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Broadband CARS spectral phase retrieval using a
time-domain Kramers–Kronig transform
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We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to
rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband co-
herent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we
transform the frequency-domain data to the time domain, perform an operation that ensures a causality
criterion is met, then transform back to the frequency domain. The fact that this method handles causality
in the time domain allows us to conveniently account for spectrally varying nonresonant background from
CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with
finite frequency range. In examples shown here, that phase error leads to small ��1% � errors in the re-
trieved resonant spectra.

OCIS codes: 180.4315, 300.2570.
As is the case for many spectroscopic methods,
knowledge of the signal modulus ������ and phase
���� is required to extract full information from a co-
herent anti-Stokes Raman scattering (CARS) spec-
trum. The CARS signal intensity is proportional to
the squared modulus of the complex third-order sus-
ceptibility, ������2, where ���� contains a resonant
��R� and nonresonant ��NR� part,

������2 = ��NR�2 + 2�NR Re��R���� + ��R����2. �1�

The overall CARS intensity as such is not a good can-
didate for extracting quantitative composition infor-
mation, because peak intensities are neither strictly
linear nor quadratic in analyte concentration, and vi-
brational resonances in CARS spectra exhibit appar-
ent background-dependent frequency and amplitude
shifts owing to the coherent addition of resonant and
nonresonant signal contributions. On the other hand,
the imaginary part of the CARS susceptibility,
Im��R�, represents the underlying Raman lineshapes
and is appropriate for quantitative chemical analysis
[1]. Im��R� can be retrieved from the CARS signal
once the spectral phase is known.

The Kramers–Kronig (KK) relation [2] is often
used to obtain phase information from the modulus of
a susceptibility,

���� = −
P

�
�

−�

+� ln�������

�� − �
d��, �2�

where ����= ������exp�i�����, and P is the Cauchy
principal value. KK analysis can be appropriate if the
response is causal and holomorphic (analytic), as
CARS is [3]; however, this type of analysis is strictly
valid only if experimental data cover an infinite fre-
quency range. Extrapolation approaches have been
devised to deal with a finite data range by approxi-
mating the missing data, but these are often difficult
to apply [4,5], because ln������→−�, as ������→0,

which generally occurs as �→�. The necessity of ex-
trapolation is obviated using so-called subtractive ap-
proaches [6,7], but these depend on prior phase infor-
mation at chosen anchor points. The requirement for
direct integration over an infinite frequency range is
avoided in the time domain and Fourier series ap-
proaches. Peterson and Knight [8] first derived an ef-
ficient alternative form of KK relations based on cau-
sality calculations in the time domain, using a
Fourier series approach. Johnson [9] and Vartiainen
et al.[10] used Fourier series representation to ex-
tract real and imaginary parts of the optical response
function.

Alternative phase-retrieval approaches have re-
cently been applied to broadband and multiplex
CARS microscopy [11–13]. Some of these methods
[12,13], based on Fourier transform spectral interfer-
ometry [14], are equivalent to performing a KK
transform [15]. In these methods the resonant signal
is estimated by multiplying the Fourier transform of
an approximation to Re��R���� by the Heaviside func-
tion, u�t�= � 1, t�0

0, t�0 � then transforming back to the fre-
quency domain. This sequence of steps is equivalent,
within an additive factor, to the method described by
Peterson and Knight [8].

In all the approaches to KK transforms discussed
above, the response of interest is assumed explicitly
[12,13] or implicitly [8–10] to rise like a step function
at t� 0. However, such a step-function response could
be realistic only when 1) the impulse triggering the
signal is a delta function and 2) either the real and
the imaginary component of the signal is entirely
conjugate; or, if a nonconjugate part (e.g., a real-only
component) does exist, it is spectrally flat. For CARS,
none of these conditions are realized in practice; the
probe pulse (the impulse triggering the response)
typically has a temporal width similar to the Raman
response time, and the complex resonant response is
accompanied by a real nonresonant response, carry-
ing a frequency-dependent amplitude that reflects
the convolution of the pump and Stokes pulses. With

the approach described herein, we relax the con-
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straint of step-function signal rise, allowing us to ac-
count for the real nonresonant response.

Below we demonstrate how the time-domain repre-
sentation of the signal can be manipulated to account
for nonideality in the CARS response, including a
frequency-dependent nonresonant background
(NRB). For convenience in developing this idea, we
define an operator,

	�f���� = I�u�t� I−1�f�����, �3�

where I and I−1 denote Fourier transform and in-
verse Fourier transform, respectively. Based on the
convolution theorem, Eq. (3) can be rewritten as

	�f���� =
1

	2�
I�u�t�� � I�I−1�f����� =

1

	2�
I�u�t�� � f���,

�4�

where * denotes convolution. The Fourier transform
of the Heaviside function [16] can be expressed as
I�u�t��=1/ i	2��+	� /2
���. Substituting into Eq. (4)
and writing out the convolution integral explicitly, we
obtain

	�f���� =
1

2
− i

�
P�

−�

+� f����

�� − �
d�� + f���� . �5�

Combining Eqs. (2) and (5), we obtain an expres-
sion for the phase as a function of the signal modu-
lus,

���� =
− 1
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d�� = 2 Im�	�ln�������

−
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2  . �6�

Fig. 1. (a) Numerical simulation of a CARS spectrum via
and a variable nonresonant background (dashed). (b) Tem
constraint shown in Eq. (7). Inset, temporal function u�t� I

Raman spectrum (solid) and the reference Raman spectru

trieved Raman spectra. Inset, Raman spectrum extracted using
Although arrived at in a different way, Eq. (6) is es-
sentially equivalent to the approach of Peterson and
Knight [8]. Both approaches deal with causality in
the time domain, avoiding many of the difficulties as-
sociated with conventional application of KK analysis
[17]. The benefit of representation in Eq. (6) is that it
can be conveniently used to deal with nonideality di-
rectly, in the time domain, as we demonstrate below.

Figure 1(a) shows a simulated CARS spectrum
with a frequency-dependent NRB amplitude. The
simulated signal is computed according to Eq. (1),
with the resonant susceptibility calculated as a sum
of Lorentzian functions, and a nonresonant ampli-
tude that is not spectrally flat. The spectral phase,
����, is extracted using the right-hand side of Eq. (6),
but we replace the product u�t��I−1�f���� in Eq. (3)
with

��t:f���� = � I−1�f����, t � 0

I−1�fNR����, t � 0 , �7�

where fNR��� is the nonresonant component of the re-
sponse. This modification is motivated by the fact
that when the NRB is not flat, its Fourier transform,
I−1��NR����, is a symmetric function, centered about
time zero with a finite width. Thus we use ��t : f����
rather than u�t� I−1�f����, assuming that the signal
has a negative-time component arising solely from
the nonresonant response, and that the positive-time
response contains both resonant and nonresonant
components.

Figure 1(b) shows ��t : ln�������, as calculated from
the simulated data of Fig. 1(a). By way of compari-
son, the function u�t� I−1�ln������� is plotted in the
inset. The time-domain representations in the main
figure and in the inset are used to calculate two
different estimations of ����and subsequently to

herent addition of multiple Lorentzian lineshape functions
l function ��t : ln�������, obtained by modified time-domain
���, obtained without NRB information. (c) (top) Extracted
ashed); (bottom) difference between the reference and re-

−1
a co
pora
−1�f�
m (d
u�t� I �f���� from the inset of panel (b).



May 1, 2009 / Vol. 34, No. 9 / OPTICS LETTERS 1365
calculate complex third-order susceptibility ����
= ������exp�i����� and extract the corresponding
imaginary part, Im������= ������sin������. The result-
ing Raman spectra are shown in Fig. 1(c) and its in-
set, respectively.

The input Raman spectrum was designed to test
the applicability of this phase-retrieval method for
congested spectral regions and for a range of reso-
nant signal amplitudes, including very large signals
(�R/�NR=6 at 1000 cm−1). The method succeeds in
each case. The retrieved Raman spectrum conforms
remarkably well to the original Raman spectrum,
whereas the Raman spectrum plotted in the inset
shows significant deviations in baseline and peak
amplitudes. The error �� in the Raman spectrum re-
trieved by the method described herein is plotted just
below Fig. 1(c). The small nonzero amplitude of 
arises from the fact that, although the theory repre-
sented in Eqs (3)–(6) is exact for continuous data over
an infinite frequency range, the data are not continu-
ous and do not cover an infinite frequency range. The
error due to discreteness manifests primarily in the
peak heights; as we increase the density of the data,
these errors diminish. A padding procedure [18] also
helps to reduce these errors. The CARS spectrum
shown in Fig. 1 consisted of 8096 points and was
transformed after padding to 24,288 points. The error
due to finite frequency range manifests primarily in a
small cumulative phase error, resulting in the gentle
drift of the function . Corrections to this phase-error
range are likely to be achieved by following the pro-
cedure outlined in [11]; the “background phase” in
that work is of the same origin as the phase error
seen here.

Experimental verification of our approach is dem-
onstrated in Fig. 2. Figure 2(a) shows an experimen-

Fig. 2. (a) Experimental CARS spectrum of benzonitrile in
ethanol at a concentration of 1 M (solid) and a separately
measured nonresonant background (dotted). (b) Raman
spectrum extracted using Eqs. (6) and (7) and the sepa-
rately measured background. Uncertainty in the frequency

−1
calibration is ±3 cm .
tal CARS spectrum of benzonitrile in ethanol at a
concentration of 1 M, with a separately measured
NRB. The spectra are acquired using the apparatus
described in [19]. The retrieved Raman spectrum is
shown in Fig. 2(b). Note that all the peaks in the vi-
cinity of �1000,1180, and 1600� cm−1 are faithfully
retrieved, even though their presence is not obvious
in the original data.

In conclusion, we describe a simple and reliable ap-
proach, equivalent to a KK transform, for retrieving
spectral phase from an optical modulus measure-
ment. This method conveniently accommodates the
nonideality in signal generation that leads to nonflat
nonresonant background in broadband and multiplex
CARS by dealing with causality considerations in the
time domain. Because data over a finite frequency
range are considered, there is potential for a small
phase error, which can be dealt with by established
methods [11] if necessary. The approach is very fast,
relying only on two FFT operations, so that applica-
tion to large data sets generated in broadband CARS
microscopy will be straightforward.

The authors thank Erik Vartiainen, Lee Richter,
and the reviewers for stimulating discussion and con-
structive criticism that considerably strengthened
the work.
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