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Estimating heterogeneity variance in meta-analysis
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Summary. Several new estimators of the between-study variability in a heterogeneous random-
effects meta-analysis model are derived. One is the unbiased statistic which is locally optimal for
small values of the parameter. Others are Bayes procedures within a class of quadratic statistics
for a diffuse prior with different choices of the prior mean. These estimators are compared with
the DerSimonian–Laird procedure and the Hedges statistic in particular via the quadratic risk of
the treatment effect estimator. A Monte Carlo study supports the usage of confidence intervals
derived from the new estimators.
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1. Introduction and summary

In many applications of meta-analysis it is important to assess the degree of heterogeneity
among several participating studies, methods, instruments or laboratories which are supposed
to measure the difference between two treatments or properties of the same material. Com-
monly this heterogeneity is non-negligible and cannot be easily explained in terms of available
covariates. When one has to combine data under a random-effects heterogeneous model, the
estimation of the between-study variance is essential.

Assume that there are ni observations in the study i, i=1, . . . , p. The data xik, k =1, . . . , ni,
in this study are supposed to have the form

xik =μ+ li + "ik, .1/

where μ is the treatment effect or the property value and li represents the study (or method)
effect with zero mean and unknown heterogeneity variance σ2. The independent zero-mean
random errors "ik have possibly different variances τ2

i . For a fixed i, the mean of xi =Σk xik=ni

is μ, and its variance is σ2 +σ2
i , where σ2

i = τ2
i =ni. It is commonly assumed that ls and "s have

Gaussian distributions. Then the classical statistic

s2
i =

∑
k

.xik −xi/
2

ni.ni −1/

with the distribution σ2
i χ2.νi/=νi, νi =ni −1, estimates σ2

i unbiasedly and is independent of xi

and s2
j , j �= i.

Commonly, the full data set is not available and only summary statistics xi and s2
i are pro-

vided. In interlaboratory testing applications which stimulated this work, p is not large, whereas
ni may not be even given.
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If σ2 +σ2
i were known (up to a factor), then the best linear unbiased estimator of μ, μ̃=Σi ωixi

with normalized weights

ωi = .σ2 +σ2
i /−1∑

j

.σ2 +σ2
j /−1

,

could be used. Since the variances are unknown, these optimal weights must be estimated, and
this problem leads to estimation of σ2 which gains even more importance from the necessity of
estimating the variance of μ̃ and from confidence intervals for μ. In fact the parameter σ2 has
a meaning of its own. According to Higgins et al. (2009), page 139,

‘The naive presentation of inference only on the mean of the random-effects distribution is highly
misleading. Estimation of σ2 is just as important.’

In some situations σ2 can be treated as a possibly negative variance component such that
σ2 + σ2

i � 0. However, in the applications mentioned σ2 always has the meaning of variance
so that it is non-negative. Its estimation presents substantial difficulties, there are no positive
unbiased estimators of this parameter, the Fisher information about it in model (1) is typically
small, the explicit form of the Bayes procedures or of the (restricted) maximum likelihood es-
timator is lacking, its numerical evaluation may be surprisingly delicate (Böhning et al., 2004),
etc.

For this reason we introduce in Section 2 a quite natural class of simple quadratic estimators
of σ2. The formulae for the mean-squared error are derived, and locally optimal estimators
which minimize the quadratic risk within this class at a given parameter value are determined in
Sections 3 and 4. One of the main findings of this work is in the central for this paper Section 5.
It is the approximate Bayes estimator of the between-studies variance σ2 within the class con-
sidered. This estimator has a very explicit form which is completely determined by specification
of the prior mean. Section 7 provides examples of all these procedures when p=2, and Section
10 gives an example of a heterogeneous air flow study.

The only features of the normal distribution that is used in this paper to derive σ2-estimators
are the formula for the kurtosis of a normal variable, the χ2-distribution of s2

i and its indepen-
dence from xi. Each of the last two conditions is known to characterize the normal distribution
but, if σ2

i = s2
i are treated as given constants, the normality assumption is not needed. This

situation is discussed in Section 6. Confidence intervals for μ derived by using the estimators
obtained for σ2 are discussed in Section 8. These intervals are compared via a Monte Carlo
study in Section 9. Appendix A contains all mathematical derivations.

2. Variance estimators

We consider here the class of σ2-estimators which are linear functions of quadratic statistics.
This class includes the popular meta-analytic procedures of DerSimonian and Laird (1986) and
of Hedges (1983).

The first of these methods estimates the heterogeneity variance as

σ̃2
DL =

∑
i

.xi − x̃GD/2s−2
i −p+1∑

i

s−2
i −∑

i

s−4
i =

∑
i

s−2
i

,

where x̃GD = Σi xis
−2
i =Σi s

−2
i is one of the traditional estimators of the common mean (the

Graybill–Deal estimator).
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The resulting DerSimonian and Laird (1986) estimator for μ,

x̃DL =∑
i

xi

max.0, σ̃2
DL/+ s2

i

/∑
i

1

max.0, σ̃2
DL/+ s2

i

,

is very popular in biostatistics, presenting an efficient alternative to the (restricted) maximum
likelihood procedure. It admits extensions to more general models than model (1) (Böhning et al.,
2002). Several approximations to the Wald statistic for x̃DL as a t-distribution with degrees of
freedom ranging from p−4 to p−1 have been suggested (Higgins et al. (2009), section 5.2).

Another interesting rule,

σ̃2
H =

∑
i

.xi − x̄/2

p−1
−
∑
i

s2
i

p
,

is an analysis-of-variance motivated estimator, which was first employed in meta-analysis by
Hedges (1983) and rediscovered in DerSimonian and Kacker (2007).

We unify these two important meta-analysis procedures in one class which requires knowledge
only of xi and s2

i . Namely, the estimators under consideration have the form

σ̃2 = ∑
1�i<j�p

cij.xi −xj/2 +∑
i

dis
2
i .2/

with some constants cij and di. Thus class (2) consists of all linear functions of the p.p+1/=2-
dimensional random vector Y with co-ordinates .xi −xj/2, i < j, and s2

i . Under the normality
assumption, Y forms a sufficient (incomplete for p�3) statistic for the parameters of interest.

According to formula (24) in Appendix A.1,

E.σ̃2/= cσ2 +∑.ci +di/σ
2
i , .3/

with c = Σij cij and ci = Σj cij, under the convention cij = cji and cii = 0. Thus if c = 1 and
ci =−di, σ̃2 is unbiased.

The method-of-moments estimator arises from equating the observed value of σ̃2 to the
right-hand side of equation (3) where σ2

i are replaced by s2
i , i.e.

σ̃2
M =

∑
1�i<j�p

cij.xi −xj/2 −∑
i

cis
2
i

c
:

Thus the method-of-moments estimator σ̃2
M is unbiased and has the form (2) with Σcij =1 and

di =−ci.
Both DerSimonian–Laird and Hedges variance estimators are derived from the method of

moments, i.e. they are representable as σ̃2
M for some coefficients c and d. To see that let, for

positive weights w1, . . . , wp,
Tm =∑

i

wm
i , m=1, . . . ,

and denote the Kronecker symbol by δij: δij = 1, if i = j; δij = 0 otherwise. Then the choice
wi = s−2

i and cij = .1− δij/wiwj=.T 2
1 −T2/ produces the DerSimonian–Laird estimator. Indeed

according to Lagrange’s identity (Beckenbach and Bellman (1961), chapter 1, section 3), for any
w1, . . . , wp,

∑
1�i<j�p

wiwj.xi −xj/2 =∑
i

wi

∑
i

wi

⎛⎜⎝xi −

∑
j

wjxj∑
j

wj

⎞⎟⎠,
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so, for σ̃2
DL, di =−ci = wi.wi − T1/=.T 2

1 − T2/, c = 1, confirming its unbiasedness. The Hedges
estimator corresponds to cij ≡{.p−1/p}−1 and wi = ci =−di =p−1 in equation (2).

If, as commonly happens in meta-analysis, the σ2
i are supposed to be known (in which case

they are replaced by given s2
i ), class (2) consists of statistics Σ1�i<j�p cij.xi −xj/2 +d for some

cij and d. Dangers of treating s2
i as known, whereas they are in fact random, are discussed by

Böhning and Sarol (2000).
The unbiased estimators of σ2 cannot be positive. Indeed, if δ were such an estimator, then

its expected value for σ2 =0 must vanish, implying that, with probability 1, δ ≡0, which is not
an unbiased statistic. If some of the cs or ds are negative, a non-negative variance estimator
is obtained from equation (2) by truncating it at zero, σ̃2

+ = max.0, σ̃2/: This estimator has a
positive bias. However, the corresponding estimator of μ, the weighted mean,

x̃=∑
i

xi.σ̃
2
+ + s2

i /−1
/∑

i

.σ̃2
+ + s2

i /−1

is unbiased provided that s2
i are independent of xi.

As already noted, when cij = .1− δij/wiwj for fixed positive weights w1, . . . , wp, we have∑
1�i<j�p

cij.xi −xj/2 =T1
∑
i

wi.xi − μ̃/2

with μ̃=Σiwixi=T1. If cij = .1− δij/wiwj.wi +wj/ then, for the same μ̃,∑
1�i<j�p

cij.xi −xj/2 =T1
∑
i

w2
i .xi − μ̃/2 +T2

∑
i

wi.xi − μ̃/2:

Thus the natural class of fairly simple estimators (2), besides the classical by now procedures,
includes for any weights w not only the traditional Cochran heterogeneity statistic Σi wi.xi − μ̃/2,
but also the statistic Σi w2

i .xi − μ̃/2 appearing in the maximum likelihood analysis (Rukhin and
Vangel, 1998) and in the form of the best unbiased estimator (Section 3).

One of the estimators not belonging to class (2) (being a non-linear function of Y ) is the
empirical Bayes estimator that was proposed by Morris (1983). For p�3, this procedure σ̃2

MP
can be defined as a solution to the equation

∑
1�i<j�p

.xi −xj/2

.σ2 + s2
i /.σ2 + s2

j /
= .p−1/

∑
i

1

σ2 + s2
i

,

which can be shown to be equivalent to the method that was introduced by Mandel and Paule
(1970) or an approximation to the restricted maximum likelihood rule.

3. Best unbiased estimator

Biggerstaff and Tweedie (1997) have shown that the variance of σ̃2
DL has the form

κ2
0 = 2σ4.T 2

1 T2 −2T1T3 +T 2
2 /+4σ2.T 3

1 −T1T2/+2.p−1/T 2
1

.T 2
1 −T2/2

: .4/

A different interpretation of this formula is E{var.σ̃2
DL|s2

1, . . . , s2
p/}=κ2

0.
The variance of the Hedges estimator for fixed σ2

i = s2
i is

κ2
∞ = 2σ4p.p−1/+4σ2.p−1/

∑
σ2

i +2.p−2/
∑

σ4
i +2p−1

(∑
σ2

i

)2

p.p−1/2 , .5/
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e.g. Friedman (2000). Note that, for any weights w,

1
p−1

� T 2
1 T2 −2T1T3 +T 2

2

.T 2
1 −T2/2

�1, .6/

which implies that for large σ2 the variance of the Hedges estimator is smaller than that of the
DerSimonian–Laird estimator (strictly so if p > 2). This fact is well known from simulation
results (e.g. Viechtbauer (2005)).

Our result in Appendix A.1 unifies equations (4) and (5). Namely, it is shown that, for any
estimator σ̃2 of the form (2),

1
2 E{var.σ̃2|s2

1, . . . , s2
p/}=σ4

(∑
i

c2
i +∑

i�=j

c2
ij

)
+2σ2

(∑
i

c2
i σ

2
i +∑

i�=j

c2
ijσ

2
j

)
+∑

i

c2
i σ

4
i

+∑
i�=j

c2
ijσ

2
i σ

2
j : .7/

Both formulae (4) and (5) follow from equation (7). Indeed in the notation of Section 2, if
cij = .1− δij/wiwj=.T 2

1 −T2/, then ci =wi.T1 −wi/=.T 2
1 −T2/, and c=Σ ci =1.

Minimization in wi of the coefficient at σ4 gives wi = {p.p − 1/}−1, i.e. leads to the Hedges
estimator. However optimization of the σ2-free term in equation (7) does not result in wi ∝σ−2

i ,
which would correspond to the DerSimonian–Laird procedure. This fact may explain the large
mean-squared error of σ̃2

DL which was observed in many simulations (Malzahn et al., 2000;
Jackson et al., 2010) and which is discussed further.

Assuming that σ2 +σ2
i , i=1, . . . , p, are fixed, we find the form of the optimal unbiased esti-

mator in class (2). Let K1 be the covariance matrix of the p.p−1/=2-dimensional random vector
with co-ordinates .xi −xj/2, i < j. Because of the normality assumption, its diagonal elements
are 2.2σ2 +σ2

i +σ2
j /2, and its non-zero off-diagonal elements, 2.σ2 +σ2

i /2, correspond to pairs
which have one common index i. Then with c formed by co-ordinates cij, i < j, equation (7)
can be written in the form

E{var.σ̃2|s2
1, . . . , s2

p/}= cTK1c,

for unbiased estimators of σ2, i.e. when 2eTc =1. Here and elsewhere e is the p.p−1/=2-dimen-
sional vector with unit co-ordinates.

The vector .eTK−1
1 e/−1K−1

1 e=2 minimizes this quadratic form. For wi = .σ2 +σ2
i /−1, let c0

have co-ordinates, for 1� i<j �p,

c0
ij = wiwj{.wi +wj/T1 −T2}

T 2
1 T2 −2T1T3 +T 2

2

: .8/

Appendix A.2 verifies that K1c0 =2T 2
1 .T 2

1 T2 −2T1T3 +T 2
2 /−1e, and

c0
i = w2

i .T 2
1 −2wiT1 +T2/

T 2
1 T2 −2T1T3 +T 2

2

:

Therefore, 2eTc0 =Σi�=j c0
ij =1 and, for a fixed σ2, equation (8) provides the coefficients of the

best unbiased estimator in class (2),

σ̃2
U = T 2

1
∑

w2
i .xi − x̃/2 − .T 2

1 +T2/
∑

w2
i s2

i +2T1
∑

w3
i s2

i

T 2
1 T2 −2T1T3 +T 2

2

: .9/
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For equal weights wi ≡1 and σ2 =∞, σ̃2
U coincides with the Hedges estimator. If σ2 =0, σ2

i = s2
i

and wi = s−2
i , i.e. under the DerSimonian–Laird scenario, equation (9) becomes

σ̃2
U = T 2

1

T 2
1 T2 −2T1T3 +T 2

2

{∑
i

.xi − x̃GD/2

s4
i

+ T2

T1
−T1

}

= 1

S2 −2S3 +S2
2

{∑
i

.xi − x̃GD/2ω2
i − 1−S2

T1

}
: .10/

Here ωi = s−2
i =Σ s−2

k , Sm =Σωm
i , m = 2, 3, and x̃GD =Σωixi is the Graybill–Deal estimator. It

follows that σ̃2
U has smaller variance than σ̃2

DL or σ̃2
H at σ2 =0, strictly so if p�3.

Because of equation (7), this variance as a function of σ2 can be written as

E.σ̃2
U −σ2/2 =2.T 2

1 T2 −2T1T3 +T 2
2 /−2{σ4.T 4

1 T4 −4T 3
1 T5 +4T 2

1 T2T4 +2T 2
1 T 2

3 −4T1T 2
2 T3 +T 4

2 /

+2σ2T1.T 3
1 T3 −3T 2

1 T4 +3T1T2T3 −T 3
2 /+T 2

1 T2 −2T1T3 +T 2
2 }:

At σ2 =0, the mean-squared error, 2.T 2
1 T2 −2T1T3 +T 2

2 /−1, coincides with the lower informa-
tion bound based on the restricted likelihood function, so σ̃2

U is optimal at this point within the
class of all unbiased estimators which depend only on xi −xj and s2

i .
Perhaps the most surprising implication of formulae (4), (5) or (7) is that all unbiased estim-

ators including σ̃2
DL, σ̃2

H and σ̃2
U poorly estimate σ2 when p is small. For p � 3, according to

inequality (6), var.σ̃2/ > 2σ4=.p − 1/ � σ4, which means that the trivial zero estimator has a
smaller mean-squared error than σ̃2

H or σ̃2
U.

4. Locally optimal estimators

Because of equations (24) and (26) in Appendix A.1 the mean-squared error of σ̃2 can be written
as

E.σ̃2 −σ2/2 =2
∑
i

c2
i .σ2 +σ2

i /2 +2
∑
i�=j

c2
ij.σ2 +σ2

i /.σ2 +σ2
j /+2

∑
i

d2
i σ4

i

νi

+
{

.c−1/σ2 +∑
i

.ci +di/σ
2
i

}2

= fTKf + .gTf −σ2/2, .11/

which is a quadratic form in the p.p+1/=2-dimensional vector f formed by co-ordinates cij, i<

j, and di. Here gT = .g1, g2/T, where g1 is the vector with co-ordinates 2σ2 +σ2
i +σ2

j , and g2
has co-ordinates E.s2

i /=σ2
i . The matrix K is block diagonal, composed of two submatrices K1

and K2, where K2 is diagonal with entries 2σ4
i =νi, i=1, . . . , p, and K1 is defined in Section 3.

The vector f minimizing the quadratic form in equation (11) for fixed σ2 > 0 and σ2
1, . . . , σ2

p

has the form

f =σ2.K +ggT/−1g = σ2K−1g

1+gTK−1g
: .12/

Let t1 have co-ordinates

0:5.σ2 +σ2
i /−1.σ2 +σ2

j /−1
{∑

k

.σ2 +σ2
k /−1

}−1

:

It is proven in Appendix A.3 that the vector K1t1 has co-ordinates 2σ2 +σ2
i +σ2

j , i.e. K−1
1 g1 = t1.

Thus ρ1 =gT
1 K−1

1 g1 = .p−1/=2, and 2K−1
2 g2 = .ν1=σ2

1, . . . , νp=σ2
p/Tand ρ2 =gT

2 K−1
2 g2 =Σνk=2,
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so that gTK−1g =ρ1 +ρ2 = .Σnk −1/=2. Therefore, for f in equation (12),

cij = σ2(∑
k

nk +1
)

.σ2 +σ2
i /.σ2 +σ2

j /
∑
k

.σ2 +σ2
k /−1

,

di = σ2νi(∑
k

nk +1
)

σ2
i

:

Since cij > 0 and di > 0, this locally optimal in class (2) estimator cannot be unbiased.
In the next section we consider the Bayes estimation of σ2 which requires a prior distribution

of this parameter. If only the prior mean, say, β can be specified, we may be interested in an
estimator (2) with the smallest mean-squared error at β. With σ2

i replaced by s2
i , equation (12)

shows that such an estimator is

σ̃2
L0 =

β

{∑
.xi − x̃/2=.β + s2

i /+∑ni −p

}
∑

ni +1
, .13/

where x̃ =Σi xi.β + s2
i /−1=Σi.β + s2

i /−1: An argument in the next section is made to take β a
multiple of Σ s2

i .

5. Bayes estimators

In this section Bayes estimators of σ2 within class (2) are determined under assumption that
σ2

i and σ2 are random independent parameters. Usually more information is available about
σ2

i than about σ2, so following the empirical Bayes approach we assume that the prior mean
of σ2

i can be well estimated by s2
i , and that the corresponding prior variance vi is negligible. In

contrast, to make the prior distribution Π of σ2 ‘non-informative’, the prior variance of σ2, say,
v, is supposed to be large, whereas its mean is some β. We have

E.σ2g/=
∫

σ2g dΠ=2v

(
e

0

)
+βḡ,

where ḡT = .ḡ1, ḡ2/T, with ḡ1 the vector with co-ordinates 2β + s2
i + s2

j , 1� i<j �p, and ḡ2 has
co-ordinates s2

i . Thus ḡ1 is g1 from Section 4 where β now stands for σ2, and s2
i for σ2

i . A similar
convention is adapted for matrices K1 and K2.

We also put L to be equal to the integrated matrix of second moments of the p.p + 1/=2-
dimensional random vector Y which defines class (2). Thus

L=E.YYT/=E{cov.Y/}+E{E.Y/E.YT/},

where E{cov.Y/} is a block diagonal matrix which has a form that is similar to that of the
matrix K in Section 3. Its first block is the sum of three matrices, K̄1 (with non-zero elements
2.2β + s2

i + s2
j /2 or 2.β + s2

i /2), the second is vK0 with K0 also of the form K1 but whose non-
zero elements are 8 or 2. The third matrix, which has elements 2.vi + vj/ on the diagonal and
non-zero off-diagonal elements 2vi, is neglected in the following calculations. The second block
of E{cov.Y/} is K̄2, i.e. the diagonal matrix with elements 2.s4

i + vi/=νi ≈ 2s4
i =νi. Up to terms

of order vi,
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E{E.Y/E.YT/}=4v

(
eeT 0
0 0

)
+ ḡḡT,

so if K̄ denotes the block diagonal matrix formed by K̄1 and K̄2,

L= K̄ + ḡḡT +vRRT: .14/

Here

R=
(

.K0 +4eeT/1=2

0

)
is the matrix of size p.p+1/=2×p and rank p.

The Bayes estimator within class (2) is defined by the coefficient vector L−1E.σ2g/: Since the
prior variance is supposed to be large, we are interested in the limit

fB = lim
v→∞ L−1

{
2v

(
e

0

)
+βḡ

}
:

The derivation in Appendix A.3 gives its form

fB =

⎛⎜⎜⎝
e

p.p+1/

νi{2β − .p−1/
∑

s2
i =p}

.p+1/
∑
k

.nk −p+2/s2
i

⎞⎟⎟⎠: .15/

If β <.p−1/Σ s2
i =p, the resulting Bayes estimator within class (2),

σ̃2
B =

∑
.xi − x̄/2

p+1
+
(∑

ni −p
){

2pβ − .p−1/
∑

s2
i

}∑
.ni −p+2/p.p+1/

, .16/

takes negative values and must be truncated. Indeed it is Bayes only within the class of linear
functions of Y. All such estimators have a positive bias, which can be evaluated from equation
(3) when σ̃2

B is positive.
The factor .p + 1/−1 in equation (16) is due to the convenient choice of the quadratic loss

function which partly was made to accommodate the possibility of σ2 =0. Indeed many other
loss functions designed for variance estimation lead to infinite risk functions. However, in our
simulations reported in Section 9, we used the absolute error loss. Larger factors, like .p−1/−1

or even .p−3/−1, p�4, may be preferable for μ-estimators.
Several versions of the prior mean β can be suggested as default choices. The first is β = 0

with

σ̃2
B0 =

∑
.xi − x̄/2

p+1
−
(∑

ni −p
)
.p−1/

∑
s2
i

p.p+1/
(∑

ni −p+2
) , .17/

which requires truncation at zero. Another choice, β =0:5.p−1/Σ s2
i =p, leads to a very simple

positive estimator,

σ̃2
BP =

∑
.xi − x̄/2

p+1
: .18/

In some chemistry applications it is believed that β ≈3Σ s2
i =p. Indeed, under our model the sum

σ2 +Σσ2
i =p represents the average reproducibility error, whereas Σσ2

i =p is the average repeat-
ability error. In many homoscedastic analytical chemistry studies the square root of the ratio
between these two errors is in the interval from 1

2 to 2
3 (Horwitz, 1982; Thompson and Lowthian,
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1997). In the author’s experience σ2-estimates rarely if ever exceed .p−1/Σ s2
i , in which case the

truncated version of equation (16) is to be compared with estimator (13). Highly heterogeneous
models for which σ2 � .p−1/Σσ2

i or β � .p−1/Σ s2
i are not very useful in practice. For these

reasons optimality for large σ2 may not be a relevant issue.
The derivation in Appendix A.3 also leads to the form of the Bayes estimator σ̃2

SB in the class
Σ1�i<j�p cij.xi − xj/2 + d, when σ2

i = s2
i , i = 1, . . . , p, are assumed to be known. For a diffuse

prior distribution with mean β, the Bayes estimator is determined by cij ≡{p.p+1/}−1 and

d = 2β − .p−1/
∑

s2
i =p

p+1
:

Thus this estimator looks very similar to estimator (16):

σ̃2
SB =

∑
.xi − x̄/2

p+1
+ 2pβ − .p−1/

∑
s2
i

p.p+1/
: .19/

When p is large, estimator (19) is numerically close to estimator (17) and to the Hedges estimator
(as β=.p+1/ is small). However, the variance of the latter estimator for β < 0:5.p−1/Σs2

i =p is
typically larger than the mean-squared error of σ̃2

BP whose form easily follows from equation
(11):

E.σ̃2
BP −σ2/2 = 2σ4.p+1/p2 +2p.p−2/

∑
σ4

i + .p2 −2p+3/
(∑

σ2
i

)2

{p.p+1/}2 :

DuMouchel (1990) suggested modelling σ2
i as a random multiple γ of given s2

i with γ ∼
q=χ2.q/. The proof in Appendix A.3 can be extended to cover this case, showing that the Bayes
estimator in class (2) is

σ̃2
DM =

∑
.xi − x̄/2

p+1
+ 2pβ − .p−1/

∑
s2
i E.γ/

p.p+1/
: .20/

There is a body of work on Bayes estimation in meta-analysis especially on hierarchical Bayes
modelling (Abrams and Sanso, 1998; Morris and Normand, 1992). Most of the documented
procedures do not have an explicit form and rely on asymptotic formulae, and some of them
are numerically intensive. The explicit form of the estimators (17), (18) and (19) is one of their
advantages. Section 9 suggests that this is not their only advantage.

6. Non-normal distributions

There is considerable interest in alternative, non-normal distributions in meta-analysis (e.g. Lee
and Thompson (2008) and Baker and Jackson (2008)). In this section we assume that σ2

i = s2
i

are given, whereas for each i a statistic xi with the variance σ2 + s2
i has a possibly non-Gaussian

distribution such that E.xi/ =μ and E.xi −μ/3 = 0, and whose fourth moment is a quadratic
function of σ2 and s2

i , say,

E.xi −μ/4 = .κ+1/.σ2 + s2
i /2 + ξσ2s2

i :

Here ξ and κ are two constants such that

var{.xi −μ/2}=κ.σ2 + s2
i /2 + ξσ2s2

i :

In the Gaussian case κ=2 and ξ =0.
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Under this scenario the covariance matrix of the random vector with co-ordinates .xi −xj/2,
i<j, has non-zero entries

.1+κ=2/.2σ2 + s2
i + s2

j /2 + ξ.s2
i + s2

j /{σ2 + .s2
i + s2

j /=2}+{.κ− ξ/=2−1}.s2
i − s2

j /2

(on the diagonal) and κ.σ2 + s2
i /2 + ξσ2s2

i corresponding to the pairs of indices with one com-
mon index i. Its expectation with regard to the prior distribution of σ2, vK̄0 + K̄1, has the same
form as in Section 5. Here K̄0 is of the same structure as K0 and has non-zero elements 2κ+4
and κ, whereas K̄1 has diagonal elements

.1+κ=2/.2β + s2
i + s2

j /2 + ξ.s2
i + s2

j /{β + .s2
i + s2

j /=2}+{.κ− ξ/=2−1}.s2
i − s2

j /2,

and non-zero off-diagonal elements κ.β + s2
i /2 + ξβs2

i .
As in Section 5, given a diffuse prior distribution for σ2 with some mean β, the Bayes estima-

tor in the class, Σ1�i<j�p cij.xi − xj/2 + d, is sought. In this situation, the matrix L=E.YYT/

can be written as equation (14) with scalar K̄2 =0 and ḡ2 =1: The .p.p−1/=2 +1/×p matrix
R has the same form with K0 replaced by K̄0.

The calculations in Appendix A.3 show that the Bayes coefficients are cij ≡{.p+κ/.p−1/+
2}−1 and

d ={.κp−κ+2/β − .p−1/
∑

s2
i

}{.p+κ/.p−1/+2}−1:

The non-parametric estimator

σ̃2
NB = p

∑
.xi − x̄/2 + .κp−κ+2/β − .p−1/

∑
s2
i

.p+κ/.p−1/+2
.21/

extends estimator (19). For κ > 2, the x’s sample variance component of σ̃2
NB is shrunk. The

limit of estimator (21) for heavy-tailed distributions when κ→∞ is merely the prior mean β.
As an example, assume that xi have the distribution of the sum of two independent Laplace

random variables: one with mean μ and variance s2
i ; another (the study effect) with zero mean

and variance σ2. Then κ=5 and ξ =−6, and estimator (21) can be compared with the estimator

σ̂ =√
2
∑ |xi −median.xi/|=.p−1/

used in this setting by Rukhin and Possolo (2011), equation (9).
Simulations show that estimator (21) is competitive especially for small σ2. A similar state

of affairs happens in estimation of μ: the weighted median as an estimator of μ is better than
the weighted means statistic based on estimator (21) for large σ2. For smaller σ2 the situation
is reversed.

7. The case when p =2

Many metrology applications of meta-analysis involve comparison of merely two methods. Then
p=2, and the (unique in this case) unbiased estimator of σ2 is

σ̃2
DL = σ̃2

H = σ̃2
U = .x1 −x2/2 − s2

1 − s2
2

2
:

This is also the restricted maximum likelihood estimator. Direct calculation or formulae (4)
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and (5) with c12 = 1
2 = c1 = c2 =−d1 =−d2 show that, for fixed s2

1 and s2
2, the variance of this

unbiased estimator is

κ2
0 = .2σ2 +σ2

1 +σ2
2/2

2
:

The quadratic risk of σ̃2
U has the form

var.σ̃2
U/= 1

4

{
2.2σ2 +σ2

1 +σ2
2/2 + 2σ4

1

ν1
+ 2σ4

2

ν2

}
=κ2

0 + σ4
1

2ν1
+ σ4

2

2ν2
:

The Bayes estimator (16) for the prior in Section 5 is

σ̃2
B = .x1 −x2/2

6
+ .n1 +n2 −2/.4β − s2

1 − s2
2/

6.n1 +n2/
:

The choices of the prior mean β discussed there when β = .s2
1 + s2

2/=4 give a positive estimator,

σ̃2
BP = .x1 −x2/2

6
,

and a rule which requires truncation at zero,

σ̃2
B0 = .x1 −x2/2

6
− .n1 +n2 −2/.s2

1 + s2
2/

6.n1 +n2/
,

when β =0. If β = .s2
1 + s2

2/=4 estimator (13) takes the form

σ̃2
L0 = .x1 −x2/2

6.n1 +n2 +1/
+ .n1 +n2 −2/.s2

1 + s2
2/

4.n1 +n2 +1/
:

The form of the Bayes estimator when σ2
1 = s2

1 and σ2
2 = s2

2 are known can be given for any
prior mean β and any prior variance v:

σ̃2
SB =v

.x1 −x2/2 +4β − s2
1 − s2

2

6v+ .2β + s2
1 + s2

2/2
+ β.2β + s2

1 + s2
2/2

6v+ .2β + s2
1 + s2

2/2
:
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Fig. 1. Plots of ratios of mean-squared errors of estimators σ̃2
L0 (• - • - •), σ̃2

SB ( ), σ̃2
B0 (�) and σ̃2

BP
(}) to (a) the mean-squared error of σ̃2

DL and of corresponding ratios of weighted means estimators of μ to
(b) the mean-squared error of x̃DL
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Thus σ̃2
SB is a convex combination of the Bayes estimator equal to β, when v=0, and the Bayes

estimator (19) corresponding to v=∞: This interpretation is quite illuminating for any p.
All estimators σ̃2

BP and truncated versions of σ̃2
SB, σ̃2

L0 and σ̃2
B0 have uniformly smaller quad-

ratic risk than the positive part of σ̃2
U in the range considered, 0�σ2 �5. Fig. 1 shows the graphs

of the ratios of the mean-squared errors E.σ̃2 −σ2/2 for σ̃2
BP, σ̃2

L0 with β = .s2
1 + s2

2/=4, and the
truncated versions of σ̃2

B0, and σ̃2
SB with β =0, to that of max.0, σ̃2

U/ when n1 =5 and n2 =13,
with σ2

1 = s2
1 =0:2 and σ2

2 = s2
2 =1:8. These mean-squared errors (as well as the following errors

of μ-estimators) were obtained via numerical integration (see Rukhin (2012)).
The dominance of positive σ2-estimators over max.0, σ̃2

U/ does not really translate into the
dominance of μ-estimators. The ratios of quadratic risk functions of the weighted means x̃

for the σ2-estimators considered to that of x̃2
DL are given in the Fig. 1(b). Whereas the locally

optimal estimator σ̃2
L0 is considerably better than the positive part of σ̃2

U, the behaviour of the
corresponding weighted mean is poor unless σ2 is small. For this reason estimator (13) will not
be considered further. The Bayes estimators lead to better confidence intervals for μ which are
discussed in the next section.

8. Confidence intervals for μ

Despite importance of confidence bounds for σ2, we focus now on a more urgent practical issue,
namely that of coverage intervals for μ. For a generic positive estimator σ̃2, let

ω̃i = .σ̃2 + s2
i /−1=

∑
k

.σ̃2 + s2
k/−1

be the normalized weights. We employ confidence intervals based on the estimated variance of
x̃=Σi ω̃ixi. One such estimator,

v̂ar.x̃/=
(∑

i

1

σ̃2 + s2
i

)−1

,

is a plug-in version of the formula for the variance of μ̃ from Section 1,

var.μ̃/=
(∑

i

1

σ2 +σ2
i

)−1

:

However, it is known to underestimate the true variance and commonly leads to intervals which
are too narrow (Brockwell and Gordon, 2001; Rukhin, 2009).

A better estimator is based on the procedure of Horn et al. (1975), Σi ω̃
2
i .1− ω̃i/

−1.xi − x̃/2.
Another corresponds to the weighted sample variance (the so-called external consistency estima-
tor of the variance), Σi ω̃i.xi − x̃/2=.p−1/.

Under the assumption of the (approximate) t-distribution of .x̃ −μ/=
√

ṽar.x̃/, the resulting
intervals have the form

x̃± t1−α=2.p−1/

√{∑
i

ω̃2
i .xi − x̃/2

1− ω̃i

}
, .22/

and

x̃± t1−α=2.p−1/

√{∑
i

ω̃i.xi − x̃/2

p−1

}
: .23/
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The common methods of standard error evaluation for the treatment effect μ do not explicitly
take into account the sample sizes ni, but the standard errors of confidence intervals based on
estimator (17) depend on the degrees of freedom. However, potential gains of using estimator
(17) rather than estimator (19) with β =0 can be noticeable only for small p and ni and large σ2.

9. Simulation results

We report here some results of the numerical comparison of Bayes estimators σ̃2
SB, σ̃2

BP and σ̃2
B0,

with unbiased estimators σ̃2
DL, σ̃2

H and σ̃2
U for p = 3 and p = 10. More precisely, the positive

parts of all these estimators are considered. We also evaluated characteristics of σ̃2
MP mentioned

in Section 2. This comparison was performed with regard to the confidence intervals (22) and
(23) based on these estimators, in terms of their mean absolute errors, E|σ̃2 −σ2|, and for the
mean-squared errors of the corresponding μ-estimators, E.x̃−μ/2. In the Monte Carlo simula-
tion we used randomly chosen sample sizes ni with the uniform distribution over integers from
4 to 12 with 25000 runs for each of the values of σ2 =0, 0:1, . . . , 2. The error variances σ2

i were
taken to have an inverted χ2-distribution .νi −2/=χ2.νi/, so that E.σ2

i /=1.
Fig. 2 displays the coverage probability of these intervals reported as a function of σ2 for a

nominal 95% confidence coefficient. The intervals (22) (and (23) not shown here as intervals
(22) outperformed intervals (23) in our simulations) based on the DerSimonian–Laird estima-
tor, σ̃2

U or on the Hedges estimator have lower than the stated confidence level. The confidence
intervals based on σ̃2

SB and σ̃2
B0 maintain the nominal confidence coefficient much better. How-

ever by far the best in this regard is the interval which uses σ̃2
BP and which sustains the stated

confidence almost perfectly. The q–q-plot of .x̃−μ/=
√ ˜var.x̃/ for the estimator x̃ based on σ̃2

BP
against percentiles of the t.p−1/-distribution exhibits a fairly straight line. For larger values of
p .p=20, 30, 50), the two intervals (22) and (23) were compared by Sidik and Jonkman (2007)
who also recommended intervals (22).

Fig. 3 shows that the mean-squared error of the μ-estimator based on σ̃2
BP is one of the small-

est among all methods considered. When p exceeds 10, the behaviour of the unbiased variance
estimator σ̃2

U and σ̃2
MP resembles that of the DerSimonian–Laird statistic. Then the estimators

σ̃2
SB, σ̃2

B0 and σ̃2
H are very similar and inferior to σ̃2

DL and to σ̃2
U for small σ2, but outperform

them for larger σ2.
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Fig. 2. Plots of coverage intervals (22) based on σ2-estimators σ̃2
SB ( ), σ̃2

B0 (�), σ̃2
BP (}), σ̃2

U (Å), σ̃2
H

(C), σ̃2
DL (r) and σ̃2

MP (�) when (a) pD3, and of the same intervals when (b) pD10
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Fig. 3. Plots of ratios of quadratic risk functions of μ-estimators based on σ̃2
SB ( ), σ̃2

B0 (�), σ̃2
BP (}),

σ̃2
U (Å), σ̃2

H (C) and σ̃2
MP (�) to the mean-squared error of x̃DL when (a) p D 3, and of the same ratios when

(b) pD10
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Fig. 4. Plots of ratios of absolute errors functions of σ2-estimators σ̃2
SB ( ), σ̃2

B0 (�), σ̃2
BP (}),

σ̃2
U (Å), σ̃2

H (C) and σ̃2
MP (�) to the absolute error of σ̃2

DL when (a) p D 3, and of the same ratios when (b)
pD10

The Bayes estimators are better than the traditional estimators in terms of the mean absolute
error, except that, for larger p, σ̃2

BP is losing to other estimators for small values of σ2, as is seen
from Fig. 4.

10. Example

To facilitate global trade, Le Comite International des Poids et Mesures initiated a series of
international interlaboratory studies which are designed to establish the degree of equivalence
between participating national metrology institutes. One of such studies is international fluid
flow comparisons of the air speed measurement CCM.FF-K3; Terao et al. (2007). An ultra-
sonic anemometer chosen as a transfer standard was circulated between four national metrology
institutes who reported calibration results at 2 m s−1 and at 20 m s−1. Thus xi given in the tables
represents the ratio of the laboratory’s reference air speed to the speed measured by the transfer
standard, and as such is a dimensionless quantity.
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Table 1. Air speed data for four institutes (2 m s�1)

xi 0.9993 1.0090 1.0196 1.0270
si 0.0026 0.0027 0.0017 0.0025

The data for 2 m s−1 are quite scattered and the individual coverage intervals for μ overlapped
only pairwise, so it was decided to use the median as an estimator of μ. Table 1 gives these data
along with associated uncertainties.

All σ2-estimators considered are positive and different,

σ̃2
DL σ̃2

U σ̃2
H σ̃2

MP σ̃2
BP σ̃2

SB
0:1626×10−3 0:1384×10−3 0:1832×10−3 0:1827×10−3 0:1134×10−3 0:1116×10−3

which suggests that a random-effects model may be approprate. The smallest values correspond
to the Bayes estimators σ̃2

BP and σ̃2
SB, but all of them have the same order as .p − 1/Σ s2

i =p =
0:1739×10−3. The sample sizes are not available so σ̃2

B0 cannot be used.
The μ-estimators evaluated according to the various methods above turn out to be quite

close to 1.01176, and the coverage intervals (22) do not differ very much despite a fairly large
degree of heterogeneity. The usual interval, x̃GD ± t1−α=2.p− 1/

√
v̂ar.x̃GD/= 1:0141 ± 0:0035,

with v̂ar.x̃GD/ as in Section 8, seems to be too short.
All our μ-values are closer to 1 than the reference value μref = 1:0143 suggested in the final

report for CCM.FF-K3. The final uncertainty, 0.0077, reported there is considerably smaller
than the typical value of the half-width 95% confidence intervals, which is about 0.0218.

The results obtained at the speed 20 m s−1 are given in Table 2.
Although these data were deemed to be considerably less heterogeneous, all our estimators

of σ2 are again positive (although an order of magnitude smaller than those for 2 m s−1):

σ̃2
DL σ̃2

U σ̃2
H σ̃2

MP σ̃2
BP σ̃2

SB
0:2008×10−4 0:1165×10−4 0:2568×10−4 0:2576×10−4 0:1854×10−4 0:2167×10−4

The μ-estimators

x̃DL x̃U x̃H x̃MP x̃BP x̃SB
1:0087 1:0090 1:0087 1:0087 1:0088 1:0087

are more dispersed than in the previous case but are all closer to 1 than the reference value
given in Terao et al. (2007) as 1.0113. The uncertainties,

√
ṽar.x̃/, estimated after intervals (22),

are

x̃DL x̃U x̃H x̃MP x̃BP x̃SB
0:0087 0:0086 0:0088 0:0088 0:0087 0:0088

and these values can be contrasted with a much smaller reported uncertainty of 0.0012.
This is just one out of many interlaboratory comparisons whose analysis could have benefited

from the random-effects model.

Table 2. Air speed data for four institutes (20 m s�1)

xi 1.0064 1.0080 1.0128 1.0120
si 0.0026 0.0030 0.0014 0.0015
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11. Conclusions

The Bayes estimators (17) and (18) show promise for meta-analysis in the case of small to mod-
erate numbers of studies and can be seriously considered in these applications. Better knowledge
of the prior mean may lead to further improvement in the performance of estimator (19).

A meta-analyst must be willing to use different estimates of the between-study variance σ2

for different purposes: one to minimize the variance of the treatment effect statistic; another to
construct a reliable confidence interval for this parameter; yet another to estimate σ2 itself! It
may be practically impossible to find a much better point estimator of μ than the DerSimonian–
Laird statistic, but σ̃2

DL is not appropriate if the heterogeneity variance itself is of interest, or
when a confidence interval for μ is needed. For the latter goal σ̃2

BP can be highly recommended;
for the former σ̃2

B0 or σ̃2
SB are good candidates.

Appendix A

A.1. Bias and variance of σ̃2

Formula (2) shows that

E.σ̃2|s2
1, . . . , s2

p/=∑
i<j

cij.2σ2 +σ2
i +σ2

j /+∑ dis
2
i .24/

=σ2∑
i,j

cij +∑ ciσ
2
i +∑ dis

2
i ,

E{σ̃2.s2
i −σ2

i /}=2diσ
4
i =νi .25/

and

var{E.σ̃2|s2
1, . . . , s2

p/}=var
(∑

dis
2
i

)
=∑ 2d2

i σ
4
i

νi

: .26/

Since

cov{.xi −xj/
2, .xk −xl/

2}=
{

2.2σ2 +σ2
i +σ2

j /2 .i, j/= .k, l/,
2.σ2 +σ2

i /2 .i, j/, .k, l/ share index i,
0 otherwise

we have

var.σ̃2|s2
1, . . . , s2

p/=var
{∑

i<j

cij.xi −xj/
2
}

=∑
i<j

∑
k<l

cijckl cov{.xi −xj/
2, .xk −xl/

2}

=2
∑

1�i<j�p

c2
ij.2σ2 +σ2

i +σ2
j /2 +2

∑
i�=j �=k

cijcik.σ
2 +σ2

i /2

=2
∑

i

c2
i .σ2 +σ2

i /2 +2
∑
i�=j

c2
ij.σ

2 +σ2
i /.σ2 +σ2

j /,

which coincides with equation (7).
The formula for the variance of σ̃2 follows as

var.σ̃2/=E{var.σ̃2|s2
1, . . . , s2

p/}+var{E.σ̃2|s2
1, . . . , s2

p/},

and this identity gives formula (11) for the mean-squared error.



Heterogeneity Variance 467

In the setting of Section 6, if the variance of .xi −μ/2 is .σ2 + s2
i /κ+ ξσ2s2

i , then

cov{.xi −xj/
2, .xk −xl/

2}= .1+κ=2/.2σ2 + s2
i + s2

j /2 + ξ.s2
i + s2

j /{σ2 + .s2
i + s2

j /=2}
+{.κ− ξ/=2−1}.s2

i − s2
j /2,

.i, j/= .k, l/, or equals κ.σ2 + s2
i /2 + ξσ2s2

i , .i, j/, if .k, l/ have one common index i, and is 0, otherwise.

A.2. Proof of inequality (6) and of the formulae for K �1
1 g1 and K �1

1 e
To prove inequality (6), note that, if Ek, k = 0, 1, . . . , p, denote elementary symmetric polynomials in
w1, . . . , wp, then T1 =E1, T2 =E2

1 −2E2 and T3 =E3
1 −3E1E2 +3E3, so

T 2
1 T2 −2T1T3 +T 2

2

.T 2
1 −T2/2

=1− 3E1E3

2E2
2

:

Since E1E3 � 2.p− 2/E2
2={3.p− 1/} (Beckenbach and Bellman (1961), chapter 1, section 12), inequality

(6) follows.
To find K−1

1 g, observe that, for 1� i<j �p, the vector K1t1 has co-ordinates,

1∑
k

.σ2 +σ2
k /−1

{
.2σ2 +σ2

i +σ2
j /2

.σ2 +σ2
i /.σ2 +σ2

j /
+ ∑

k:k �=i, j

σ2 +σ2
i

σ2 +σ2
k

+ ∑
k:k �=i,j

σ2 +σ2
j

σ2 +σ2
k

}
,

which can be easily seen to coincide with those of g1.
The desired formula for c0

i follows from equation (8) by summing up over j, j �= i. The vector K1c
0 has

.i, j/th co-ordinate equal to

2
{(

1
wi

+ 1
wj

)2

c0
ij + 1

w2
i

∑
k:k �=i,j

c0
ik + 1

w2
j

∑
k:k �=i,j

c0
jk

}
=2

(
2c0

ij

wiwj

+ c0
i

w2
i

+ c0
j

w2
j

)
= 2T 2

1

T 2
1 T2 −2T1T3 +T 2

2

,

which does not depend on i and j.

A.3. Proof of equation (15)
Since K0e=4pe, 4eeTe=2p.p−1/e,

RRT
(

e
0

)
=2p.p+1/

(
e
0

)
:

We have (Harville (1997), theorem 18.2.8)

L−1R= [.K̄ + ḡḡT/−1 −v.K̄ + ḡḡT/−1R{I +vRT.K̄ + ḡḡT/−1R}−1RT.K̄ + ḡḡT/−1]R
= .K̄ + ḡḡT/−1R{I +vRT.K̄ + ḡḡT/−1R}−1,

and, since the matrix RT.K̄ + ḡḡT/−1R is non-singular,

lim
v→∞

vL−1RRT
(

e
0

)
= .K̄ + ḡḡT/−1R{RT.K̄ + ḡḡT/−1R}−1RT

(
e
0

)
:

It follows from Section 4 that the vector K̄
−1
1 ḡ1 has co-ordinates

0:5.β + s2
i /−1.β + s2

j /−1{∑
k

.β + s2
k/−1}−1,

which implies formulae ρ1 = ḡT
1 K̄

−1
1 ḡ1 = .p−1/=2 and eTḡ1 = .p−1/Σk .β + s2

k/. The co-ordinates of K̄
−1
2 ḡ2

are νi=.2s2
i /, so ρ2 = ḡT

2 K̄
−1
2 ḡ2 = .Σknk −p/=2. Using the identity

.K̄ + ḡḡT/−1 = K̄
−1 − K̄

−1
ḡḡTK̄

−1

1+ρ1 +ρ2
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(Harville (1997), corollary 18.2.10), we obtain

RT.K̄ + ḡḡT/−1R= .K0 +4eeT/1=2

(
K̄

−1
1 − K̄

−1
1 ḡ1ḡ

T
1 K̄

−1
1

1+ρ1 +ρ2

)
.K0 +4eeT/1=2,

{RT.K̄ + ḡḡT/−1R}−1 = .K0 +4eeT/−1=2

(
K̄1 + ḡ1ḡ

T
1

1+ρ2

)
.K0 +4eeT/−1=2,

R{RT.K̄ + ḡḡT/−1R}−1RT =
(

K̄1 + .1+ρ2/
−1ḡ1ḡ

T
1 0

0 0

)
,

so

lim
v→∞

vL−1RRT
(

e
0

)
=
(

e
−.1+ρ2/

−1eTḡ1K̄
−1
2 ḡ2

)
: .27/

Since

lim
v→∞

L−1ḡ = lim
v→∞

.K̄ +vRRT/−1ḡ

1+ ḡT.K̄ +vRRT/−1ḡT

= {K̄
−1 − K̄

−1
R.RTK̄

−1
R/−1RTK̄

−1}ḡ

1+ρ1 +ρ2 − ḡTK̄
−1

R.RTK̄
−1

R/−1RTK̄
−1

ḡ

=
( 0

.1+ρ2/
−1K̄

−1
2 ḡ2

)
:

It follows that

fB =

⎛
⎜⎜⎜⎝

e

p.p+1/
νi[β − .p−1/{p.p+1/}−1

∑
k

.β + s2
k/]∑

k

.nk −p+2/s2
i

⎞
⎟⎟⎟⎠,

which proves equation (15).
For any non-singular matrix K , the limit K1=2.K + vRRT/−1K1=2 for v → ∞ is a projection matrix

onto the subspace spanned by the columns of the matrix K−1=2R. In our situation K = K̄ + ḡḡT, and the
vector .eT, 0/T is orthogonal to this subspace. This fact explains why equation (27) is finite. To obtain
a similar result when σ2

i = s2
i are given, one can put K̄2 → 0 and ḡ2 = 1 in the formulae above, so that

K̄
−1
2 ḡ2=.1+ρ2/→1.
In the situation of Section 6, K0e= .2p+κ−2/e, and the form of the Bayes coefficients follows.
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