualifying a flow is inserted
immediately before the affected flow (adjacent to
the -) following the syntax rules for an identifier
(i.e., either with no enclosing symbols or delimited
by quotes).

– An input parameter multiplicity (such as 0..1) is
inserted immediately after the affected flow (adja-
cent to the < or >) with no enclosing symbols.

• The following UML control nodes appear with their
standard names: <InitialNode>, <ForkNode>,
<JoinNode>, <DecisionNode>, <MergeNode>,
<ActivityFinal>, and <FlowFinal>. They are
distinguished from object and action nodes by being
enclosed between a less-than sign and a greater-than
sign <>, which imitates the diamond shape of decision
and merge nodes in Activity Diagrams. (The other
control nodes have different shapes that are not easily
imitated in plain text, so the same notation is used
consistently for all control nodes.)

• Coreference variables, curly braces, commas, semi-
colons, and the period are used in a manner analogous
to how they are used in PNLF.

• Any action, object, or control node may be annotated
with name-value pairs or annotation strings included
inside of the delimiting parenthesis, square brackets, or
less-than and greater-than signs.

– The preferred method of specifying that the state
of an object is x is with a name-value pair such as
“state=x.”

– Annotation strings (which unlike comments are not
discarded at parsing time but stored in the abstract
model with the node they are associated to) may
be specified like identifiers or delimited by (^ and
^) (similar to C-style comments).

• Informal notes, UML partitions, and any other Activity
Diagram features that are not otherwise supported are
expressed using comments or annotations.

Object nodes in ADLF have the same expressiveness lim-
itations as the “standalone style” notation in UML Activity

1The option to use leftward arrows preserves, to the extent possible, a
degree of freedom that is enjoyed by the graphical representation, where
arrows may point in any direction. Nevertheless, leftward arrows are neither
strictly necessary in theory nor heavily used in practice, and only one of
the two grammars mentioned in Section 5 supports them.

Diagrams, where the node name typically indicates only the
type of the object node. Using the more expressive “pin
style” defined by UML [1, Sect. 12.3.44], it is possible
to handle complications such as when an action inputs or
outputs two different parameters of the same type, or when
the types of the input and output parameters are different.

Two examples using conceptual Activity Diagrams follow.
The Activity Diagram in Figure 3 is translated to the
ADLF in Figure 4, and the Activity Diagram in Figure 5
is translated to the ADLF in Figure 6.

The examples are from the first published draft of a
proposed revision of the U.S. voting equipment standard
[13], which is required to be processable by screen readers.
Some identifiers were shortened so that the examples could
be presented legibly in the space available.

Although the content and conventions of the diagrams are
not important to their suitability as examples, it may aid
understanding to know that some simplifications were made:

• The expansion regions around actions that are per-
formed for every instance of some class are not shown.

• When a particular object may or may not exist depend-
ing on predeterminative facts that are external to the
process being modelled—a static choice, not a “run-
time” decision within the process itself—that object is
modelled as an optional parameter to an action. This
does not capture the constraint that subsequent actions
must wait on this object in those cases where it exists;
i.e., if it exists then it is required.

5. ADLF Grammars
A complete syntactic parser developed using Flex [14]

and Bison [15] is available for download [16].2 The semantic
analysis/validation has not yet been implemented. A different
parser for a subset of ADLF has been developed using
JavaCC [17].

Flex and Bison (based on Lex [18] and Yacc [19])
generate an LALR(1) parser while JavaCC generates an
LL(1) parser [20]. LR parsers are described as working
in a “bottom-up” fashion while LL parsers are described
as working in a “top-down” fashion. Additionally, JavaCC
supports Extended Backus-Naur Form (EBNF) [21], with
optional terms and other features, while Flex/Bison only
supports “plain” Backus-Naur Form (BNF) [22]. These
differences force one to use different grammatical idioms
in order to achieve an elegant implementation. The goal
here is to provide near-enough equivalent expressions of
ADLF using the idioms that are natural in each environment,
thereby enabling elegant implementations using both kinds
of parser generators.

2Specific software is identified in this paper to support reproducibility of
results. Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply
that the software identified is necessarily the best available for the purpose.



Wrap up election

Ballots, ballot images and/or machine totals

Includes early voting

Prepare for voting (central)

Wrap up voting (central)

Ballots, ballot images and/or precinct totals

Prepare for voting (precinct)

Count (precinct count)Gather in-person vote

Wrap up voting (precinct)

Counts
[certified]

Ballots and/or ballot images Machine totals Ballots and/or ballot images

Collect

0..1

Gather absentee / remote votes

Prepare for election

Equipment, voter lists, ballot styles, ballots

[Precinct count]

Figure 3: Activity Diagram for Example 2

The grammars from the two parsers would not fit in the
space allowed, but they are detailed in an unabridged version
of this paper that is available as a technical report [23].
Please note that the grammars accept input whose interpre-
tation as an Activity Diagram may violate well-formedness
constraints on Activity Diagrams, e.g., the constraint that
the edges coming into and out of a decision node must be
either all object flows or all control flows [1, Sect. 12.3.22].
While many such constraints could possibly be enforced in
a purely grammatical fashion, validating Activity Diagrams
expressed in ADLF is separable from defining ADLF per se
and has been deferred to future work.

6. Conclusion
We have described a modification of the Petri Net Linear

Form (PNLF) notation to support the rendering of UML
Activity Diagrams as human-readable text. The Activity
Diagram Linear Form (ADLF) can be processed by screen
readers and is more usable than XML-based syntaxes. As a
textual notation, it is suitable for embedding in text-only doc-
uments and it accommodates standard search and copy/paste
operations. Finally, ADLF, along with its attendant parsers,
is useful during the prototyping of new applications. Instead
of interfacing with graphical representations or full-featured
interchange formats, one can use the textual format for



<InitialNode>-><MergeNode *merge>->("Prepare for election")
->["Equipment, voter lists, ballot styles, ballots"]

-><ForkNode>
{ ->("Prepare for voting (precinct)")-><ForkNode>

{ ->("Gather in-person vote") // Includes early voting
->["Ballots and/or ballot images"]->(Collect *c),

"Precinct count"->("Count (precinct count)")
->["Machine totals"]->0..1(*c)

},
->("Gather absentee / remote votes")

->["Ballots and/or ballot images"]->(*c),
->("Prepare for voting (central)")

->("Wrap up voting (central)" *w)
};

(*c)->["Ballots, ballot images and/or machine totals"]
->("Wrap up voting (precinct)")

->["Ballots, ballot images and/or precinct totals"]->(*w)
->["Counts" state=certified]->("Wrap up election")

-><*merge>.

Figure 4: ADLF translation of Example 2

input/output, allowing the majority of effort to be spent on
the core application.

Acknowledgment
The authors thank Paul Black and Conrad Bock for their

helpful reviews and suggestions.

References
[1] OMG Unified Modeling Language Superstructure Specification, ver-

sion 2.1.1, OMG, February 2007, document formal/2007-02-05, http:
//www.omg.org/cgi-bin/doc?formal/2007-02-05.

[2] Extensible Markup Language (XML), W3C, 2007, http://www.w3.org/
XML/.

[3] P. A. Martin, “The Petri Net Linear Form,” 2007, http://www.
phmartin.info/wf/pnlf/.

[4] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation,
University of Bonn, 1962.

[5] J. F. Sowa, Conceptual Structures: Information Processing in Mind
and Machine. Addison-Wesley, 1984.

[6] M. Weber, “Petri Net Markup Language,” 2006, http://www2.
informatik.hu-berlin.de/top/pnml/about.html.

[7] OMG Meta Object Facility (MOF) 2.0 / XML Metadata Inter-
change (XMI) Mapping Specification, version 2.1, OMG, September
2005, document formal/2005-09-01, http://www.omg.org/cgi-bin/doc?
formal/2005-09-01.

[8] OMG Unified Modeling Language Diagram Interchange Specification,
version 1.0, OMG, April 2006, document formal/2006-04-04, http:
//www.omg.org/cgi-bin/doc?formal/2006-04-04.

[9] OMG Human-Usable Textual Notation (HUTN) Specification, version
1.0, OMG, August 2004, document formal/2004-08-01, http://www.
omg.org/cgi-bin/doc?formal/2004-08-01.

[10] H. Störrle and J. H. Hausmann, “Towards a formal semantics
of UML 2.0 activities,” in Software Engineering 2005, Fach-
tagung des GI-Fachbereichs Softwaretechnik, ser. LNI, vol. 64.
GI, 2005, pp. 117–128, http://wwwcs.uni-paderborn.de/cs/ag-engels/
Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf.

[11] Software and system engineering—High-level Petri nets—Part 1:
Concepts, definitions and graphical notation, 1st ed., ISO, December
2004, iSO/IEC 15909-1, http://www.iso.org/.

[12] W. van der Aalst and K. van Hee, Workflow Management: Models,
Methods, and Systems. MIT Press, March 2004, see also http://www.
workflowcourse.com/.

[13] Voluntary Voting System Guidelines Recommendations to the Election
Assistance Commission, Election Assistance Commission, August 31,
2007, http://purl.org/net/dflater/VVSG/20070831.

[14] Flex project, “Flex: the Fast Lexical Analyzer,” 2006, http://flex.
sourceforge.net/.

[15] P. Eggert and A. Demaille, “Bison: GNU parser generator,” 2006,
http://www.gnu.org/software/bison/.

[16] NIST, “Human-readable text form for UML activity diagrams (down-
load page for parser),” 2007, http://purl.org/net/dflater/org/nist/adlf.

[17] JavaCC project, “JavaCC, the Java Compiler Compiler,” 2006, https:
//javacc.dev.java.net/.

[18] M. E. Lesk, “Lex—a lexical analyzer generator,” Bell Laboratories,
Computing Science Technical Report 39, October 1975, see also http:
//dinosaur.compilertools.net/lex/.

[19] S. C. Johnson, “Yacc—yet another compiler-compiler,” Bell Labora-
tories, Computing Science Technical Report 32, July 1975, see also
http://dinosaur.compilertools.net/yacc/.

[20] T. S. Norvell, “The JavaCC FAQ,” 2007, http://www.engr.mun.ca/
~theo/JavaCC-FAQ/javacc-faq-moz.htm.

[21] Information technology—Syntactic metalanguage—Extended
BNF, ISO, 1996, iSO/IEC 14977, http://standards.iso.org/ittf/
PubliclyAvaliableStandards/s026153_ISO_IEC_14977_1996(E).zip.

[22] P. Naur, ed., J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-
Carthy, A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H.
Wegstein, A. van Wijngaarden, and M. Woodger, “Revised report on
the algorithmic language ALGOL 60,” Communications of the ACM,
vol. 6, no. 1, pp. 1–17, 1963.

[23] D. Flater, P. A. Martin, and M. L. Crane, “Rendering UML activity
diagrams as human-readable text,” National Institute of Standards and
Technology, 100 Bureau Drive, Gaithersburg, MD 20899, NISTIR
7469, 2007, http://purl.org/net/dflater/org/nist/nistir7469.html or .pdf.

http://www.omg.org/cgi-bin/doc?formal/2007-02-05
http://www.omg.org/cgi-bin/doc?formal/2007-02-05
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.phmartin.info/wf/pnlf/
http://www.phmartin.info/wf/pnlf/
http://www2.informatik.hu-berlin.de/top/pnml/about.html
http://www2.informatik.hu-berlin.de/top/pnml/about.html
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2005-09-01
http://www.omg.org/cgi-bin/doc?formal/2006-04-04
http://www.omg.org/cgi-bin/doc?formal/2006-04-04
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://wwwcs.uni-paderborn.de/cs/ag-engels/Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf
http://wwwcs.uni-paderborn.de/cs/ag-engels/Papers/2005/SE2005-Stoerrle-Hausmann-ActivityDiagrams.pdf
http://www.iso.org/
http://www.workflowcourse.com/
http://www.workflowcourse.com/
http://purl.org/net/dflater/VVSG/20070831
http://flex.sourceforge.net/
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://purl.org/net/dflater/org/nist/adlf
https://javacc.dev.java.net/
https://javacc.dev.java.net/
http://dinosaur.compilertools.net/lex/
http://dinosaur.compilertools.net/lex/
http://dinosaur.compilertools.net/yacc/
http://www.engr.mun.ca/~theo/JavaCC-FAQ/javacc-faq-moz.htm
http://www.engr.mun.ca/~theo/JavaCC-FAQ/javacc-faq-moz.htm
http://standards.iso.org/ittf/PubliclyAvaliableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvaliableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://purl.org/net/dflater/org/nist/nistir7469.html
http://purl.org/net/dflater/org/nist/nistir7469.pdf


Maintain equipment in storage

Program election

Election definition

Prepare ballots

Ballot styles

Produce ballots

Educate / notify / inform voters

Configure equipment (central)

Test equipment (central)

Equipment
[configured]

Transport equipment

Equipment
[tested]

Ballots

[Need new equipment] 

Procure equipment

Train poll workers

[Centrally programmed
ballot styles]

Ballot styles

This action refers to configuring
the voting system to realize the
precincts as defined by state law.

Equipment
[old]

0..1

Equipment
[new]

0..1

Collect

Voter lists, ballot styles

Equipment, voter lists, ballot styles, ballots

Collect
0..1

[Paper ballots]

Define precincts

Precinct definitions

Register voters

Voter lists

Equipment
[deployed]

Figure 5: Activity Diagram for Example 3



<InitialNode>-><ForkNode>
{ ->("Define precincts") // This action refers to configuring

// the voting system to realize the
// precincts as defined by state law.

->["Precinct definitions"]-><ForkNode>
{ ->("Train poll workers")-><FlowFinal>,

->("Register voters")->["Voter lists"]->(Collect *c1),
->("Program election")->["Election definition"]

->("Prepare ballots")->["Ballot styles"]-><ForkNode>
{ ->(*c1),

"Centrally programmed ballot styles"
->["Ballot styles"]

->0..1("Configure equipment (central)" *cc)
}

},
->("Maintain equipment in storage")->[Equipment state=old]

->(*cc),
"Need new equipment"->("Procure equipment")

->[Equipment state=new]->0..1(*cc)
};

(*c1)->["Voter lists, ballot styles"]-><ForkNode>
{ ->("Educate / notify / inform voters")-><FlowFinal>,

->(Collect *c2),
"Paper ballots"->("Produce ballots")->[Ballots]->0..1(*c2)

};

(*cc)->[Equipment state=configured]
->("Test equipment (central)")

->[Equipment state=tested]->("Transport equipment")
->[Equipment state=deployed]->(*c2)

->["Equipment, voter lists, ballot styles, ballots"].

Figure 6: ADLF translation of Example 3


	Introduction
	Related Work
	PNLF Notation
	Example 1

	ADLF Notation
	ADLF Grammars
	Conclusion
	References

