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ABSTRACT 
Public key cryptography is widely used to secure transac­
tions over the Internet. However, advances in quantum com­
puters threaten to undermine the security assumptions upon 
which currently used public key cryptographic algorithms 
are based. In this paper, we provide a survey of some of 
the public key cryptographic algorithms that have been de­
veloped that, while not currently in widespread use, are be­
lieved to be resistant to quantum computing based attacks 
and discuss some of the issues that protocol designers may 
need to consider if there is a need to deploy these algorithms 
at some point in the future. 

Categories and Subject Descriptors 
E.3 [Data]: Data Encryption—Public key cryptosystems 

General Terms 
Algorithms, Security 

Keywords 
Quantum computers, public key cryptography 

1. INTRODUCTION 
Since its invention, public key cryptography has evolved 

from a mathematical curiosity to an indispensable part of 
our IT infrastructure. It has been used to verify the au­
thenticity of software and legal records, to protect financial 
transactions, and to protect the transactions of millions of 
Internet users on a daily basis. 

Through most of its history, including present day, public 
key cryptography has been dominated by two ma jor families 
of cryptographic primitives: primitives whose security is be­
lieved to be contingent on the difficulty of the integer factor­
ization problem, such as RSA [46] and Rabin-Williams [44, 
55], and primitives whose security is believed to be contin­
gent on the difficulty of the discrete logarithm problem, such 
as the Diffie-Hellman key exchange [14], El Gamal signa­
tures [19], and the Digital Signature Algorithm (DSA) [17]. 
Also included within the second family is elliptic curve cryp­
tography (ECC) [32, 40], which includes all known, practi-
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cal identity-based encryption schemes [5] as well as pairing-
based short signatures [6]. 

While both the integer factorization problem and the gen­
eral discrete logarithm problem are believed to be hard in 
classical computation models, it has been shown that nei­
ther problem is hard in the quantum computation model. 
It has been suggested by Feynman [16] and demonstrated 
by Deutsch and Jozsa [13] that certain computations can be 
physically realized by quantum mechanical systems with an 
exponentially lower time complexity than would be required 
in the classical model of computation. A scalable system ca­
pable of reliably performing the extra quantum operations 
necessary for these computations is known as a quantum 
computer. 

The possibility of quantum computation became relevant 
to cryptography in 1994, when Shor demonstrated efficient 
quantum algorithms for factoring and the computation of 
discrete logarithms [51]. It has therefore become clear that 
a quantum computer would render all widely used public 
key cryptography insecure. 

While Shor demonstrated that cryptographic algorithms 
whose security relies on the intractability of the integer fac­
torization problem or the general discrete logarithm prob­
lem could be broken using quantum computers, more recent 
research has demonstrated the limitations of quantum com­
puters [47]. While Grover developed a quantum search algo­
rithm that provides a quadratic speedup relative to search 
algorithms designed for classical computers [24], Bennet, 
Bernstein, Brassard, and Vazirani demonstrated that quan­
tum computers cannot provide an exponential speedup for 
search algorithms, suggesting that symmetric encryption al­
gorithms, one-way functions, and cryptographic hash algo­
rithms should be resistant to attacks based on quantum com­
puting [4]. This research also demonstrates that it is unlikely 
that efficient quantum algorithms will be found for a class 
of problems, known as NP-hard problems, loosely related to 
both search problems and certain proposed cryptographic 
primitives discussed later in this paper. 

The above research suggests that there is no reason, at the 
moment, to believe that current symmetric encryption and 
hash algorithms will need to be replaced in order to protect 
against quantum computing based attacks. Thus, any effort 
to ensure the future viability of cryptographic protocols in 
the presence of large scale quantum computers needs to con­
centrate on public key cryptography. Given how vital public 
key trust models are to the security architecture of today’s 
Internet, it is imperative that we examine alternatives to the 
currently used public key cryptographic primitives. 
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In this paper, we provide an overview of some of the public 
key cryptographic algorithms that have been developed that 
are believed to be resistant to quantum computing based 
attacks. The purported quantum-resistance of these algo­
rithms is based on the lack of any known attacks on the 
cryptographic primitives in question, or solutions to related 
problems, in the quantum computation model. This does 
not mean that an attack will never be found, but it does 
yield some confidence. The same type of argument is used 
to justify the security of all but a handful or cryptographic 
primitives in the classical computation model. One-time 
pads [50, 53] and universal hash functions [8] are uncondi­
tionally secure in any computation model, if used properly, 
but they are usually impractical to use in a way that doesn’t 
invalidate the proof. Other cryptography often comes with 
a “security proof,” but these proofs are generally based on at 
least one unproved security assumption—virtually any proof 
of security in the classical or quantum computation model 
not based on an unproved assumption would resolve one of 
the best known unsolved problems in all of mathematics [10]. 

Section 2 lists some of the issues that should be considered 
in comparing public key cryptographic algorithms. Section 3 
describes a one-time signature scheme known as Lamport 
signatures, and Section 4 describes techniques that have 
been developed for creating long-term signature schemes 
from one-time signature schemes. Section 5 covers public 
key cryptographic algorithms based on lattices. Section 6 
describes the McEliece signature and encryption schemes. 
Other potential areas of research are mentioned in Section 7 
and Section 8 discusses issues that may need to be considered 
by protocol designers if one or more of the public key cryp­
tographic algorithms described in this paper become widely 
used at some point in the future. 

2. GENERAL CONCERNS 
A number of factors can be considered when examining 

the practicality of a public key cryptographic algorithm. 
Among these are: 

• Lengths of public keys, key exchange messages, and 
signatures: For public key cryptographic algorithms 
commonly in use today, these are all roughly the same 
size, ranging from a few hundred to a few thousand 
bits, depending on the algorithm. This is not always 
the case for candidate quantum-resistant algorithms. 
If public keys, key exchange messages, or signatures 
are much larger than a few thousand bits, problems 
can be created for devices that have limited memory 
or bandwidth. 

• Private key lifetime: A transcript of signed messages 
often reveals information about the signer’s private 
key. This effectively limits the number of messages 
that can safely be signed with the same key. The 
most extreme example of this is the Lamport signa­
ture scheme, discussed below, which requires a new 
key for each signed message. Methods have been de­
veloped for creating a long-term signature scheme from 
a short-term or even single-use signature scheme, but 
these often require extra memory for managing and 
storing temporary keys, and they tend to increase the 
effective length of signatures. Private keys used for de­
cryption do not generally have limited lifetime, since 

encryption does not use and therefore cannot leak in­
formation about the private key, and protocols can 
almost always be designed to prevent the decryptor 
from revealing information about his or her private 
key. This can be done by encrypting symmetric keys 
rather than the content itself, using integrity protec­
tion, and reporting decryption failures in a way that 
makes them indistinguishable from message authenti­
cation code (MAC) failures. This type of behavior is 
currently necessary for secure protocols using old RSA 
padding schemes, and is often considered good practice 
regardless of the key transfer mechanism. 

• Computational cost: There are four basic public key 
operations: encryption, decryption, signing, and signa­
ture verification. On today’s platforms, with currently 
used algorithms, these operations generally take a few 
milliseconds, except for RSA encryption and signature 
verification, which can be about 100 times faster due to 
the use of small public exponents. Key generation time 
may also be a concern if it is significantly more expen­
sive than the basic cryptographic operations. Factor­
ing based schemes such as RSA and Rabin-Williams 
tend to have this problem, as generation of the two 
high entropy prime factors requires several seconds of 
computation. 

3. LAMPORT SIGNATURES 
The basic idea behind Lamport signatures [33] is fairly 

simple. However, there is a wide variety of performance 
tradeoffs and optimizations associated with it. It derives its 
security strength from the irreversibility of an arbitrary one-
way function, f . f may be a cryptographic hash function, 
although the scheme is secure even if f is not collision resis­
tant. The Lamport scheme is a one-time signature scheme. 
In order for the scheme to be secure, a new public key must 
be distributed for each signed message. 

In the simplest variant of Lamport signatures, the signer 
generates two high-entropy secrets, S0,k and S1,k , for each 
bit location, k, in the message digest that will be used for 
signatures. These secrets (2n secrets are required if the di­
gest is n bits long) comprise the private key. The public key 
consists of the images of the secrets under f , i.e., f(S0,k ) and 
f(S1,k ), concatenated together in a prescribed order (lexi­
cographically by subscript for example). In order to sign 
a message, the signer reveals half of the secrets, chosen as 
follows: if bit k is a zero, the secret S0,k is revealed, and if it 
is one, S1,k is revealed. The revealed secrets, concatenated 
together, comprise the signature. While the act of signing 
a message clearly leaks information about the private key, 
it does not leak enough information to allow an attacker to 
sign additional messages with different digests. Nonetheless, 
there is no way in general for the signer to use this type of 
public key to safely sign more than one message. 

While conceptually the simplest, the above scheme is not 
the most efficient way to create a one-time signature scheme 
from a one-way function [20]. Firstly, the size of public keys 
and signatures can be reduced by nearly a factor of two, 
merely by using a more efficient method of choosing which 
secrets to reveal from a smaller pool. For each bit location, 
k, rather than creating two secrets, S0,k and S1,k , the se­
cret key may consist of only S0,k , with the public key being 
f(S0,k ). In order to sign a message, the signer would reveal 
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S0,k for each bit position, k, in the message digest that has 
a value of zero. Thus, the signature would be the concate­
nation of S0,k for each bit location in the message digest 
that has a value of zero. The problem with this scheme is 
that an attacker could try to change the value of a signature 
by withholding some of the S0,k values, thus changing some 
of the zero bits to one. In order to protect against this, a 
binary encoding of the total number of zero bits in the mes­
sage digest may be appended to the message digest. This 
counter would be signed along with the message digest as 
described above. Since an attacker could only try to change 
zero bits to one, the attacker could not reduce the value of 
the counter, which would be necessary to successfully change 
some of the zero bits to one in the message digest itself. 

The sizes of signatures and public keys can also be traded 
off against computation by using hash chains. In such a 
scheme, the message digests would be encoded using digits 
with a base b that is greater than two (e.g., using hexadeci­
mal digits, which would correspond to b = 16). To sign the 
kth digit of the digest, Nk , the private key would be Sk, 
the public key would be the result of applying a one-way 
function, f , to the secret b − 1 times, fb−1(Sk), and the sig­
nature value would be fNk (Sk).1 Thus if b were 4 and Nk 

were 1, then public key would be f3(Sk) = f(f(f(Sk))) and 
the signature value would be f1(Sk) = f(Sk). As with the 
binary scheme, there would be a need to append a “counter” 
to the message digest in order to prevent an attacker from 
increasing the values of any digits in the message digest. The 
value of the counter to be appended to the digest, for an n 

Pn−1digit digest, would be k=0 (b − 1 − Nk). The reduction in 
signature size is logarithmic in the value of the base, while 
the cost of generating a one-time key pair is linear, so this 
process reaches diminishing returns fairly quickly, but using 
a base of 16 is often better than a base of 2. Figure 1 shows 
an example of a Lamport signature for a message digest that 

1As with the binary scheme above, the signer would not 
need to reveal the signature value for any digit k for which 
Nk = b − 1. 

consists of eight hexadecimal digits. 
Analysis of the performance of Lamport’s one-time signa­

tures is somewhat prone to confusion. As discussed above, 
the performance is dependent upon the choice of a one-way 
function and on the value of the base, b, used in generat­
ing the public key. Further, as the scheme is a one-time 
signature scheme the distinction between signing time and 
key generation time is not terribly useful, although it does 
provide a lot of opportunities for a signer to do precompu­
tation. Nonetheless, with a fairly reasonable set of assump­
tions (e.g., f = SHA-256 with b = 4) one arrives at signa­
ture, verification, and key generation times that are similar 
to current schemes such as DSA. 

4.	 LONG-TERM SIGNING KEYS FOR ONE­

TIME SIGNATURE SCHEMES 
If the signer can precompute a large number of single-

use, public key - private key pairs, then at little additional 
cost, these keys can be used to generate signatures that can 
all be verified using the same public key [36]. Moreover, 
the long-term public key associated with this scheme need 
only be the size of a message digest. To do this, we use hash 
trees, a technique invented by Ralph Merkle in 1979 [35]. At 
the bottom of the tree, the one-time public keys are hashed 
once and then hashed together in pairs. Then those hash 
values are hashed together in pairs, and the resulting hash 
values are hashed together and so on, until all the public 
keys have been used to generate a single hash value, which 
will be used as the long-term public key. In this scheme, 
the signer can prove that a one-time public key was used in 
the computation that generated the long-term public key by 
providing just one hash value for each level of the tree—the 
overhead is therefore logarithmic in the number of leaves in 
the tree. 

Figure 2 depicts a hash tree containing eight single-use 
public keys. The eight keys are each hashed to form the 
leaves of the tree, the eight leaf values are hashed in pairs 
to create the next level up in the tree. These four hash 
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values are again hashed in pairs to create H0−3 and H4−7, 
which are hashed together to create the long-term public 
key, H0−7. In order for an entity to verify a message signed 
using K0, the signer would need to provide H1, H23 , and 
H4−7 in addition to K0 and a certified copy of H0−7. The 

′ ′ ′ verifier would compute H0 = h(K0), H01 = h(H0 H1), 
′ ′ ′ ′ H = h(H H23 ), and H = h(H H4−7). If 0−3 01 0−7 0−3 

H0

′ 

−7 is the same as the certified copy of H0−7, then K0 

may be used to verify the message signature. 
While the the number of additional hashes that need to be 

added to a public key grows logarithmically with the number 
of leaves in the tree, the cost of generating a hash tree is 
linear in the number of leaves. It may therefore be desirable 
to limit the size of hash trees. If the signer wishes to use 
a single public key to sign more messages than the number 
of single-use key pairs he or she is willing to generate in the 
process of generating a public key, then the signer may wish 
to use a certificate chain like construction where the longest 
term public key is used to sign a large number of shorter-
term keys, which in turn are used to sign even shorter term 
keys and so on. The advantage of this is that short-term keys 
can be generated as needed, allowing the cost of generating 
new one-time keys to be distributed over the lifetime of the 
single long-term key. This technique can also be used for 
other signature schemes where the key has limited lifetime, 
not just those that are based on hash trees. One example is 
NTRUSign, which is discussed later in this paper. 

One important point to note is that unlike current signa­
ture schemes, this scheme is not stateless. The signer needs 
to keep track of more than just a single long-term private 
key in order to sign messages. If the signer is using hash 
trees, the signer can save a lot of memory by using a pseu­
dorandom number generator to generate one-time private 
keys from a seed and a counter rather than saving all of the 
one-time private keys in memory. The one-time private keys 
are large and are only used twice: once for the purpose of 
generating the hash tree, and again when the one-time pri­
vate keys are needed to sign messages, so this makes fairly 
good sense. The hashes in the tree, however, are used more 
often, and they should therefore be saved in memory. If 
these management techniques are used, then the footprint 
of a signing module does not suffer terribly from the short 
lifetime of the underlying signature scheme, but the dynamic 
nature of the stored information does imply that read-only 
or write-once memory cannot be used to store it. 

5.	 LATTICE BASED CRYPTOGRAPHY AND 
NTRU 

Unlike Lamport signatures, most public key cryptographic 
schemes derive their security from the difficulty of specific 
mathematical problems. Historically, factorization and the 
discrete logarithm problem have been by far the most pro­
ductive in this respect, but as previously noted, these prob­
lems will not be difficult if full scale quantum computers are 
ever built. Therefore, cryptographers have been led to in­
vestigate other mathematical problems to see if they can be 
equally productive. Among these are lattice problems. 

An n-dimensional lattice is the set of vectors that can be 
expressed as the sum of integer multiples of a specific set of n 
vectors, collectively called the basis of the lattice—note that 
there are an infinite number of different bases that will all 
generate the same lattice. Two NP-hard problems related 

to lattices are the shortest vector problem (SVP) [1] and 
the closest vector problem (CVP) [52]. Given an arbitrary 
basis for a lattice, SVP and CVP ask the solver to find the 
shortest vector in that lattice or to find the closest lattice 
vector to an arbitrary non-lattice vector. In both the quan­
tum and classical computation models, these problems are 
believed to be hard for high dimensional lattices, contain­
ing a large number of vectors close in length to the shortest 
lattice vector. 

Of the various lattice based cryptographic schemes that 
have been developed, the NTRU family of cryptographic al­
gorithms [25, 26, 27] appears to be the most practical. It 
has seen some degree of commercial deployment and effort 
has been underway to produce a standards document in the 
IEEE P1363 working group. NTRU-based schemes use a 
specific class of lattices that have an extra symmetry. While 
in the most general case, lattice bases are represented by an 
n × n matrix, NTRU bases, due to their symmetry, can be 
represented by an n/2 dimensional polynomial whose coeffi­
cients are chosen from a field of order approximately n. This 
allows NTRU keys to be a few kilobits long rather than a few 
megabits. While providing a ma jor performance advantage, 
the added symmetry does make the assumptions required 
for NTRU-based schemes to be secure somewhat less natu­
ral than they would otherwise be, and many in the theory 
community tend to prefer schemes whose security follows 
more directly from the assumption that lattice problems are 
hard. Such schemes include schemes by Ajtai and Dwork [2], 
Micciancio [39], and Regev [45]. 

In all NTRU-based schemes, the private key is a polyno­
mial representing a lattice basis consisting of short vectors, 
while the public key is a polynomial representing a lattice 
basis consisting of longer vectors. A desirable feature of 
NTRU and other lattice based schemes is performance. At 
equivalent security strengths, schemes like NTRU tend to 
be 10 to 100 times faster than conventional public key cryp­
tography, with cryptographic operations taking about 100 
microseconds on contemporary computing platforms. 

A number of minor attacks have been discovered against 
NTRUEncrypt throughout its 10+ year history, but it has 
for the most part remained unchanged. Improvements in 
lattice reduction techniques have resulted in a need to in­
crease key sizes somewhat, but they have remained fairly 
stable since 2001. NTRUEncrypt has also been found to be 
vulnerable to chosen ciphertext attacks based on decryption 
failures [18, 21, 31, 38], but a padding scheme [30], which has 
provable security against these attacks, has been developed. 
In addition to security concerns, the recommended parame­
ter sets for NTRUEncrypt have been changed for perfor­
mance reasons. In one case, this was done over-aggressively 
and this resulted in a security vulnerability that reduced the 
security of one of the parameter sets from 80 bits to around 
60 [29]. 

A comparatively greater number of problems have been 
found in NTRU-based signature schemes. The first NTRU-
based signature scheme, NSS [28], was broken in 2001 by 
Gentry, Jonsson, Stern, and Szydlo a year after its publi­
cation [22]. A new scheme called NTRUSign [25] was in­
troduced in 2002, based on the Goldreich-Goldwasser-Halevi 
signature scheme [23]. In this scheme, the signer maps the 
message digest to a vector, and proves knowledge of the pri­
vate key by finding the nearest lattice point to that vector. 
Since the set of vectors to which a given lattice point is the 
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nearest is non-spherical, it was known that a large number 
of messages signed with the same key would leak informa­
tion about the private key. Because of this, the original 
signature scheme included an option, called perturbation, 
that would allow the signer to systematically choose a lat­
tice point which was not necessarily the closest lattice point, 
but which was still closer than any point that could be found 
without knowledge of the private key. In 2006, it was shown 
by Nguyen that the unperturbed NTRUSign could be bro­
ken given only 400 signed messages [42]. The developers of 
NTRUSign estimate that with perturbation, it is safe to 
use the same NTRUSign key to sign at least one billion 
messages [54], but recommend rolling over to a new signing 
key after 10 million signatures [43]. 

6.	 MCELIECE 
An additional hard problem that has been used to con­

struct public key schemes is the syndrome decoding prob­
lem, which asks the solver to correct errors that have been 
introduced to an arbitrary, redundant linear transformation 
of a binary vector. There are, of course, easy instances of 
this problem, namely error correction codes, but in the gen­
eral case, this problem is known to be NP-hard. One of 
the oldest of all public key cryptosystems, McEliece encryp­
tion [34], works by disguising an easy instance of the decod­
ing problem as a hard instance. The security of McEliece 
therefore relies upon the presumed fact that it is difficult to 
distinguish between the disguised easy code and an arbitrary 
hard code. 

The easy instance of the decoding problem used by McEliece 
is a family of error correction codes known as Goppa Codes. 
An (n, k) Goppa code takes a k-bit message to an n-bit code 
word in such a way that the original message can be recon­
structed from any string that differs from the code word at 
fewer than t = (n − k)/ log

2
(n) bits. There are approxi­

mately n t/t such codes. To disguise the code, it is written 
as an n×k matrix, then left-multiplied by an n-bit permuta­
tion matrix, and right multiplied by an arbitrary invertible 
binary matrix. The resulting n×k binary matrix is the pub­
lic key, while the three matrices used to generate it remain 
private. 

To encrypt a k-bit message, the encryptor treats the mes­
sage as a binary vector, left-multiplies the public key, and 
randomly changes t of the resulting n bits. The private key 
holder can then decode the message stepwise. First the pri­
vate key holder undoes the private permutation—this does 
not change the number of errors. The errors can now be 
corrected using the private Goppa code, allowing the private 
key holder to reconstruct the k-bit linear transformation of 
the original message. Since the private linear transformation 
used to construct the public key is invertible, the private key 
holder can now reconstruct the message. 

McEliece has remained remarkably resistant to attack dur­
ing its 30 year history, and it is very fast, requiring only a 
few microseconds for encryption and 100 microseconds for 
decryption on contemporary platforms. The primary draw­
back is that in order for the scheme to be secure, n and k 
need to be on the order of 1000, making the total size of the 
public key about a million bits. 

It was recently demonstrated by Courtois, Finiasz, and 
Sendrier that there was a corresponding signature scheme [11], 
but this scheme is less desirable than the encryption scheme. 
To sign a message, the signer decrypts a string derived by 

padding the message digest. However, since most strings 
will not decrypt, the signer will typically have to try thou­
sands of different paddings before finding a string that will 
decrypt. As a result, signing times are on the order of 10 to 
30 seconds. It is, however, possible to make the signatures 
reasonably short. 

7.	 OTHER AREAS OF RESEARCH 
In addition to hash based signatures and lattice based 

and code based cryptography, a number of additional ap­
proaches have been used as an alternative basis for public 
key cryptography [7]. While most of the resulting schemes 
are currently poorly understood or have been broken, it is 
still possible that breakthroughs in these areas could one 
day lead to practical, secure, and quantum-resistant public 
key schemes. 

One of the first NP-complete problems used in public 
key cryptography was the knapsack problem. Merkle and 
Hellman first proposed a knapsack based cryptosystem in 
1978 [37], but this was soon shown to be vulnerable to 
approximate lattice reduction attacks [49]. Many similar 
schemes were subsequently broken, with the last, Chor-Rivest 
[9], being broken in 1995 [48]. 

More complex algebraic problems have also been proposed 
as successors to the factoring and discrete logarithm prob­
lems. These include the conjugacy search problem and re­
lated problems in braid groups, and the problem of solving 
multivariate systems of polynomials in finite fields. Both 
have been active areas of research in recent years in the 
mathematical and cryptographic communities. The latter 
problem was the basis for the SFLASH signature scheme [12], 
which was selected as a standard by the New European 
Schemes for Signatures, Integrity and Encryption (NESSIE) 
consortium in 2003 but was subsequently broken in 2007 [15]. 
It remains unclear when these or other algebraic problems 
will be well enough understood to produce practical pub­
lic key cryptographic primitives with reliable security esti­
mates. 

8.	 CONSIDERATIONS FOR PROTOCOL DE­

SIGNERS 
In order to enable a comparison of the costs associated 

with various algorithms, Table 1 presents information about 
key sizes, message sizes, and the amount of time required 
to perform certain operations for several public key crypto­
graphic algorithms. The table includes the algorithms that 
are described in this paper that are believed to be quantum 
resistant (Lamport signatures, McEliece encryption and sig­
natures, NTRUEncrypt, and NTRUSign) as well as some 
of the public key cryptographic algorithms commonly in use 
today that are vulnerable to Shor’s algorithm (RSA, DSA, 
Diffie-Hellman, and ECC). The numbers presented in the ta­
ble are rough estimates, not benchmark results, but should 
be sufficiently accurate to enable comparison of the strengths 
and weaknesses of the different algorithms. 

Compared to public key cryptographic algorithms com­
monly in use today, the algorithms presented in this paper 
differ in two ways that may be significant to protocol design­
ers: key size and limited lifetime. Of the algorithms listed 
in Table 1, limited key lifetime is only an issue for Lam-
port signatures and NTRUSign. In the case of these two 
algorithms, the limited lifetimes should not pose significant 
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Table 1: A Comparison of Public Key Cryptographic Algorithms at the 80 Bit Security Level 
Estimated Time (PC) 

Public Key Private Key Limited Public Private Message 
Setup Operation Operation Lifetime? Key Size Key Size Size 
(ms) (ms) (ms) (kbits) (kbits) (kbits) 

Lamport Signature 1 1 1 1 signature ∼10 ∼10 ∼10 

240 Lamport w/Merkle 1 1 1 signatures 0.08 ∼250 ∼50 

McEliece Encryption 0.1 0.01 0.1 no 500 1000 1 

McEliece Signature 0.1 0.01 20,000 no 4000 4000 0.16 

NTRUEncrypt 0.1 0.1 0.1 no 2 2 2 

NTRUSign 0.1 0.1 0.1 230 signatures 2 2 4 

RSA 2000 0.1 5 no 1 1 1 

DSA 2 2 2 no 2 0.16 0.32 

Diffie-Hellman 2 2 2 no 2 0.16 1 

ECC 2 2 2 no 0.32 0.16 0.32 

problems, but more consideration will need to be used in 
deploying these algorithms in order to ensure that keys are 
not used too many times. 

When Lamport signatures are used in conjunction with 
Merkle hash trees as described in Section 4, the number of 
signatures that may be created from a given long-term pub­
lic key is strictly limited, but that limit may be set to any 
value that the creator of the key chooses. If public keys have 
expiration dates, as they do today, then the maximum can 
always be set to a value that will ensure that the long-term 
public key will expire before all of the one-time keys have 
been used. Even a high volume server creating a few thou­
sand signatures a second would take several years to create 
240 signatures. For most key holders, the maximum num­
ber of signatures per long-term public key could be set at a 
much smaller value, which would allow for smaller private 
keys and signatures. 

The situation with NTRUSign is less clear since there 
is no fixed limit on the number of times that a key may 
be used. While the developers of NTRUSign recommend 
rolling over keys after 10 million signatures in order to be 
conservative, they believe that a key may be safely used to 
sign at least a billion messages [43]. For most key hold­
ers, even a limit of 10 million signatures would not be an 
issue. For some high volume servers, however, obtaining a 
new key pair and certificate after every 10 million signatures 
would be unreasonable, whereas a new certificate could be 
obtained after every billion signatures if the process were au­
tomated and relatively fast. If NTRUSign is to be used in 
the future, and further research indicates a need to impose 
key lifetimes that are closer to 10 million signatures than to 
1 billion signatures, then high volume servers may need to 
employ one of the techniques described in Section 4 in order 
to reduce the frequency with which new certificates need to 
be obtained. 

Table 1 shows the estimated key sizes that would be re­
quired to achieve 80-bits of security (i.e., a security level 
comparable to that provided by an 80-bit symmetric key). 
While 80-bits of security may be considered adequate at the 
moment, it is recommended that within the next few years 
all such keys be replaced with keys that provide 112 to 128 

bits of security [3]. For the McEliece algorithms, this would 
imply 1 megabit public encryption keys and 8 megabit public 
signature keys. With key sizes this large, the ways in which 
public keys are distributed must be carefully considered. 

With many protocols in use today, it is common to in­
clude a copy of the sender’s certificate(s) in the message. 
For example, the server’s encryption certificate is usually 
sent to the client during the key establishment phase of the 
Transport Layer Security (TLS) protocol. Also, email clients 
typically include copies of the sender’s signature and encryp­
tion certificates in all digitally signed messages. Since most 
public key certificates that have been issued are less than 
2 kilobytes, this is a reasonable practice at the moment, 
as the amount of bandwidth wasted by sending a copy of 
a certificate to a recipient that has previously received a 
copy is minimal. However, if the need to switch to quan­
tum resistant algorithms were to lead to the use of public 
key cryptographic algorithms with key lengths comparable 
to those required by the McEliece signature and encryption 
schemes, this practice would need to be avoided and other 
means would need to be used to ensure that relying parties 
could obtain copies of the public keys that they need. 

The most straightforward solution to this problem would 
be to avoid sending certificates in protocol messages, ex­
cept in cases in which the recipient has requested a copy 
of the certificate. Instead, the protocol message could in­
clude a pointer to the certificate, which could be used by 
the recipient to obtain a copy of the certificate if it does not 
already have a copy in its local cache. For privacy reasons, 
many organizations prefer not to place end user certificates 
in publicly accessible directories. However, if the directories 
that hold certificates are not searchable and the URLs that 
point to the certificates are not easily guessable, this should 
provide an adequate amount of privacy protection. 

An alternative solution would be to not include a copy 
of the public key in the certificate, but instead include a 
pointer to the public key along with a hash of the key. In 
this case, since the directory would only include the public 
key, there would be fewer privacy concerns with respect to 
the data in the directory. This would also allow the rely­
ing party to validate the certificate before downloading the 
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public key, in which case the relying party could avoid the 
cost of downloading a very large public key if the certificate 
could not be validated, and thus the public key could not be 
used. 

With very large public signature keys, the organization of 
public key infrastructures (PKI) would also need to be care­
fully considered. Today, even a very simple PKI may consist 
of a hierarchy of certification authorities (CA), with a root 
CA that issues certificates to subordinate CAs that in turn 
issue end user certificates. While the relying party would 
have already obtained the public key of the root CA through 
some secure, out-of-band means, the public key of one of the 
subordinate CAs would need to be downloaded in order to 
verify the signature on an end user certificate. If responses 
from Online Certificate Status Protocol (OCSP) [41] respon­
ders were needed to verify that neither the intermediate nor 
the end user certificate had been revoked, this could require 
the relying party to download two more public keys in order 
to verify the responses from the two OCSP responders. So, 
validating an end user certificate in a simple two-level hierar­
chy could require the relying party to download three public 
keys in addition to the end user’s public key. In some PKIs 
today, certification paths involving four or more intermedi­
ate certificates are not uncommon. While this is reasonable 
with the public key algorithms that are in use today, which 
use public keys that are smaller than one kilobyte, such PKI 
architectures will need to be reconsidered if there is a need 
in the future to move to public key algorithms that require 
the use of very large public keys. 

9.	 CONCLUSION 
While factoring and discrete logarithm based cryptogra­

phy continue to dominate the market, there are viable alter­
natives for both public key encryption and signatures that 
are not vulnerable to Shor’s Algorithm. While this is no 
guarantee that they will remain impervious to classical or 
quantum attack, it is at least a strong indication. When 
compared to current schemes, these schemes often have sim­
ilar or better computational performance, but usually re­
quire more bandwidth or memory. While this should not 
be a ma jor problem for PCs, it may pose problems for more 
constrained devices. Some protocols may also have problems 
with increased packet sizes. 

It does not appear inevitable that quantum computing 
will end cryptographic security as we know it. Quantum 
computing is, however, a ma jor threat that we probably 
will need to deal with in the next few decades, and it would 
be unwise to be caught off guard when that happens. Pro­
tocol designers should be aware that changes in the under­
lying cryptography may and almost certainly will be nec­
essary in the future, either due to quantum computing or 
other unforeseen advances in cryptanalysis, and they should 
be at least passably familiar with the algorithms that are 
most likely to replace current ones. Cryptanalysts will also 
need to scrutinize these algorithms before they are urgently 
needed. While some work has been done already, more work 
is needed to convince the cryptographic community that 
these algorithms will be as safe, in the future, as factoring 
and discrete logarithm based cryptography are today. 
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