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ABSTRACT

This article describes how an uncertainty analysis may be performed on a scatterometry measurement. A
method is outlined for propagating uncertainties through a least-squares regression. The method includes the
propagation of the measurement noise as well as estimates of systematic effects in the measurement. Since there
may be correlations between the various parameters determined by the measurement, a method is described
for visualizing the uncertainty in the extracted profile. The analysis is performed for a 120 nm pitch grating,
consisting of photoresist lines 120 nm high, 45 nm critical dimension, and 88◦ side wall angle, measured with a
spectroscopic rotating compensator ellipsometer. The results suggest that, while scatterometry is very precise,
there are a number of sources of systematic errors that limit its absolute accuracy. Addressing those systematic
errors may significantly improve scatterometry measurements in the future.
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1. INTRODUCTION

Optical scatterometry, sometimes referred to as optical critical dimension (OCD) metrology, has become an
attractive tool for dimensional metrology in the semiconductor industry, due in large part to its inline potential
for providing critical feedback information necessary for tight process control. Until recently, however, little
attention has been given to establishing absolute accuracy for optical scatterometry. Instead, most of the effort
has focused on the total measurement uncertainty (TMU) methodology,1, 2 whereby accuracy is established by
comparison with an independent traceable measurement tool, often atomic force microscopy (AFM).3, 4 Scat-
terometry, however, performs its measurements in such a different manner than AFM that such comparisons can
be misleading. Unlike AFM, which measures the dimensions of a target by physically contacting it, scatterome-
try measures those dimensions by obtaining an optical signature and comparing that signature to a theoretical
model. If a scatterometry measurement disagreed with a traceable standard by some amount, the scatterometer
cannot be calibrated by adjusting future values by the difference.

In this paper, we discuss the development of an independent uncertainty budget for optical scatterometry, an
important step toward establishing traceability to the International System (SI) meter. Traceability is defined
as the “property of a measurement result whereby the result can be related to a reference through a docu-
mented unbroken chain of calibrations, each contributing to the measurement uncertainty.”5 In effect, it requires
that a traceable measurement have a documented uncertainty budget, for which each term contributing to the
uncertainty of the measurement has its own uncertainty budget.

One of the key developments has been a methodology for propagating systematic uncertainties and signal
noise through a regression analysis.6 The regression analysis optimizes a set of floating parameters (e.g., CD, side
wall angle, and height) under a set of fixed assumptions (e.g., optical constants and instrument conditions). A
scatterometry sensitivity analysis program, OCDSense, has been developed that implements this methodology
for any grating structure and measurement scheme. In its current implementation, OCDSense propagates
the noise in the reflectance measurement and the uncertainties in the fixed parameters (assumptions) to the
covariance matrix of the floating parameters. Uncertainties in incident angle, wavelength, finite target size,
roughness, beam focusing, channel cross-talk, and radiometric accuracy also contribute to the measurement
uncertainty, and to some extent, these uncertainties can be included in OCDSense as well. A secondary feature
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of an independent uncertainty analysis is that it enables predictions of how scatterometry will behave for new
structures. The uncertainty analysis can guide the development of future scatterometers, and it can be used
to optimize which parameters are best allowed to float and which are best to fix during library generation or
regression analysis. Secondary information, provided by independent measurements or fed forward from previous
process steps, can be used to reduce the uncertainties.

2. PROPAGATING UNCERTAINTIES

In this section, we outline the basic methodology used to propagate uncertainties in a scatterometry measurement.
This methodology is compatible with the Guide to the Expression of Uncertainty in Measurement (GUM),7, 8

but is tailored for use in a regression environment. We will only summarize the results here, providing the details
in a separate forthcoming publication.6

We assume that the scatterometry signal is being modeled and described with a set of functions yi = fi(a,b)
that simulates the value yi measured for each of N data points. The vector a ≡ (a1, ..., aM )T represents
the M floating measureands estimated by a least-squares regression analysis. The vector b ≡ (b1, ..., bK)T

represents all of the other K fixed values that are input into the model, which should parameterize all significant
sources of errors that will propagate to the estimated values a. Often, there are more estimated parameters
than are of interest to the user, but it may be recognized that some parameters affecting the outcome are
not known sufficiently well to treat them as fixed parameters. In vector form, the function is represented by
y = f(a,b) ≡ [f1(a,b), ..., fN (a,b)]T.

The fixed parameters b, while being fixed during the regression analysis, all have estimated variances and
covariances associated with them, which we will assume are expressed in matrix form as

u2(b) = 〈bbT〉 − 〈b〉〈bT〉. (1)

Furthermore, each of the measurements y have variances and covariances given in matrix form as u2(y), in a
similar manner as u(b) above. The matrices u2(b) and u2(y) are often treated as diagonal, but they do not
have to be. Our task is to determine how these estimated variances and covariances propagate into an estimated
variance-covariance matrix u2(a) of the estimated parameters, a.

A weighted least-squares regression analysis compares the data to the theoretical model and estimates the
parameters a by minimizing the value9, 10

χ2 =
∑

i

wi[yi − fi(a,b)]2, (2)

where the wi are weighting factors. Usually, if the variances u2(yi) are known, the weighting factors are chosen to
be wi = 1/u2(yi), but this does not necessarily have to be the case. We can write Eq. (2) as a matrix expression

χ2 = [y − f(a,b)]TW[y − f(a,b)], (3)

where W is an N × N diagonal matrix with diagonal elements wi. If a = amin minimizes χ2, then we consider
amin to be an estimate of the true value of a. We will not discuss the various methods that are used to perform
this minimization, because all we need to know is that such a minimum exists and that the functions fi(a,b) are
sufficiently smooth that they can be Taylor series expanded about that minimum. If we assume that all of the
errors are normally distributed, that the functions fi(a,b) are sufficiently well represented by their first, linear
terms in their expansion, that the errors in the measurements of y have zero mean (that is, any systematic errors
are incorporated in a term in b), that the weighting function is chosen to be the inverse of the variance of each
of the measurements, and that the measurements are uncorrelated, then we can show that the covariance matrix
of a resulting from the covariance matrix u2(y) is

u2
a(a) = (ATA)−1. (4)

where the elements of the matrix A are

Aij = w
1/2
i

∂fi(a′,b′)
∂a′

j

∣∣∣∣∣
a′=amin,b′=b

, (5)
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When we consider errors in b, which we will take to be systematic errors, at least from the perspective of the
least-squares regression, we find

δa = −A+Bδb, (6)

where the elements of the matrix B are

Bik = w
1/2
i

∂fi(a′,b′)
∂b′k

∣∣∣∣
a′=amin,b′=b

(7)

and
A+ = (ATA)−1AT. (8)

(A+ is often referred to as the left-pseudoinverse of A.) The variance-covariance matrix resulting from the
systematic errors in the system is given by

u2
b(a) = 〈δaδaT〉 = A+B̃u2(b)BT(A+)T, (9)

where u2(b) = 〈δbδbT〉 is the variance-covariance matrix of the parameters b.

The combined uncertainty in the measurement is obtained using the guidance of the GUM by combining the
variance-covariance matrices obtained above,7, 8

u2
c(a) = u2

a(a) + u2
b(a). (10)

Finally, the expanded uncertainty in the ith estimated parameter is

U(ai) = k
√

[u2
c(a)]ii (11)

where k is a coverage factor, often chosen to be 2 or 3, depending upon the level of confidence desired.

In scatterometry, we are often interested in knowing what structures lie within the measurement and the
uncertainty. In many cases, it is difficult to appreciate the uncertainties in a particular parameter, without
knowing how the other parameters are allowed to vary. Here, it is useful to consider a combined covariance
matrix, given by

u2[(a,b)T] =
(

u2
c(a) −A+Bu2(b)

−u2(b)(A+B)T u2(b)

)
. (12)

We can generate multivariate random numbers that reproduce the statistics described by Eq. (12). Such a
random number generator can be realized by finding the eigenvectors and the eigenvalues of the covariance matrix,
creating normally-distributed random numbers having variances given by the eigenvalues, and multiplying those
random numbers by the corresponding eigenvectors. Armed with the ability to generate random profiles that
are measurably equivalent, we now have a powerful visualization technique in our analysis arsenal.

We developed a computer program, OCDSense, to perform the analysis described above. It takes a parame-
terized grating structure along with descriptions of the measurement, estimates of the noise in the measurement,
and estimates for the independent uncertainties in each of the parameters and returns the uncertainty budget for
those parameters chosen to be estimated. It also can provide the estimated covariance matrix and realizations of
the profile as described above. Finally, besides just the profile description, it also allows propagation of a number
of systematic errors, such as those due to the angle of incidence, the rotation of the grating, and the wavelength
scale. OCDSense uses rigorous coupled wave (RCW) analysis to perform the electromagnetic simulations.11–14

The various uncertainties input into OCDSense are expected to represent the estimated standard deviations
of the respective parameters. Often, instead of having that information, we have fixed ranges [bi − Δ, bi + Δ],
over which we can expect a parameter bi to vary. Following the GUM, we assume that the distribution is uniform
over that range, and that the estimated standard deviation is given by 0.58Δ.
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Figure 1. Two profiles describing a photoresist line above a silicon substrate. On the left is a simplified model that would
be used to fit experimental data. On the right is a more complex model, assumed to be a more realistic model, used for
analyzing the uncertainties.

3. EXAMPLE PROFILE AND TOOL

In this article, we will use a virtual sample and virtual tool to illustrate how a specific uncertainty analysis would
proceed. In the future, however, the methods described here will be applied to real samples and tools, using
component uncertainties determined appropriately. Thus, the specific values used here are only an estimate of
what might be expected in a realistic measurement.

The target grating profile that we will use is a trapezoidal photoresist line on top of a silicon substrate. The
photoresist has a nominal bottom width (CD) of 45 nm, a side wall angle (SWA) of 88◦ and a height of 120 nm.
The pitch of the grating is 120 nm. A single period of the grating is illustrated in Fig. 1.

The scatterometry tool will be a rotating compensator spectroscopic ellipsometer operating from 200 nm to
900 nm with the light dispersed in steps of 2 nm. The incident angle is 70◦, and the grating vector is in the
plane of incidence (the so-called normal diffraction geometry). As a rotating compensator ellipsometer, the signal
consists of four components: a dc component, one at twice the rotation frequency (2f) of the compensator (a
sine component), and two at four times the rotation frequency (4f) of the compensator (sine and cosine). The
least-squares minimization analysis is considered on the ratio of each of the three ac signals to the dc signal.

4. SOURCES OF UNCERTAINTY

There are a number of sources of uncertainty in scatterometry measurements. In this section, we will enumerate
a number of them, and discuss how they affect the uncertainty in the final measurement.

4.1 Signal noise

The reproducibility of the measurement is encapsulated by the covariance matrix u2
a(a) given in Eq. (4) above.

The behavior of u2
a(a) is by far the most studied term in the total covariance matrix.15 It is relatively simple to

calculate, given either the measured noise statistics or by simply performing a measurement on a tool multiple
times and viewing the resulting distribution of extracted profiles.

Precision is one of the key attractions of scatterometry for process control monitoring. Generally, the lower
the number of floating parameters, the higher the tool precision. As more parameters are added to those floating,
the precision degrades. On the other hand, if the floating parameters do not cover the range of realistic process
variations, then the accuracy may be substantially lower than that estimated by Eq. (4).

For this study, we obtained a characteristic noise spectrum for a tool and smoothed it by hand. The resulting
noise, shown in Fig. 2 as a function of wavelength, was applied to each of the four measured signals. Since each
derived measurement yi is the ratio of two measured signals (i.e., yi = ri/si), we calculate the uncertainty in yi

according to standard procedures to be

u(yi) =

√
r2
i u2(ri) + s2

i u
2(si)

s2
i

, (13)
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Figure 2. The noise spectrum, expressed as the standard deviation of each of the four component measurements (dc and
ac components), assumed for the uncertainty analysis.

where u2(ri) and u2(si) are the variances of ri and si, respectively, which here we assume to be the same. This
noise level was also assumed to be used to determine the weighting function during the least-squares analysis.
This spectrum has a couple characteristic features, namely the noise has a peak in the near infrared, where the
detector responsivity is low and the thermal part of the lamp output is low, and diverges in the ultraviolet, where
the detector responsivity and the lamp output both drop.

4.2 Profile Parameterization

One of the largest uncertainties associated with the scatterometry measurement is that associated with the profile
parameterization. The structure is constrained by the profile model, which may not reflect the true structure.

Consider our simple structure, shown on the left in Fig. 1, consisting of a photoresist line grating on top of a
silicon substrate. For the analysis of the data, the user may choose to parameterize the structure in terms of a
critical dimension (CD), a side wall angle (SWA), and a height. While the user is increasing the precision in the
measurement by keeping the number of parameters small, there are many assumptions that the user is making
that will have an effect on the total accuracy. For example, the pitch, while probably fixed in the production
process, is not known to infinite accuracy and may even vary to a small extent with exposure focus. The side
wall may not be straight, but rather may be bulged or indented to some degree. The corners of the structures
may have some rounding, if only because of surface tension. The substrate is likely to have a native oxide on it.
On the right in Fig. 1, we show an alternative profile description, which would be appropriate for analysis by
OCDSense. Each of the additional parameters represents systematic variables that need to have uncertainties
assigned to them. Such information would be provided by off-line metrologies, such as AFM or cross sectional
scanning electron microscopy (SEM), together with experience from process engineers.

For the pitch, we assumed that it was within 1 nm of its nominal value, so that its estimated standard deviation
was 0.3 nm. For the amount of bulge, we assumed that a 1 nm standard deviation would be a reasonable level.
The vertices of the bulge are fixed at one-third and two-thirds of the height (allowing these to vary, too, would
require that we consider correlations between the bulge distance and these heights). The corner rounding radius
was assumed to be in the range [0 nm, 4 nm]; thus, the center value was assumed to be 2 nm, with an estimated
standard uncertainty 1.2 nm. The oxide thickness was assumed to be in the range [1 nm, 2 nm]; thus, the center
value was assumed to be 1.5 nm, with an estimated standard uncertainty 0.3 nm.
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4.3 Optical properties
The line profile description also contains information about the optical properties of the materials in the grating.
In our example grating, one should propagate the uncertainties arising from errors in the optical properties of
the photoresist, the oxide layer, and the substrate. In the case of the silicon substrate, we can find two literature
curves for the silicon optical properties, ñSi1(λ) and ñSi2(λ), and assume that the real optical constants vary
between them.16, 17 Thus, we assume that

ñSi(x, λ) = xñSi1(λ) + (1 − x)ñSi2(λ) (14)

where x is a parameter in the range [0, 1]. Thus we assume 〈x〉 = 0.5 and u(x) = 0.3. The index of refraction
of the oxide layer may vary in a similar way between values for bulk silicon dioxide and those reported in the
literature for a native silicon oxide.16, 17 In the case of the photoresist, we could do a similar expansion of
the optical properties. However, we do not have sufficient information about the range of indices. Since the
photoresist is primarily a dielectric, we might assume instead that the index is given by

ñ(x, λ) = (1 + x)ñ1(λ) (15)

where x is now a small number assumed to vary about zero. We let 〈x〉 = 0 and u(x) = 0.005 for the photoresist.

In some cases, especially where process variations exist in the materials, the parameters controlling the
optical properties could be treated as floating parameters in the scatterometry measurement. While the optical
properties are dependent upon wavelength, the process variation of many materials has a low dimensionality.
For example, the complex index of refraction of poly-silicon18 can be treated as a continuous set of curves
parameterized by the volume fraction of amorphous silicon. Thus, the addition of process variation may not
require the addition of many new floating parameters, and yet the accuracy gained by including them may be
substantial.

4.4 Measurement uncertainties
There are several measurement uncertainties that can occur. These are generally ignored by the user and left to
the tool vendor to characterize, and usually fall under the category of tool or fleet matching. In this section, we
discuss the most likely sources of error in the measurement and make estimates of their uncertainties.

4.4.1 Wavelength

Ultimately, scatterometry transfers the wavelength scale used for the measurement to the dimensional parameters
associated with the target structure. All other effects being constant (most notably the optical properties of the
materials), a uniform error in the wavelength of 1 % should result in a 1 % error in all of the dimensions of the
structure. These errors, however, can become magnified because many of the materials have optical properties
that impart structure onto the optical signature. If there is an error in the apparent wavelengths of those spectral
features, other parameters attempt to compensate.

For laser-based, fixed wavelength tools, the uncertainty from the wavelength may contribute insignificantly
to the final result. Gas lasers, for example, often have wavelength uncertainties, even without stabilization, of
better than 0.001 nm. However, spectral instruments generally rely upon a calibrated spectrometer and cannot
be expected to perform much better than about 0.25 times their spectral resolution. We thus assume, for our
virtual spectrometer, that the estimated standard deviation of the wavelength is given by 0.3 nm, and that it is
modeled with a uniform shift.

4.4.2 Angle of incidence

The scatterometry signature depends upon the angle of incidence. Because the light source must be focused
relatively tightly onto the sample, there is a conical spread in those incident angles, and the theoretical analysis
may or may not take this into account. In either case, the central angle of incidence can be determined by using a
film standard with known optical properties and thickness. Using this method will determine the intensity- and
reflectance-weighted angle of incidence for the instrument, which may differ from the intensity- and reflectance-
weighted angle of incidence for the grating. For our simulations, we let the maximum error in the angle of
incidence be 0.05◦, corresponding to an estimated standard deviation of 0.03◦.
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4.4.3 Sample rotation

Like angle of incidence, the scatterometry signature depends upon the rotation angle of the sample. However,
that angle cannot be found using a film standard. Some rotating compensator spectroscopic ellipsometers perform
zone-averaging, so that the incident polarization is switched between 45◦ and −45◦, with the results averaged.
In this case, the resulting error from the sample rotation is insignificant, the result having a quadratic effect
on angle rather than a linear effect. For this study, however, we will assume that the maximum error from the
sample rotation is about 0.1◦, corresponding to an estimated standard deviation of 0.06◦.

4.4.4 Photometric accuracy

In this section, we refer to issues associated with the measureands directly. If we are measuring the ratio of
ac signals to dc signals, we need to consider whether those signals are appropriately calibrated with respect to
one another. For this study, we will assume that these ratios are accurate to 0.1 %, similar to the noise level,
corresponding to an estimated standard deviation of 0.06 %. Since the ac signals are phase-sensitive, we also
include the possibility that the phases have an uncertainty. The phase for the 2f signal is effectively included in
the ratio uncertainty , while we include a [−0.5◦, 0.5◦] range in the phase of each of the 4f signals.

4.5 Electromagnetic simulation accuracy

Scatterometry measurements rely upon the electromagnetic modeling being accurate. RCW simulations, how-
ever, make a number of approximations. One of those approximations is the so-called staircase approximation,
whereby sloping interfaces are approximated by a finite number of layers, each having vertical interfaces. There
is some question about the validity of this approximation in the literature, although most of the problems have
been associated with very shallow interfaces, like one would have in a blazed grating, and for metallic mate-
rials.19 RCW also approximates the electric and magnetic fields in each layer by expanding each of them in
a Floquet series, which must be truncated to perform the simulation on a computer. While some problems
existed in the past, associated with transverse magnetic (TM) waves incident on the grating,12, 13 convergence
can still be relatively slow, especially for metallic gratings. A number of comparisons have been made between
different scattering methodologies, including RCW, finite difference, finite element, and another modal method,
and generally good results were obtained.20

To estimate the effects of simulation accuracy on the measurement, we do the simulation, truncating the
Floquet series at ±10 orders, and compare the results with those obtained with ±20 orders. Furthermore,
we compare the results dividing the structure into 10 layers and compare the results with 15 layers. For the
photoresist structure used here, convergence is fairly quick and the larger values can be safely assumed to
represent truth, while the smaller values would be required to make the computation time of a measurement
reasonable.

4.6 Other considerations

In this subsection, we will discuss a number of issues that are much more difficult to assess, but which need to be
considered for a serious uncertainty budget. These are issues that require significantly more computation power
and assumptions to evaluate. Furthermore, these errors can depend upon the sample being measured, and thus
do not fall under the realm of tool matching. We will not include any of these uncertainties in our budget, but
we will list them.

4.6.1 Finite target size

The targets used in many scatterometry measurements are very small, usually less than 100 �m on a side and often
less than 50 �m on a side. At these dimensions, some light is bound to spill over beyond the target and illuminate
the region surrounding the target, if not other adjacent structures. Kenyon, et al., considered such effects by
treating the signal as a sum of the diffraction by the target and the diffraction by the surrounding region.21 The
results suggested that incoherent collection of the reflected light with little or no occlusion minimized the effects
from the outside region. However, any occlusion of the beam necessarily increased the coherent addition of the
signal arising from the surrounding region with that from the target and can cause shifts in the results.
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Table 1. Uncertainty budget determined using the arguments outlined in this article.

CD SWA Height
[nm] [deg] [nm]

Type A Uncertainties
Instrument noise 0.04 0.02 0.03

Type B Uncertainties
Pitch −0.75 0.37 −0.68
Bulge 1.02 0.28 −0.82
Corner radius −0.02 0.01 −0.08
Photoresist, optical properties 0.19 0.33 −0.63
Oxide, optical properties −0.42 0.20 −0.22
Oxide, thickness 0.42 −0.18 0.47
Silicon optical properties −0.15 0.07 −0.13
Model, maximum field order −0.00 0.00 −0.00
Model, number of layers 0.03 −0.01 −0.00
Wavelength scale 0.29 −0.17 0.20
Sample rotation −0.03 0.01 −0.01
Incident angle 0.18 −0.02 −0.20
Tool, sin(2f) scale 0.06 −0.03 0.06
Tool, cos(4f) scale −0.02 0.01 −0.01
Tool, sin(4f) scale −0.02 0.01 0.01
Tool, cos(4f) phase 0.29 −0.11 0.09
Tool, sin(4f) phase −0.13 0.05 −0.01
Total Type B 1.49 0.67 1.38

Combined 1.49 0.67 1.38
Expanded (k = 2) 2.98 1.34 2.76

4.6.2 Line width/Line edge roughness

The effects of line width and line edge roughness have not been studied in great detail. However, it is one of
the primary reasons why AFM and scatterometry measurements are very difficult to compare. AFM measures
the line profile through a small number of cross sections, while scatterometry measures a weighted average over
a much larger area. Work by Germer has investigated line edge and line width roughness in the long period
regime and found that the results can be approximated by a incoherent average of line widths.22, 23 More recent
results by Bergner, et al., investigated roughness in the short period regime and found that the results could be
modeled with an effective medium layer, provided the layer was treated as a birefringent effective medium.24

4.6.3 Stray light in spectrometer

Spectrometer-based systems have the potential for exhibiting cross talk between the wavelength channels. For
example, accurate colorimetry measurements are very difficult to perform with single-slit, multidetector spec-
trometers.25 Little attention has been given to this effect in ellipsometry measurements, no less scatterometry
measurements. To estimate these effects, one can assume a point spread function on the detector that illuminates
not just the detector in question, but also adjacent and far reaching detectors.

5. RESULTS

We consider the grating shown above in Fig. 1 measured by the spectroscopic rotating compensator ellipsometer
described above. We performed the uncertainty analysis, using the component uncertainties and measurement
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Figure 3. Realizations of the profile consistent with the covariance matrices determined by propagating the uncertainties.
The profiles in (a) are those determined solely by propagating the measurement noise through the analysis and represent
the Type A uncertainties. The profiles in (b) are those determined by propagating all of the uncertainties listed in Table
I. The insets show the details of the side wall profile using an expanded horizontal scale. All of the values are expressed
in nanometers.

noises given in Sec. 4. The resulting uncertainties are shown in Table 1. The results are divided into the Type
A and Type B components, as defined in the GUM.7, 8

The results given in Table 1 show that the precision of the measurement, as judged by the Type A uncertainty,
can be significantly sub-nanometer. What is striking from the table is how the various possible sources of
systematic error contribute to an overall accuracy that is much larger. The expanded uncertainty (coverage
factor k = 2) is about 6 % of the CD. That uncertainty is dominated by the bulge parameter, that is, the
uncertainty in knowing that the side wall is flat. Shortly behind that are the uncertainties in pitch, wavelength,
and the properties of the native oxide.

The problem with the uncertainty budget as presented in Table 1 is that it does not represent the correlation
between the different parameters. When there are more than a couple floating parameters, it is difficult to
appreciate these correlations by looking at the covariance matrix with unaided eye, that is, without performing
a principal component analysis. On the other hand, as described above, we can generate multivariate random
numbers that replicate the statistics found in the covariance matrix. By doing that and plotting a large number
of instances of profiles, we can view how the different parameters are coupled. Figure 3 shows results of such an
analysis. On the left of Fig. 3 is shown the distribution of profiles calculated using only the Type A contributions
to the covariance matrix, u2

a(a). The results show how all three parameters, the CD, SWA, and height are all
correlated, essentially ensuring that the total volume of the profile is preserved. On the right side of Fig. 3 is
show the distribution of profiles calculated using the full combined covariance matrix, given in Eq. 12.

One can improve the combined uncertainty in CD, SWA, or height by allowing other parameters to be varied
in the fit as well. OCDSense allows the user to specify any number of parameters to be “optimized.” These
parameters are turned on and off, in order to minimize a specified figure of merit. In effect, this procedure allows
one to decide whether to leave any given variable fixed, but with a given uncertainty, or letting it float. If the
uncertainty in a parameter can be reduced by letting it float, it is better to float that parameter. However,
adding parameters to the list of those floating increases the Type A uncertainties, while decreasing the Type B
uncertainties. By optimizing the choice of floating parameters, we can, in effect, balance the Type A and Type
B uncertainties. If we let all of the grating-definition variables (pitch, bulge, corner radius, oxide thickness and
optical properties, photoresist optical properties, and silicon optical properties) be optimized in this way, then
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we find that we can reduce the standard combined uncertainty in CD from 1.5 nm to 0.9 nm. The Type A
standard uncertainty, however, rises from 0.04 nm to about 0.3 nm.

6. CONCLUSIONS

We have developed a systematic method for establishing the uncertainty in a scatterometry measurement. By
considering a number of possible sources of uncertainty, we can identify which sources would contribute greatest
to limiting the accuracy of the technique. Furthermore, this study represents an important step needed to
produce reference materials for scatterometry and to provide traceability to the SI.
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