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Abstract
The objective of the Shape Retrieval Contest ’09 (SHREC’09) of Partial Models is to compare the performances
of algorithms that accept a range image as the query and retrieve relevant 3D models from a database. The
use of a range scan of an object as the query addresses real life scenarios, where the task of the system is to
analyze a 3D scene and to identify what type of objects are present in the scene. Another benefit of developing
retrieval algorithms based on range scans of objects is that they enable a simple 3D search interface composed of
a desktop 3D scanner. Two groups have participated in the contest and have provided rank lists for the query set
that is composed of range scans of 20 objects. This paper presents descriptions of the participants’ methods and
the results of the contest.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis, H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

1. Introduction

3D object retrieval is a relatively new field that pose many
challenges. A major effort of the research community has
been devoted to the formulation of accurate and efficient 3D
object retrieval algorithms. In most of the existing state-of-
the-art approaches, a complete 3D model has to be provided
as a query in order to retrieve similar results. However, in
real life scenarios a complete 3D model may not be always
available. The input may be a partial model or a range scan
of an object.

The major benefit of a retrieval system that can handle
partial models, specifically range scans, is its applicability
to robot vision. In robotics, the ability to process range im-
ages is critical for a robot to analyze its environment, navi-
gate through the environment, and handle the objects of in-
terest. In addition to robotics, there are other applications

Disclaimer: Any mention of commercial products or reference to
commercial organizations is for information only; it does not imply
recommendation or endorsement by NIST nor does it imply that the
products mentioned are necessarily the best available for the pur-
pose.

such as automated inspection, satellite image analysis, and
automatic target detection and recognition. 3D face recog-
nition from range scans is, by itself, a major research topic.
In this respect, research on range image recognition is older
than the 3D model retrieval area [BJ85].

However in most of the studies on range image recogni-
tion, the input scene is assumed to contain one of the tar-
get objects in the database and the objective is to recognize
that particular object. The surface structure is only modified
by the acquisition noise. The problem is to match the input
surface to the corresponding model, which is already avail-
able to the system. In [RCSM03], Ruiz-Correa et al. point to
this issue and discuss the alignment-verification tradition in
range image analysis.

The retrieval problem is more general than identifying an
object. First of all, the query view does not necessarily be-
long to any of the target models in the database. The task
is to determine what kind of object is present in the scene
rather then which particular object. The system should as-
sess the relevance between the view of an unseen object
and the models in the database. In addition to acquisition
noise and the lack of pose and scale information, the system
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should also be able to deal with large intra-class variations.
The challenges of the multimedia retrieval systems, such as
the semantic gap, the difficulty of defining categories, the
dependence on user preferences and the organization of the
target database, also apply here. Therefore, the range queries
should be processed with regard to the current issues raised
by the 3D object retrieval community [TV07].

Another benefit of retrieval algorithms operating on range
images is that they enable a 3D model search interface based
on a desktop 3D scanner. The user has a small physical ob-
ject of interest and wants to retrieve similar objects from a
3D repository. A simple desktop laser scanner acquires the
range image of the object from an arbitrary view direction
and the scan is introduced to the system as the query.

One category of 3D model retrieval algorithms is the
view-based approach, which is inherently suitable for the
range-based query input. In general, a number of views
(depth maps or silhouettes) of the 3D object are extracted
and encoded with feature vectors. The similarity of two com-
plete 3D models is assessed in terms of the distance between
the feature vectors of their corresponding views. This ap-
proach should be modified such that the input range image
is compared to the views of the target models in an efficient
manner. The two participants of the SHREC’09 Shape Re-
trieval Contest of Partial Models have provided such view-
based algorithms and we believe that their contribution will
lead to application of other view-based approaches to this
specific problem.

2. The Data Set

2.1. Target Set

The target database is a subset of the shape benchmark con-
structed at NIST, desribed in [FGLW08]. It contains 720
complete 3D models, which are categorized into 40 classes.
The classes are defined with respect to their semantic cate-
gories and are listed in Table 1. In each class there are 18
models. The file format to represent the 3D models is the
ASCII Object File Format (*.off).

2.2. Query Set

In the Partial Model Retrieval track, there are two different
query sets. The first query set consists of 20 3D partial mod-
els which are obtained by cutting parts from complete mod-
els (Figure 1). The objective is to retrieve the models which
have parts similar to the query. However, we did not receive
rank lists for this first query set, hence we exclude the discus-
sion on parts-based query from this paper. Interested readers
may refer to the track website [SHR] to download the partial
query set.

The second query set is composed of 20 range images,
which are obtained by capturing range data of 20 objects
from arbitrary view directions. Figure 2 and Figure 3 show

Bird Fish NonFlyingInsect
FlyingInsect Biped Quadruped
ApartmentHouse Skyscraper SingleHouse
Bottle Cup Glasses
HandGun SubmachineGun MusicalInstrument
Mug FloorLamp DeskLamp
Sword Cellphone DeskPhone
Monitor Bed NonWheelChair
WheelChair Sofa RectangleTable
RoundTable Bookshelf HomePlant
Tree Biplane Helicopter
Monoplane Rocket Ship
Motorcycle Car MilitaryVehicle
Bicycle

Table 1: 40 classes of the target database.

Figure 1: 3D partial models.

the test objects and their range scans, respectively. The range
images were captured using the NextEngine desktop 3D
scanner. This kind of small device is suitable for a user in-
terface because the user does not have to submit a full 3D
computer model or a 2D sketch but the scan of an actual ob-
ject. Figure 4 shows the setup for the acquisition of the range
images. The range scans are converted to a triangular mesh
and are saved in the ASCII Object File Format (*.off).

As can be observed from Figure 3, the range scans have
imperfections as opposed to depth maps that are artificially
generated from complete 3D models. The surfaces include
holes and unconnected regions. Some geometric informa-
tion is missing not because of the self-occlusion but because
of the limited range of the 3D scanner. Furthermore, the re-
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flectance properties of the object’s surface greatly affects the
quality of the scan. Non-smooth surfaces cause scattering of
the laser light. The light is not reflected properly from dark
regions or regions under shadow. These factors prevent the
laser scanner from accurately reading the geometric infor-
mation of those regions.

Figure 2: The objects scanned to obtain the query views.

Figure 3: The query views.

3. Evaluation Measures

The participants have submitted rank lists for the query in-
puts. The length of each rank list is equal to the size of the
target database. Using the rank lists the following evalua-
tion measures were calculated: 1) Nearest Neighbor (NN),
2) First Tier (FT), 3) Second Tier (ST), 4) E-measure (E),
and 5) Discounted Cumulative Gain (DCG). Details regard-
ing the calculation and significance of these measures can be
found in [SMKF04]. In addition to these scalar performance
measures, the precision-recall curves were also obtained.

4. Submissions

Two groups have participated in the SHREC’09 Shape Re-
trieval Contest of Partial Models. A. Axenopoulos and P.

Figure 4: The setup for the acquisition of the range images.

Daras from Centre for Research and Technology Hellas,
Thessaloniki have participated with three methods based on
their Compact Multi-View Descriptor (CMVD) approach.
The CMVD-Binary method uses only the silhouettes of 3D
objects, whereas the CMVD-Depth method processes the
depth maps. Their third descriptor, which we will refer to as
"Merged", corresponds to the fusion of the CMVD-Binary
and CMVD-Depth methods. The Compact Multi-View De-
scriptor is explained in Section 5.

T. Furuya and R. Obhuchi from University of Yamanashi
have submitted two sets of rank lists corresponding to the
BF-SIFT and BF-GridSIFT methods. These two methods are
based on the ideas of Bag of Features (BF) and the Scale
Invariant Feature Transform (SIFT). A brief description of
the method is given in Section 6. The reader may refer to the
paper of Obhuchi et al. [OOFB08] for a detailed discussion
about the approach.

5. Compact Multi-View Descriptor (CMVD)

Compact multi-view descriptor is a novel view-based ap-
proach for 3D object retrieval. A set of 2D images (multi-
views) are automatically generated from a 3D object, by tak-
ing views from uniformly distributed viewpoints. For each
image, a set of 2D rotation-invariant shape descriptors is ex-
tracted. The Compact Multi-View Descriptor (CMVD) be-
longs to the category of the 2D view-based approaches, and
thus, has the advantage of being highly discriminative, can
be effective for partial matching and can support a variety
of queries, such as 2D images, hand-drawn sketches and 3D
range scans.
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5.1. Descriptor extraction method

For the 3D objects stored in a database, the descriptor ex-
traction procedure can be summarized in the block diagram
presented in Figure 5. The input 3D object is a triangulated
mesh, in one of the common 3D file formats (VRML, OFF,
3DS, etc.). As a first step, a pose normalization takes place,
which includes translation, scaling and rotation of the ob-
ject. After the pre-processing step, a set of 18 2-dimensional
views, taken from the vertices of a bounding 32-hedron is ex-
tracted. Both binary (black/white) and depth images are gen-
erated. To each of the extracted 2D images, a set of 2D func-
tionals is applied, resulting in a descriptor vector for each
view.

Figure 5: Block Diagram of the extraction of the Compact
Multi-View Descriptor.

5.2. A set of uniformly distributed views

The CMVD is based on the matching of multiple 2D views,
which can be extracted from a 3D object by selecting a set
of different viewpoints. In order to be uniformly distributed,
the viewpoints are chosen to lie at the vertices of a regular
polyhedron. The type of the polyhedron and the level of tes-
sellation need to be carefully considered in order to provide
the optimal solution. As mentioned in [CTSO03], 15 to 20
views can roughly represent the shape of a 3D model. Based
on this notion, the 18 vertices of the 32-hedron, which are
produced by tessellation of octahedron at the first level, can
provide an appropriate set of viewpoints.

In order to render the multi-view images, the camera

viewpoints are placed at the 18 vertices of the 32-hedron.
Two 2D image types are available: 1) Binary Images: The
rendered images are only silhouettes, where the pixel values
are 1 if the pixel lies inside the model’s 2D view and 0 other-
wise. 2) Depth Images: The pixel intensities are proportional
to the distance of the 3D object from each sample point of
the corresponding tangential plane.

Although binary images provide an efficient and robust
representation of a 2D view, depth images contain more in-
formation and produce better retrieval results, if appropri-
ately exploited.

5.3. Computing 2D descriptors on each view

The set of uniformly distributed views, described in 5.2, con-
sists of 2D binary images and depth images of size 100×100
pixels. To each image, three rotation-invariant descriptors
[ZDA∗07] are applied in order to produce the final set of
descriptors per view.

Let ft(i, j) be the 2D image, where i, j = 0, ...,N− 1 and
N×N is the size of the image, t = 1, ...,NV and NV is the
total number of views. The values of ft(i, j) are either 0 or 1
for the binary images, while in the case of depth images, the
values can be any real number between 0 and 1.

2D Polar-Fourier Transform. The Discrete Fourier
Transform (DFT) is computed for each ft(i, j), producing
the vectors FT (k,m), where k,m = 0, ...,N−1. In the DFT,
shifts in the spatial domain correspond to linear shifts in
the phase component. Thus, the DFT magnitude is invariant
to circular translation. Therefore, using discrete polar coor-
dinates, rotation is converted to circular translation, which
leads to rotation-invariant descriptors. For each ft(i, j), the
first K×M harmonic amplitudes are considered.

2D Zernike Moments. Zernike moments are defined over
a set of complex polynomials which form a complete or-
thogonal set over the unit disk and are rotation invariant.
The Zernike moments Zkm [PVMRGA04], where k ∈ N+,
|m| ≤ k, are calculated for each ft(i, j) with spatial dimen-
sion N ×N, produce a vector of rotation-invariant Zernike
descriptors.

2D Krawtchouk Moments. Krawtchouk moments are a
set of moments formed by using Krawtchouk polynomials
as the basis function set. Following the analysis in [YRO03]
and some specifications mentioned in [Tea80], they were
computed for each ft(i, j), producing a vector of rotation in-
variant Krawtchouk descriptors.

A compact representation of the multi-view descriptor im-
plies a small number of descriptors per view, otherwise the
shape matching time would be prohibitive. An optimal num-
ber of descriptors ND for each view, which was found exper-
imentally, is given below:

ND = NFT +NZern +NKraw (1)
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where NFT = 78, NZern = 56 and NKraw = 78. Finally, two
types of descriptors are formed: CMVD-Binary that uses bi-
nary images and CMVD-Depth that uses depth images.

A similar procedure is followed for descriptor extraction
in 3D range scans. In this case, a single view is extracted
from the scanned image, which is also given as a triangulated
mesh. Both binary and depth images are extracted from this
view.

5.4. Matching Method

Retrieval of 3D models can be achieved if, instead of a 3D
model, a single range image is used as a query. In order
to measure the dissimilarity, the query range image is com-
pared to the NV views of the 3D model and the most similar
(to the image) view is selected(Figure 6).

Figure 6: Similarity Matching Framework for the Compact
Multi-View Descriptor.

Let Dt be the descriptor vector of the tth view, which is
extracted according to the procedure described in 5.3. The
dissimilarity metric between the tth view of a 3D object A
and a query range image Q is given by the L1-distance:

dt =
ND

∑
k=1

|DA
t (k)−DQ(k)| (2)

where ND is the number of descriptors per view. Finally, the
view that produces the lowest dissimilarity to the query im-
age is selected:

d = min{dt}= min{
ND

∑
k=1

|DA
t (k)−DQ(k)|} (3)

where t = 1, ...,NV , NV = 18 is the total number of views of
model A, DQ(k) are the descriptors of the query image Q and
DA

t (k) are the descriptors of the tth view of model A.

It is obvious that 2D-3D matching cannot be as efficient
as 3D-3D matching, since a 2D image is unable to capture
the global geometric information of an object. However, it
is much easier to provide a 2D image as query than a 3D
model, either by taking a photo or by using a range scanner
and acquiring a depth image.

In Table 2, the average computation times for descriptor
extraction and matching procedures are summarized. The
times were obtained using a PC with a 2.4 GHz processor
and 3GB RAM, running the operating system Windows XP.

Action Time (msec)
Views Generation 2587

Polar-Fourier Descriptors Extraction 63
Krawtchouk Descriptors Extraction 398

Zernike Descriptors Extraction 811
Matching between 2 views 0.4

Table 2: Average computation times for descriptor extrac-
tion and matching procedures of the CMVD approach.

6. Bag of Features - Scale Invariant Feature Transform
(BF-SIFT)

In this section the BF-SIFT approach, used in the competi-
tion by University of Yamanashi, is described. The readers
can refer to [OOFB08] for a more detailed description. The
system compares shapes of 3D models visually by using a
set of local features extracted from multiple view 2D depth
images of the model. As the method employs so called bag-
of-features (BF) approach [CDF∗04,WCM05,SZ03] to inte-
grate thousands of local visual features into a feature vector
per 3D model, the algorithm is named as BF-SIFT.

The BF-SIFT algorithm compares 3D models by follow-
ing the steps below:

1. Pose normalization (position and scale): The BF-SIFT
performs pose normalization, not only for position and
scale, but also for rotation, so that the model is rendered
with an appropriate size at the center of the view sphere
in each of the multiple-view images.

2. Multi-view rendering: The system renders range images
of the model from Ni viewpoints placed uniformly on the
view sphere surrounding the model.

3. SIFT feature extraction: From the range images, it ex-
tracts local, multi-scale, multi-orientation, visual features
by using the SIFT [Low04] algorithm. Two different fea-
ture extraction methods are available: The original SIFT
and the GridSIFT.

4. Vector quantization: The system vector-quantizes a lo-
cal feature into a visual word in a vocabulary of size Nv
by using a visual codebook. The vector quantization is
a nearest point search in a high dimensional space, and
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the process is accelerated by a kd-tree. Prior to the re-
trieval, the visual codebook is learned, using an unsuper-
vised learning approach based on (tens of) thousands of
training features extracted from a set of training models,
e.g., the models in the database to be retrieved. The learn-
ing is done by the well-known k-means clustering algo-
rithm.

5. Histogram generation: Quantized local features or "vi-
sual words" are accumulated into a histogram having Nv
bins. The histogram becomes the feature vector of the
corresponding 3D model.

6. Distance computation: The algorithm compares the his-
togram generated from the query, a range image, with
Ni = 42 histograms of a model in the database. The mini-
mum of 42 distances among a query (a range image) and
a 3D model (42 range images) becomes the distance be-
tween the query and the 3D model. That is, each distance
between a pair of feature vectors (the histograms) is com-
puted by using Kullback-Leibler Divergence (KLD):

D(x,y) =
n

∑
i=1

(yi− xi) ln
yi

xi
(4)

where x = (xi) and y = (yi) are the feature vectors and n
is the dimension of the vectors.

(a) Original SIFT interest
points.

(b) Original SIFT features.

(c) Grid-SIFT interest points. (d) Grid-SIFT features.

Figure 7: Interest points and SIFT features for the Original
SIFT and the Grid SIFT algorithms.

Some modifications are applied to the SIFT feature ex-
traction step. The SIFT features are sensitive to rapid in-
tensity change at various scales. To remove spurious inter-
est points, a simple anti-aliasing is employed for the range

image rendering. The range images are first rendered at
1024× 1024 resolution, filtered with low-pass Gaussian fil-
ter and then downsampled to 256×256.

The experiments are conducted with two different sam-
pling patterns. The original SIFT algorithm first detects in-
terest points by searching, in scale space, points of maxi-
mum response of a local, orientation sensitive gradient filter.
Then, at each of these interest points, extracts a 128D SIFT
feature. However, the interest point detector in the original
SIFT algorithm may not be optimal for the task of the par-
tial retrieval track. Figure 7(a) and Figure 7(b) shows exam-
ples of the interest points and features computed by using
the (original) SIFT with interest point detector. For exam-
ple, note that there are many interest points appeared near
the gaps between legs and the body of this insect model.
These gaps are artifact of range scanning (tangential planes,
occlusions, etc.). The global shape would matter more than
the "artificial" features at the gaps.

As a quick fix, interest points are added on a regular grid
and the BF-GridSIFT variation of the BF-SIFT algorithm is
obtained. A 7×7 grid for 49 feature points per range image
is added. To capture global, lower frequency features by us-
ing the grid sampling, the grid sampling is applied only for
the larger scales of the SIFT features. For the smaller scales
(higher frequency bands), original interest points generated
by the original SIFT algorithm are used as the sample points.
Figure 7(c) and Figure 7(d) shows the interest points and the
features of the BF-Grid-SIFT note that; (1) there are more
sample points overall, (2) there are more larger scale fea-
tures capturing global shape, and (3) proportion of samples
at the gaps are smaller. Table 3 compares average numbers
of sample points per 3D model of the (original) BF-SIFT
and BF-GridSIFT approaches. BF-GridSIFT produced many
more feature points. This produces on average 200 features
per view, still not enough to construct a robust histogram.
The retrieval performance can be increased if more SIFT fea-
tures are sampled per range image so that the histogram is no
exceedingly sparse.

Number of features per model
BF-SIFT 1,131
BF-GridSIFT 8,222

Table 3: Number of samples for the BF-SIFT and BF-Grid-
SIFT.

The vocabulary size is set to Nv = 30 for the BF-SIFT
and Nv = 800 for the BF-GridSIFT, after some experiments.
These vocabulary sizes are much smaller than those optimal
for comparing 3D models (e.g., Nv ∼ 1200). Having only a
depth image to extract features from for the query, the num-
ber of meaningful features may have been limited.

Distance computation is also different from the original
BF-SIFT [OOFB08]. For this track, the query is a range im-
age from single viewpoint, while the database is a set of
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complete 3D models. Thus, the distance computation needs
a modification with respect to the original BF-SIFT algo-
rithm. The original BF-SIFT computed a histogram per 3D
model by bagging all the local features from Ni views. For
the partial matching track, for each 3D model, Ni histograms
are computed. For the query scan, only one histogram is
available. Then, the distances between the query’s histogram
and a set of Ni histograms of the 3D model is computed and
the minimum of the Ni distances is selected as the final dis-
similarity measure. Distance among each pair of histograms
is computed by using the Kullback-Leibler divergence.

7. Results

The participants of the SHREC’09 Shape Retrieval Con-
test of Partial Models submitted five sets of rank lists each
corresponding to a different method. The results for the
five methods are summarized in Table 4. The two best per-
forming methods are BF-GridSIFT algorithm by Furuya and
Ohbuchi, and the CMVD-Depth algorithm by Axenopoulos
and Daras. Both of the two methods give the same near-
est neighbor accuracy. The BF-GridSIFT algorithm gives
slightly better results than the CMVD-Depth approach in
terms of other measures, i.e. first tier, second tier, E-measure
and discounted cumulative gain.

Another observation is that the merging of the CMVD-
Depth and CMVD-Binary approaches results in lower per-
formance values than the CMVD-Depth approach alone, ex-
cept with the DCG. The gain in the DCG, however, is not
significant. The depth map inherently contains the shape in-
formation of the binary silhouette and brings more discrimi-
native features.

Method NN FT ST E DCG
CMVD-Binary 0.350 0.217 0.283 0.200 0.521
CMVD-Depth 0.450 0.197 0.267 0.174 0.511
Merged 0.350 0.211 0.281 0.192 0.526
BF-SIFT 0.150 0.114 0.186 0.116 0.423
BF-GridSIFT 0.450 0.225 0.297 0.204 0.532

Table 4: Average Retrieval Results over the 20 Query Scans.

Figure 8 shows the precision-recall curves. The results
for all three runs of the CMVD approach outperform the
BF-SIFT method, while they are competitive with the BF-
GridSIFT method. More specifically, the CMVD method
outperforms BF-GridSIFT for recall values close to 0.1,
from 0.5 to 0.6 and greater than 0.9. However the BF-
GridSIFT method gives better precision values for the recall
values between 0.2 and 0.5.

Figure 9 shows the individual DCG values of the two best
performing methods for the 20 query objects together with
their class identities. The BF-GridSIFT method gives higher
DCG values for the first 10 objects and the CMVD-Depth
method is better for the rest. For most of the objects the two

Figure 8: Precision-recall curves. The ideal case would be
a straight line at the top, with precision values at one for all
the recall values. The closer the curve to this ideal case, the
better the algorihtm is.

algorithms achieve close performance. Both methods give
good results for the objects "Monoplane", "Quadruped" and
"Motorcycle", however there is significant performance dif-
ference for the objects "Glasses", "SubmachineGun", "Bird"
and "Homeplant".

The web-based interface of the Partial Models Retrieval
track shows the retrieved models for all the query objects and
the five methods [INT]. We reproduce a sample shot from the
interface in Figure 10.

Figure 9: DCG values with respect to the query views. For
the first 10 objects BF-GridSIFT method gives higher DCG
values whereas for the last 10 objects CMVD-Depth method
performs better.
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Figure 10: A sample shot from the web-based interface of
the SHREC’09 Shape Retrieval Contest of Partial Models
[INT].

8. Conclusions

In this paper, we have described and compared five al-
gorithms of two research groups that participated in the
SHREC’09 - Shape Retrieval Contest of Partial 3D Models.
The algorithms accept a range scan as the input and retrieve
similar models from a database of complete 3D models. The
CMVD-depth and BF-GridSIFT methods yielded the best
performance among the five algorithms. The two methods
are complementary in the sense that one method retrieves
more relevant models in response to some query objects,
while the other method perform better for other query ob-
jects.

The results are encouraging, and we hope that this com-
petition will lead to new research on range (or similar 2.5
input such as stereo) input-based 3D model retrieval. We are
in progress of enlarging the range query set to create a new
benchmark and we hope that it will provide a valuable con-
tribution to the 3D Model retrieval, Robotic Vision and Per-
ception Community.
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