
Fast and Secure CBC Type MAC Algorithms

Mridul Nandi

National Institute of Standards and Technology
mridul.nandi@gmail.com

Abstract. CBC-MAC or cipher block chaining message authentication code is a well known method
to generate message authentication code. Unfortunately, it is not forgery secure over arbitrary domain.
There are several secure variants of CBC-MAC among which OMAC (or one-key CBC-MAC) is a widely
used candidate. A simple variant of it called CMAC also has been recommended by NIST and is also
used widely. Both of these cost (s+ 1) blockcipher invocations to authenticate an s-block message and it
takes only one blockcipher key. In this paper we propose two secure and efficient variants of CBC-MAC.
Our constructions cost only s blockcipher invocations to authenticate an s-block message (except for
few single block messages, in which case it costs two blockcipher invocations like OMAC) and they need
only one blockcipher key. If AES is plugged into these new constructions then they are significantly
faster than OMAC for short messages, roughly twice faster for messages up to 125 bits and 1.5 times
faster for messages up to 256 bits.

Keywords. CBC-MAC; OMAC; padding rule; prf-security

1 Introduction

In cryptography, a common trend is to design fast and secure algorithms. In this paper we propose two “so far
fastest” and secure blockcipher based message authentication codes. A Message authentication code or MAC
is useful in those applications where data integrity and authenticity are essential. In terms of security we want
MAC to be a pseudorandom function or prf which means that it is computationally indistinguishable from
an ideal random function. The prf-security is a strong security notion and it guarantees unforgeable securities
of MAC. In this paper we use “secure” and “prf-secure” words synonymously. Till now several secure and
fast authentication algorithms are known. We first broadly classify them into three main categories based
on the underlying building blocks.

Hash-Mac: These are based on hash functions. HMAC [1] is widely used candidate in this class which also
has been standardized by National Institute of Standards and Technology or NIST. The other efficient popular
candidates are cascaded-PRF [2], sandwich-MAC [24], KMDP [14] etc. The prf security of these are proved under
prf assumption of the underlying compression function (in some cases a stronger security assumption such as
related key prf may be needed). Thus, it is also known as prf-preserving domain extension since we extend
the domain of prf from a fixed size (domain of the keyed compression function) to an arbitrary domain
(usually {0, 1}∗).

Universal Hash based Mac: Here universal hash functions and small domain pseudorandom functions
are used. In software these are very fast for long messages [10, 21]. These generally cost field multiplications,
key expansions, invocations of a smaller domain pseudorandom function etc. Thus, for short messages these
may not always give similar performances. In [18], 4 round-AES is used to obtain an universal hash functions
which eventually produces a very fast MAC algorithm for long messages (close to two times faster than
OMAC). Again it is much slower than OMAC due to overhead when we have one or two block messages.

Blockcipher based Mac: In this paper we study this category in more details. These are usually based
on several invocations of a blockcipher either in feedback mode (cipher block chaining or cbc type) or in
parallel mode (e.g., PMAC [8], XOR-MAC [3] etc). A blockcipher is a permutation eK : {0, 1}n → {0, 1}n

mailto:mridul.nandi@gmail.com

for each key K chosen from the keyspace {0, 1}k where n (block size) and k (key size) are positive integers
(we fix these parameters throughout the paper). Recently, blockciphers have been used extensively in many
applications. Moreover, several fast and “till now secure” blockciphers are known e.g., AES [11], RC6 [20] etc.
Hence an authentication based on only blockcipher could be useful. The prf security of these are based on the
“pseudorandom permutation” assumption of the underlying blockciphers meaning that the keyed blockcipher
family is computationally indistinguishable from the ideal random permutation. CBC-MAC or cipher block
chaining message authentication [4] is the first construction in this category. Now it is well known that
CBC-MAC is not secure for variable length messages. Many different modifications of it have been proposed
so far, among which OMAC [15] (or one-key CBC-MAC) and its variant CMAC [12] (NIST recommended) are
efficient as well as requiring minimum key. Another simple modification called XCBC-MAC [9] or XCBC is
faster in software but it needs three keys which may not be desired in many situations. These keys may be
derived from one key at the cost of few blockcipher invocations which causes slower performance for short
messages.

Our Contribution. In this paper, we first provide a general class of cbc type constructions called gcbc
which includes almost all popularly known cbc type constructions. We also characterize prf-secure gcbc
constructions and propose two so far fastest and secure candidates namely GCBC1 and GCBC2. We have
implemented these with the blockcipher AES-128 in the platform Intel(R) Pentium(R) 4 CPU 3.60 GHz,
1GB RAM and provided a performance comparison in Table 1. One can see that GCBC2 is twice faster than
OMAC for almost all single block messages and both GCBC1 and GCBC2 are 1.5 times faster for all two
block messages. This is understood from the fact that our constructions need s blockcipher invocations to
authenticate s block messages whereas OMAC needs s + 1 blockcipher invocations. In nutshell, the two new
proposed constructions are optimum among all generalized cbc type MAC in both keysize and the number
of blockciphers and these are really useful in the applications where short message authentication is needed.

Table 1. It provides a performance comparison of known cbc type MACs along with our proposals. The software
speed is computed in the platform Intel(R) Pentium(R) 4 CPU 3.60 GHz, 1GB RAM and when the underlying
blockcipher is AES-128. Here # BC denotes the number of invocations of blockcipher e : {0, 1}k × {0, 1}n → {0, 1}n

to authenticate an s block message. Time is computed by taking average over several executions. GCBC1 and GCBC2
are proposed in this paper.

Name of
MAC

microsec
(1-15 bytes)

microsec
(16 bytes)

microsec
(17 - 32 bytes)

BC for
s-block

Total
Keysize

XCBC [9] 43.7 43.7 78.46 s k + 2n
TMAC [17] 43.98 44.05 78.80 s k + n
OMAC [15] 78.72 78.80 113.80 s + 1 k

GCBC1 - - 77.95 s k
GCBC2 43.58 78.26 78.37 s k

Organization of the paper. We first provide basic definitions and notations and different cbc type
MACs in section 2. In section 3, we propose a generalized cbc type message authentication algorithms and
also show that most of the cbc type constructions belong to the class. The security analysis has been made
by using decorrelation technique. The detail security analysis of generalized cbc type constructions is given
in section 4. Finally in section 5, we specify two fast and secure construction called GCBC1 and GCBC2 from
the generalized class.

2 Preliminaries

2.1 Definitions and Notations

∪∞ ∪∞

example, {0, 1}+ is the set of all non-empty finite bit-sequences. We write |x| = i for any x ∈ {0, 1}i. Any
X ∈ S+ can be written as X = (x1, · · · , xi) for some i ≥ 1 and x1, · · · , xi ∈ S. We say Y = (y1, · · · , yj) ∈ S∗

is a prefix of X if j ≤ i and y1 = x1, · · · , yj = xj . Trivially λ is prefix of any X and we call it a trivial
prefix. Any other prefixes will be called non-trivial prefixes. Let x = x1x2 · · · xn ∈ {0, 1}n , xi ∈ {0, 1}, then
for any two integers i ≤ j we denote the set {i, i + 1, · · · , j } as [i..j] and we denote xixi+1 · · · xj as x[i..j]
whenever 1 ≤ i ≤ j ≤ n. If i > j , x[i..j] is nothing but λ. To represent the ith bit of x we simply write x[i].

Given any set S, we write S+ = i=1S
i and S∗ = i=0S

i = S+ ∪ {λ} where λ is the empty string. For

«tWe use x (or x»t) to denote t-bit left shift (or right shift respectively) of an n-bit string x. We identify
n−1 + ·{0, 1}n as GF(2n) by fixing a primitive polynomial zn + c1z · · + cn−1z + cn where ci ∈ {0, 1}. Let

0n = 0 (the additive identity), 0n−11 = 1 (multiplicative identity) and α = 0n−210 ∈ GF(2n) (known as a
primitive element). For any element x ∈ {0, 1}n, the field multiplication with α is denoted as α · x and it can

∗«1be computed as x if x[1] = 0, otherwise it is x«1 ⊕ c where c = c1c2 · · · cn. We denote x ← S to mean
that x is chosen uniformly from the set S and it is independently chosen from all other previously described
distributions.

Definition 1. (ideal random function and ideal random permutation)
ρ is said to be an ideal random function from M to {0, 1}n if for any distinct m1, · · · , mq ∈ M, (ρ(m1), · · · , ρ(mq))
is uniformly distributed over ({0, 1}n)q for any q > 0. In other words, for any q elements y1, · · · , yq ∈ {0, 1}n ,

1
Pr[ρ(m1) = y1, · · · , ρ(mq) = yq] = .

2nq

Similarly τ is said to be an ideal random permutation on {0, 1}n if for any distinct x1, · · · , xq ∈ {0, 1}n and
distinct y1, · · · , yq ∈ {0, 1}n we have

1
Pr[τ(m1) = y1, · · · , τ (mq) = yq] = .

2n(2n − 1) · · · (2n − q + 1)

When M is a finite set there is an alternative way to view an ideal random function. Let Func(M, {0, 1}n)
denote the set of all functions from M to {0, 1}n. We denote the set of all functions from {0, 1}n to {0, 1}n

as Func(n, n). Now an ideal random function from M to {0, 1}n is chosen uniformly from Func(M, {0, 1}n)
(it is not possible when M is an infinite set). It is an equivalent definition as one can show that

∗ 1
Pr[ρ(m1) = y1, · · · , ρ(mq) = yq : ρ ← Func(M, {0, 1}n)] =

2nq

for any distinct m1, · · · , mq ∈ M and any y1, · · · , yq ∈ {0, 1}n. We may write an ideal random function as
keyed function family randρ where randρ(x) = ρ(x) and ρ ∈ Func(M, {0, 1}n). A blockcipher e : {0, 1}k ×
{0, 1}n → {0, 1}n such that for any key K ∈ {0, 1}k , eK := e(K, ·) is a permutation on {0, 1}n. In this paper
we fix n and any element x ∈ {0, 1}i is called block if i ≤ n. It is called complete if i = n, otherwise called
incomplete. For any x ∈ {0, 1}∗, we denote l |x|l as ||x|| called number of blocks of x. Let A be an oracle n
adversary. We say A is a q-adversary if it makes at most q queries and we say it is a (q, σ)-adversary if it
makes at most q queries and the total number of blocks in all queries is at most σ. For simplicity we assume
that a q-adversary makes exactly q queries as there is no loss making some extra dummy queries. We say q
as number of input queries whereas σ as number of block-queries.

Definition 2. (pseudo random function) Let FK' be a keyed function family where K ' ∈ K' and FK' : M →
{0, 1}n for a message space M. Now for any probabilistic oracle adversary A we define the prf-advantage of
it over the function family F as

∗ Advprf (A) = |Pr[AFK' = 1 : K ' ← K'] − Pr[Aρ = 1]|.F

where ρ is an ideal random function from M to {0, 1}n and the probabilities are computed over internal
'randomness of A, uniform distribution of K and randomness of output behavior of ρ. When M = {0, 1}n

we can equivalently compute the prf-advantage as

∗	 ∗ Advprf (A) = |Pr[AFK ' = 1 : K ' ← K] − Pr[Arandρ = 1 : ρ ← Func(n, n)]|.F

The prf-advantage of F is defined as Advprf (q, σ) = maxA Advprf (A) where maximum is taken over all F	 F

(q, σ)-adversaries A. When M = {0, 1}n we have σ = q and hence we also write Advprf (σ). We say a F

function family F is (q, σ, e)-prf (or (σ, e)-prf in case of M = {0, 1}n) if Advprf (q, σ) ≤ e.F

Definition 3. (pseudo random permutation) The prp-advantage of an oracle adversary A over a blockcipher
e : {0, 1}k × {0, 1}n → {0, 1}n is computed as

∗ Advprp(A) = |Pr[Ae(K,·) = 1 : K ← {0, 1}k] − Pr[Aτ = 1]|e

where the probabilities are computed over internal randomness of A, uniform distribution of K and ran
domness of the ideal random permutation τ on {0, 1}n. The prp-advantage of the blockcipher e is defined as
Advprp(q) = maxA Advprp(A) where maximum is taken over all q-adversaries A.e	 e

Lemma 1. (switching lemma) For any function family F = (FK)K∈K, FK : {0, 1}n → {0, 1}n, we have 	
σ
2Advprf (σ) ≤ Advprp(σ) + .F F 2n

The proof of the switching lemma can be found in many literatures, e.g. [6].

2.2 Known Examples of CBC Type MAC Algorithms

For any integer £ ≥ 1, an £-block tuple (x1, · · · , x£) ∈ ({0, 1}n)£, an initial value iv ∈ {0, 1}n and a permu
tation π ∈ Perm(n), we define π+(x1, · · · , x£) = v£ where v£ is computed as follows; iv

v0 = iv; for i = 1 to £ vi = π(vi−1 ⊕ xi); return v£;	 (1)

The initial value iv can be chosen publicly (i.e., a fixed constant), or kept secret, or it can be the internal
state.1 When iv is a fixed constant, we choose iv = 0 (a sequence of 0-bits of size n) unless it’s value is
clearly mentioned. We write π+ instead of π+. Note that π+ : ({0, 1}n)+ → {0, 1}n. For a binary string x of0
size at most n, we denote

xd10n−1−|x| if |x| < n
x =

x if |x| = n

So x has size exactly n for any x with 0 ≤ |x| ≤ n. Let m = m1d · · · dms−1dms where m1, · · · , ms−1 ∈ {0, 1}n

and |ms| = r with 1 ≤ r ≤ n. Then each mi is said to be a block of the message. Note that ms or the final
message block can be either a complete (if r = n) or an incomplete block (if r < n). Unless we precisely
mention we use the above representation of a message m with the variables s and r as stated above.

+Informally a construction, which uses e function as a major component given a blockcipher e, is called K
cbc-type construction (see equation 1 with π = eK and iv = 0). There are several cbc-type constructions.
We study some of these here.

CBC-MAC[4]: Given any message m and a blockcipher eK with a secret key K, output of CBC-MAC is
+defined as cbc-maceK (m) = e (m10d) where d is the smallest nonnegative integer such that |m| + 1 + d isK

multiple of n. In [4, 5], it was shown that CBC-MAC is a prefix-free pseudorandom function (attacker is not

1	 internal state usually is updated in each computation and the currently used state should be transmitted along
with other outputs

' 'allowed to choose queries m and m such that m = mdx or m is a prefix of m ') provided the underlying
blockcipher is pseudorandom permutation. Moreover, there is an efficient distinguisher which can distinguish
CBC-MAC from an ideal random function by making only two adaptive queries (definitely one of these
has to be a prefix to the other). In particular, the following equation 2 holds with probability one when
f = cbc-maceK for any key K, but with negligible probability for the ideal random function f .

m ∈ {0, 1}n , f(m) = c ⇒ f(m d c ⊕ m) = c. (2)

Since we do not have prefixes among fixed size inputs, CBC-MAC restricted on fixed size input is always
a pseudorandom function. But for almost all practical purposes we need a pseudorandom function over
arbitrary domain. Prepending length of the message is one possible way out [4] in which case, either the
length of the the messages should be known in prior or we have to store the complete message in buffer
before starting underlying blockcipher invocation.

XCBC[9]: To avoid the above mentioned problem, a prf-secure XCBC[9] was proposed. Let K ∈ {0, 1}k

(blockcipher key), L1, L1 ∈ {0, 1}n be three independently chosen keys. Now we define
+ e (m1 d · · · dms ⊕ L1) if |ms| < n Kxcbc-maceK ,L1,L2 (m) = + e (m1 d · · · dms ⊕ L1)) if |ms| = n.K

TMAC[17] and OMAC[15]: Note that XCBC needs three keys which may be expensive in some applications
where a small key is desired. Keeping it in mind, TMAC or two-key CBC-MAC and OMAC or one-key CBC
MAC have been proposed. Here the two keys L0 and L1 are generated from either a single key L or eK (0).
Let α be a primitive element of the Galois field of size 2n. Then output of these authentication codes are
defined as follows:

+ e (m1 d · · · dms ⊕ L) if |ms| < n KtmaceK ,L(m) = + e (m1 d · · · dms ⊕ L · α) if |ms| = n.K

omac eK (m) = tmaceK ,L(m)mboxwhereL = eK (0) · α

In [17, 15, 16], they were shown to be prf. Among all these above constructions, OMAC is one of the
good choice in terms of efficiency and key-size. It has been used in EAX [7] (a secure authenticated en
cryption), TET [13] (a length-preserving tweakable strong pseudo random permutation) and many others. A
simple variant of it also has been recommended by NIST. In the next section we propose a class of message
authentication codes which are significantly faster than OMAC for short messages.

3 Generalized CBC-MAC Class

3.1 Building blocks

Every MAC for a message space M has two main components namely a randomized key-generation algorithm
and a tag-generation which may be deterministic or probabilistic. Key-generation algorithm returns a key
(K, L) at random from it’s keyspace K × {0, 1}£ . In this paper we consider deterministic tag-generation
algorithms which have the following three main building blocks.

Padding Rule. A padding rule pad : M → ([0, t] × {0, 1}n)+ which ensures that the padded message
is in a particular form. The non-negative integer t is said to be the variation number. Given a message
m, the padded message pad(m) = X will be written as ((δ1, x1), · · · , (δs, xs)) for some positive integer s,
xi ∈ {0, 1}n and δi ∈ [0, t], 1 ≤ i ≤ s. We denote the set of all possible δ1 values as

Δpad = {δ1 : ∃m ∈ M, pad(m) = ((δ1, x1), · · ·)}.

The roll of xi’s is similar to the message block of cbc whereas δi values take part to tweak the intermediate
outputs of the blockcipher by using a variation operation (which is one of the building blocks). A padding

'rule pad is said to be prefix-free if for any m , pad(m) is not prefix of pad(m ').= m

Iterative Function. An underlying iterative function f : {0, 1}n → {0, 1}n which is determined via a
∗ key K ∈ K. A blockcipher eK or an ideal random function randρ for ρ ← Func(n, n) (note, randρ(x) = ρ(x))

are different examples of iterative functions.
Variation Operation. A t-variate variation operation is a function h : [0..t] × {0, 1}n → {0, 1}n such that
h(0, x) = x. These operations are usually very efficiently computable simple functions. It may be determined
via a key L called auxiliary key and use the underlying iterative function f as a subroutine (in this way it
may be determined by the key K of f). In this case we say it is a secret variation operation. If it does not
use f and any auxiliary key L then h is publicly computable function and we say that it is a public variation
operation. A simple example of t-variate public variation operation is

h(i, x) = x «i for all 0 ≤ i ≤ t, x ∈ {0, 1}n .

It is called type-1 secret variation operation if it only depends on the auxiliary key and not on the underlying
iterative function f . All other secret variation operations are called type-2. In this paper we consider public or
type-1 secret variation operations when we study the security analysis of generalized cbc constructions. But
we also see some secure constructions such as OMAC or CMAC which use type-2 secret variation operations.

3.2 Definition of a Generalized CBC-MAC

Fig. 1. Generalized CBC which uses variation operation h, an underlying iterative function eK (blockcipher) and a
padding rule pad.

Now we define a class of generalized cbc message authentication algorithms denoted as Cgcbc . Any authen
tication algorithm from the class for a message space M has two main functionalities namely a randomized
key-generation algorithm or Key-Gen with a keyspace K×{0, 1}£ and a deterministic tag-generation algorithm
gcbcf,h,pad (defined below).

∗ 1.	 Key-Gen : (K, L) ← K × {0, 1}£ where K × {0, 1}£ is the keyspace. So key-generation is parameterized by
the keyspace only.

2. gcbcf,h,pad: The tag-generation algorithm for a message space M uses three subroutines viz.,
– a padding rule pad : M → ([0..t] × {0, 1}n)+ with a variation number t ≥ 0,
– a t-variate variation operation (public or secret) h : [0..t] × {0, 1}n → {0, 1}n and
– an underlying iterative function f : {0, 1}n → {0, 1}n .

These subroutines except the padding rule pad are specified by the key (K, L) (output of Key-Gen)
where K is the key for the underlying iterative function f and L is the auxiliary key which is used for
secret variation operation h. For public variation operation £ = 0. Now for any message m we define
gcbcf,h,pad(m) = vs where vs is computed as follows (also described in Algorithm 1 and illustrated in
Figure 1);

v0 = 0n , ui = h(δi, vi−1) ⊕ xi, vi = f(ui), 1 ≤ i ≤ s (3)

where pad(m) = ((δ1, x1), · · · , (δs, xs)), δi ∈ [0..t], xi ∈ {0, 1}n .

In nutshell, to define an authentication algorithm we need to specify the keyspace K × {0, 1}£ (the value of
£, may be zero and the set K), a message space M, the underlying iterative operation f , a t-variate variation
operation h and a padding rule with variation number t. The only randomness of the generalized cbc comes
from the key (K, L) and hence we denote the authentication algorithm as gcbcK,L whenever all the above
are clear from the context.

Remark 1. An efficiency of tag-generation algorithm gcbcf,h,pad depends on the number of invocations of f ,
as the underlying iterative function is the most costly operation (we also desire a strong security notion from
it such as pseudorandom function). Note that the number of invocations of f is at least s and it may be
more if we use type-2 secret variation operation. To keep it small, we should carefully design a padding rule
which gives the value of s as small as possible. The padding rule and the variation operations (except the
computation of f which may be used in h) are usually very cheap and hence we mostly focus on the number
of invocations of f when we compare the performance of different constructions.

Algorithm 1 Generalized Cipher Block Chaining Message Authentication
Require:

key. KiL ∈ K × {0, 1}£. \\ an output of key generation algorithm Key-Gen
\\ which are used in the functions f and h

function. f : {0, 1}n → {0, 1}n ,
h : [0, t] × {0, 1}n → {0, 1}n ,
pad : M → ([0, t] × {0, 1}n)+ \\M = {0, 1} ∗ or M = ∪i>n{0, 1}i .

input. m ∈ M.

1: X = pad(m)
2: divide X as ((δ1, m1) · · · (δs, xs)) where xi ∈ {0, 1}n, δi ∈ [0, t], 1 ≤ i ≤ s
3: v0 = 0n

4: for j = 1 to s do
5: uj = h(δj , vj−1) ⊕ xj

6: vj = f(uj)
7: end for
8: return vs

3.3 Known CBC type MACs are Generalized CBC

This class is indeed a generalized class as it contains almost all cbc type authentication algorithms. Now
we describe more precisely how these following popular candidates XCBC, TMAC and OMAC belong to the
class. A common choice of the underlying iterative function is a blockcipher eK , K ∈ K = {0, 1}k and

a common choice of padding rule pad is described below. Given a message m = m1d · · · dms−1dms with
m1, · · · , ms−1 ∈ {0, 1}n , ms ∈ {0, 1}r, 1 ≤ r ≤ n, the padding rule with two variation number is defined as

pad(m) = (0, m1), · · · , (0, ms−1), (δ, ms)

where δ = 1 if r < n, otherwise we set δ = 2. So it remains to define the value of £ and 2-variate variation
operations h which are described below for each constructions. Recall that key generation algorithm returns

∗ a key (K, L) ← {0, 1}k × {0, 1}£ .

XCBC: Let £ = 2n and write L = L1dL2 where L1, L2 ∈ {0, 1}n . Now define h(i, x) = x ⊕ Li ∀x ∈
{0, 1}n and i = 1, 2.

TMAC: Let £ = n and define h(i, x) = x ⊕ (L · αi−1) ∀x ∈ {0, 1}n and i = 1, 2 where α is a primitive element
and α0 = 1 (multiplicative identity).

OMAC: Let £ = 0 and define h(0, x) = x and h(i, x) = x ⊕ (eK (0) · αi) ∀x ∈ {0, 1}n and i = 1, 2.

Remark 2. The OMAC is an example where the variation operation is type-2 secret. In the case of the other
two examples the variation operations are type-1 secret variation operations. In the next section we propose
two different padding rules and two public variation operations. Usage of public variation operations help to
keep the key size lowest possible. We also see these public variation operations are efficiently computable. We
should be careful in security analysis when we choose a public variation operation since the security analysis
is not straightforward.

4 Security Analysis

4.1 Decorrelation Technique

We state Vaudeney’s decorrelation theorem (Lemma 22 of [23]2). Based on our notations, we state the
following version of decorrelation theorem.

Theorem 1. (Decorrelation Theorem)
'Let q and σ be two fixed integers and let FK ' : M → {0, 1}n be a family of functions indexed by key K

chosen uniformly from the keyspace K '. Suppose the following holds for some positive real numbers e1 and
e2;

C1. there exists a subset Y ⊆ ({0, 1}n)q such that |Y | ≥ 2nq (1 − e1) and
∗ C2. Pr[FK ' (x1) = y1, · · · , FK ' (xq) = yq : K ← K] ≥ 2−nq(1 − e2) for any (y1, · · · , yq) ∈ Y and q distinctKq

m1, · · · , mq ∈ M with dmid ≤ σ.i=1

Then for any distinguisher A which asks q queries with σ many blocks present in all queries, Advprf (A) ≤F
e1 + e2.

What does Decorrelation Theorem mean? The second condition C2 means that the output behavior of
the function family is close to that of an ideal random function when the output-tuple (y1, · · · , yk) are from
a set Y. Note, 2−nq = Pr[ρ(x1) = y1, · · · , ρ(xq) = yq]. The first condition means that with high probability
the output-tuple of the ideal random function are from Y. So the given conditions say eventually that the
output probability distribution of the function family for any set of q inputs are almost identical with that
of an ideal random function. So prf-advantage of a (q, σ)-adversary should be small independent of how
adversary works. Note that adversary at the end of query-responses has a set of inputs and outputs and he
has to distinguish based on it. However the values of e1 and e2 can depend on q and σ.
What is the difference from the game-based approach? Conceptually the decorrelation theorem
corresponds to the game-based reductions [22, 6]. In the game-based reductions, the response of function

2	 it was mentioned in [23] that the decorrelation theorem was freely adapted from Patarin’s coefficient H-
techniques [19]

family are viewed as a game say G0. The function family game is modified sequentially into the ideal function
family game Gt (or in the other direction) via some intermediate games. Now it is usually shown that the
games G0 and Gt are equivalent given that some bad event bad does not occur and hence the distinguishing
advantage is bounded by Pr[bad]. The rest is devoted to compute the probability. In the decorrelation
technique, there are two bad events bad1, the output tuple (y1, · · · , yq) ∈ Y and bad2 (depending on the

2nq −|Y |definition of FK '). It is easy to see that C1 is true with e1 = Prρ[bad1] = 2nq . The second bad event
would help us to find a bound of the form

PrK [FK' (m1) = y1, · · · , FK' (mq) = yq|¬bad2] = 2−nq

which would eventually provide the second condition C2 with e2 = PrK [bad2]. Now we can use decorrelation
theorem to bound the prf-advantage. Decorelation technique has advantage over game based technique as it
involves only probability computation which can be verified from the basic knowledge of probability theory.

The value of e1. Now we describe the set Y which is going to be used throughout the paper. In fact, it is
the most common choice. It is the set of all q-tuples which contain all q distinct elements.

YnoColl := {(y1, · · · , yq) ∈ ({0, 1}n)q : yi = yj , ∀i = j}.

q(q−1)Now it is easy to see that |YnoColl| ≥ (1 − q(q−1)) × 2nq. So e1 = in C1. The value of e1 does not
depend on the construction FK as we compute the probability over random function ρ.

2n+1 2n+1

4.2 Security Analysis of Generalized CBC Algorithm

A variation operation can be public or secret. A variation operation is said to be allowed if either it is public
or it is type-1 secret (which does not use underlying iterative as a subroutine and only uses an auxiliary
key).

Definition 4. An al lowed t-variate variation operation h : [0..t]× {0, 1}n → {0, 1}n is said to be a (e, Δ)-xor
weak universal operation if for any 0 ≤ δ = δ ' ≤ t, c ∈ {0, 1}n and for all auxiliary key L0 ∈ {0, 1}£ the
following conditions are satisfied.

∗ W1: Pr[hL0 (i, R) = c : R ← {0, 1}n] ≤ e
∗ W2: Pr[hL(δ, 0n) ⊕ hL(δ ' , 0n) = c : L ← {0, 1}£] ≤ e whenever δ, δ ' ∈ Δ

∗ W3: Pr[hL(δ, R) ⊕ hL(δ ' , R) = c : (R, L) ← {0, 1}n × {0, 1}£] ≤ e.

Note that when Δ is a singleton set then the condition W2 is vacuously true. Now we characterize
generalized cbc constructions which are prf-secure. Let pad be a prefix-free padding rule with a variation
number t ≥ 0, h be a (e, Δpad)-xor weak universal allowed variation operation and the underlying iterative
function family (fK)K∈K is (σ, µ)-prf. Then we show that the generalized cbc based on the above such
building blocks is (q, σ, e)-prf where e = σ '(σ ' − 1) × (e + 1) + q(q−1) where σ ' denote the total number of 2n 2n+1

blocks in all q padded messages (which have been queried by an adversary). Later we propose two padding
rules where the the number of block can only increase by one for each message and hence σ ' ≤ σ + q. Now we
try to compute e2 in the condition C2 of the decorrelation theorem for the function family gcbcρ,L where the
above underlying function family (fK)K∈K is replaced by an ideal random function family (randρ)ρ∈Func(n,n).
More precisely for distinct m1, · · · , mq ∈ M and distinct y1, · · · , yq ∈ {0, 1}n we want to compute

p = Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq]

∗ where probability is computed over (ρ, L) ← Func(n, n) × {0, 1}£. We first introduce some notations which
are needed to compute the above probability.

Notations. Let pad(mi) = Xi = ((δi,1, xi,1) · · · , (δi,£i , xi,si)) where xi,1, · · · , xi,si ∈ {0, 1}n and δi,1, · · · , δi,si ∈
[0, t]. Let Xi,j = ((δi,1, xi,1) · · · , (δi,j , xi,j)) for 0 ≤ j ≤ si, where Xi,0 = λ for any i. For each 1 ≤ i ≤ q, we
have the following sequences of ui’s and vi’s values.

(δi,1,xi,1) (δi,2,xi,2) (δi,si ,xi,si)
vi-sequence : iv → vi,1 → vi,2 · · · → vi,si

(δi,1,xi,1) (δi,2,xi,2) (δi,si ,xi,si)
ui-sequence : λ → ui,1 → ui,2 · · · → ui,si

Note that all these variables ui,j , vi,j are random variables whereas δi,j , xi,j are fixed constants. Moreover,
ui,j = hL(δi,j , vi,j−1) ⊕ xi,j and randρ(ui,j) = vi,j . The following lemma is easy to prove by looking at the
above ui’s and vi’s sequences and the definition of Xi,j .

Lemma 2. If Xi,j = Xi',j' then ui,j = ui',j' and vi,j = vi' ,j' with probability 1.

Definition 5. We say a tuple (L0, Vi,j)i,j is admissible if
- Vi,j = Vi' ,j' whenever Xi,j = Xi' ,j' ,
- Vi,0 = 0n, Vi,si = yi for all 1 ≤ i ≤ q and
- hL0 (δi,j , Vi,j−1) ⊕ xi,j = hL0 (δi',j' , Vi',j'−1) ⊕ xi' ,j' for all i, j, i ' , j ' such that Xi,j = Xi',j' .

Let σ1 be the maximum number of all pairs (i, j) with distinct Xi,j ’s. More precisely, σ1 = |{X : X = Kq
Xi,j for some i, j }|. Clearly, σ1 ≤ σ ' = ||Xi|| and hence σ1 ≤ σ + q.i=1

1 1Lemma 3. Given any admissible tuple (L0, Vi,j)i,j , Pr[L = L0, vi,j = Vi,j] = × f . 2n(σ1+q) 2

Proof. This is true since for given any such admissible tuple, ui,j = ui ' ,j ' if and only if Xi,j = Xi ' ,j ' and
all ui,j = Ui,j = hL0 (δi,j , Vi,j−1) ⊕ xi,j values are fixed. Thus, Pr[L = L0, vi,j = Vi,j] = Pr[L = L0, ρ(Ui,j) =

1 1Vi,j for all i, j] = Pr[ρ(Ui,j) = Vi,j for all i, j] × Pr[L = L0] =
2n(σ1+q) × f2

Lemma 4. The number of admissible tuples is at least 2nσ1+£(1 − wσ1(σ1+1)).2

Proof. We have 2nσ1+£ many tuples (L0, (Vi,j)i,j) such that Vi,j = Vi',j' whenever Xi,j = Xi',j' and Vi,0 =
0n, Vi,si = yi for all 1 ≤ i ≤ q. Now we need to find estimate of number of tuples among these such that
hL0 (δi,j , Vi,j−1)⊕xi,j = hL0 (δi',j' , Vi' ,j' −1)⊕xi',j' for all i, j, i ' , j ' such that Xi,j = Xi',j' . To do so we count the
complement. Suppose for some i, j, i ' , j ' with Xi,j = Xi ' ,j ' , hL0 (δi,j , Vi,j−1)⊕xi,j = hL0 (δi ' ,j ' , Vi ' ,j '−1)⊕xi ' ,j ' .
The number of such tuple is at most 2nσ1+£−1 since h is a weakly (e, Δpad1

)-xor universal variation operation.
σ1The total number of possible values of i, j, i ' , j ' such that Xi,j = Xi' ,j' is . Subtracting all such non2

admissible tuples we see that there are at least 2nσ1 +£(1 − wσ1(σ1+1)) admissible tuples. 2

Combining above two lemmas we can prove the following theorem.

Theorem 2. Let h be a weakly (e, Δpad)-xor universal operation and pad be a prefix-free padding rule. Sup
pose the underlying iterative function is an ideal random function (randρ)ρ∈Func(n,n) and we denote the corre
sponding generalized cbc authentication algorithm as gcbcρ,L. Now let σ ' be the largest number of blocks after
padding q messages having at most σ many blocks in total. Then for any distinct q inputs m1, · · · , mq ∈ M
(message space) and any q outputs y1, · · · , yq ∈ {0, 1}n ,

'1 − e
Prρ,L[gcbcρ,L(m1) = y1, · · · , gcbcρ,L(mq) = yq] ≥

2nq

' 1where e = σ '(σ ' − 1) × (e + 2n).

Theorem 3. Based on all notations defined so far we have,

1 q(q + 1)
Advprf (q, σ) ≤ σ '(σ ' − 1) × (e +) + + Advprf (σ)gcbcK,L 2n 2n+1 fK

1 q(q + 1) ≤ σ '(σ ' − 1) × (e +) + + Advprp(σ)fK2n 2n

5 Two New Efficient Generalized CBC : GCBC1 and GCBC2

In this section we propose two secure generalized cbc constructions namely GCBC1 and GCBC2. The first
construction called GCBC1 which has message space {0, 1}>n and it’s tag-generation algorithm costs only s
blockcipher invocations for any s-block messages, s ≥ 2. If we pad enough bits so that every padded messages
has at least two blocks then it can have message space {0, 1}∗. We call this variant GCBC1 '. This variant
costs 2 blockcipher invocations for one block messages (same as OMAC) and costs s blockcipher invocations
for s-block messages (still one less).

The second construction called GCBC2 has message space {0, 1}∗. The padding rule of it has been defined
carefully so that it costs one blockcipher for almost all single block messages (for all messages with bit size
at most n − 4). The variation operation is also very fast in software which needs at most three 8-bit shift
operations. Note that a 8-bit implementation of single shift on 128 bit needs 16 shift operations. For
example, if we use AES then a single shift on 128 bit (it is partitioned into 16 8-bits) requires 16 shift
operations and several bitwise-and, bitwise-or operations.

5.1 GCBC1

Algorithm 2 GCBC1 '

Require:
∗

key. K ← {0, 1}k . \\ blockcipher key
function. eK : {0, 1}n → {0, 1}n . \\ blockcipher
input. m ∈ {0, 1} ∗ .

1:	 divide m as (m1, · · · , ms−1, ms)
where m1, · · · , ms−1 ∈ {0, 1}n , ms ∈ {0, 1}r , 1 ≤ r ≤ n.

2:	 if s = 1 and r = n then
3: m2 = 10n−1 , s = 2, r = n − 1.
4:	 else if s = 1 then
5: m1 = m1, m2 = 0, s = 2, r = n − 1.
6:	 end if
7:	 v0 = 0
8:	 for j = 1 to s − 1 do
9: uj = vj−1 ⊕ xj

10: vj = eK (uj)
11: end for
12: if r < n then

;113: us = vs−1 ⊕ xs

14: else
;215: us = vs−1 ⊕ xs

16: end if
17: vs = eK (us)
18: return vs

We first define a padding rule pad1 : {0, 1}>n → ([0..2]×{0, 1}n)+. For any m = m1 · · · ms−1ms ∈ {0, 1}>n

where m1, · · · , ms−1 ∈ {0, 1}n and ms ∈ {0, 1}r, 1 ≤ r ≤ n, we define the padded message as

pad1(m) = ((0, m1), · · · , (0, ms−1), (δ, ms))

where δ = 1 if r < n, otherwise δ = 2. We extend the definition of the padding rule to the message space
{0, 1}∗ as follows. Let m1 ∈ {0, 1}r, define

((0, m1), (1, 0)) if r < n
pad1(m1) =

((0, m1), (1, 10n−1)) if r = n

Fig. 2. GCBC1, Generalized CBC, which uses left shift variation operation, an underlying iterative function eK

(blockcipher) and a simple padding rule.

Thus, s-block messages have s-block padded messages for all s ≥ 2 and one-block messages have two-block
padded messages. It is also easy to observe that Δpad1

= {0}. Moreover, the padding rule is prefix-free.

Proposition 1. The padding rule pad1 over the message space {0, 1}∗ is a prefix-free padding rule.
' ' ' ' 'Proof. Suppose m = m1 · · · ms−1ms and m = m1 · · · m s '−1m s ' where s ≤ s , pad1(m) is a prefix of pad1(m ')

' ' ' 'and m1, m 1, · · · , ms−1, m s ∈ {0, 1}n, ms ∈ {0, 1}r, m ' ∈ {0, 1}r ' , 1 ≤ r, r ≤ n.'−1 s
' 'Case s ≥ 2: Then pad1(m) = ((0, m1), · · · , (0, ms−1), (δ, ms) is prefix of pad1(m ') = ((0, m), · · · , (0, m 1 s '−1

' ' ' ' 'Since δ, δ ' = 0, s = s and δ = δ '. Moreover, m1 = m1, · · · , ms−1 = ms−1, ms = m s. Now, ms = m s and
' ' δ = δ ' implies that ms = m . Thus m = m .s

' ' ' 'Case s = 1, s ≥ 2: Now pad1(m) = ((0, x1), (1, x2)) where pad1(m ') = ((0, m), · · · , (0, m '−1), (δ ' , m s ').1 s
' ' 'By comparing δ values of second pair we can see that s = 2, r < n and m 2 = x2. But x2 is either 0 or

' ''10n−1 which can not be m 2 for any m2 ∈ {0, 1}r ' , 1 ≤ r < n. So this case does not arise.
' 'Case s = 1, s = 1: Obviously if pad1(m1) is prefix of pad1(m) then they should be equal. But it is easy 1

' 'to see that they can be equal only when m1 = m and hence m = m .1

Now we define a simple public variation operation ls which has two variations. For any x ∈ {0, 1}n and
«δ0 ≤ δ ≤ 2, ls(δ, x) = x .

1Proposition 2. The operation ls with 2 variations is a public and weakly 2n−2 -xor universal for Δ = Δpad1
=

{0}.
«iProof. By definition, ls(0, x) = x. Now it is easy to see that x = c has at most 4 solutions of x for any i ≤ 2

and any constant c ∈ {0, 1}n. So condition W1 holds. The condition W2 trivially holds since Δ = Δ1 = {0}.
«1To see the condition W3 we first prove that the number of solutions of x ⊕ x = c is exactly one for any

constant c ∈ {0, 1}n. In fact, the solution is x[n] = c[n], x[n−1] = c[n−1]⊕c[n−1], · · · , x[1] = c[1]⊕· · ·⊕c[n].
«2Similarly one can see that the number of solutions of x for the equation x ⊕ x = c is exactly one. Now

«2 «we want to find the number of solutions of the equation x«1 ⊕ x = c. Let y = x
1

then we have exactly
one solution of y and hence there are exactly two solutions of x. Combining all these observations we can

1see that condition W3 is true. Thus, ls is a weakly 2n−2 -xor universal.

Let e be a blockcipher then we define the tag-generation algorithm of GCBC1 as the generalized cbc
algorithm (see Figure 2) gcbce,ls,pad with message space {0, 1}>n. If we consider the message space {0, 1}∗

and choose the extended definition of the padding rule pad1 then we obtain a variant of GCBC1 called GCBC1 '

(see Algorithm 2).

Theorem 4. (Security Bound of GCBC1)

Advprf (q, σ) ≤ σ(σ−1) + Advprp(σ)GCBC1’ 2n−5 e

Proof. We apply the result of the above two propositions to the generalized cbc security bound (see Theo
rem 3).

'), (δ ' , m s ').

5.2 GCBC2

Now we first define a padding rule pad2 for the message space {0, 1}∗ with variation number 3. Let m =
m1 · · · ms−1ms ∈ {0, 1}>n where m1, · · · , ms−1 ∈ {0, 1}n and ms ∈ {0, 1}r, 1 ≤ r ≤ n. Let us denote δ = 1

' '' ' ''if r < n, otherwise δ = 2. If |m| ≥ n − 3 then denote m1 = m1dm where m1 ∈ {0, 1}n−3 and m1 ∈ {0, 1}∗ .1
Now we define pad2(m) depending on the values of s.

s = 1,

' ''((0, m 1(3)3), (0, m 1)) if r ≥ n3
pad2(m1) =

(0, m1) if r ≤ n − 4

s = 2,

'((0, m1), (δ, m2)) if m = 000 1pad2(m1, m2) = ' ''((0, m (δ)3), (0, m2)) if m = 000 1 1

s ≥ 3,

'''((0, m 1), (0, m2), · · · , (0, ms−1), (δ, ms)) if m = 000 1pad2(m) = ''((0, m1), (3, m2), · · · , (0, ms−1), (δ, ms)) if m = 000 1

Note, Δpad2
= {0} and it increases one block only when the message size is in between n − 3 and n. All

other messages and their padded messages have same number of blocks. Now we prove that it is a prefix-free
padding rule.

Proposition 3. pad2 is prefix-free padding rule over the message space {0, 1}∗ .
' ' ' ' 'Proof. Suppose m = m1 · · · ms−1ms and m = m1 · · · m s '−1m s ' where s ≤ s , pad1(m) is a prefix of

' ' ' ' pad1(m ') and m1, m 1, · · · , ms−1, m s '−1 ∈ {0, 1}n, ms ∈ {0, 1}r, m s ' ∈ {0, 1}r ' , 1 ≤ r, r ≤ n. Let pad2(m) =
' '((0, x1), (δ, x2), · · ·) (if s ≥ 2 otherwise pad2(m) = (0, x1)). Similarly we denote pad2(m ') = (0, x), (δ ' , x), · · ·)1 2

'(if s ≥ 2 otherwise pad2(m ') = (0, x)).1
' ' 'Case s = 1: Note that s must be 1, otherwise for any s ≥ 2 we always have (x1, δ) = (x1, δ '). Now, it is
' 'also easy to see that if s = s = 1 then m = m .

' 'Case s ≥ 2: By comparing the values of δ and δ ' we must have s = s = 2 or s, s ≥ 3. One can check
'from the definition of pad2 in these two cases, we also have m = m .

We choose a public variation operation h = tr which is defined as follows. Let m be a divisor of n. We write
x = x1 · · · xm where xi ∈ {0, 1}w. The actual value of w can depend on the underlying blockcipher and in case
of AES we choose w = 8. Now we define tr(1, x1 · · · xm) = (x1, · · · , xm), tr(1, x1 · · · xm) = tr(x1 · · · xm) :=

«1 x2 · · · xmx and inductively define 1

«1tr(i, x1 · · · xm) = tr(i − 1, tr(1, (x1 · · · xm)) = tr(i − 1, x2 · · · xmx), for i ≥ 2.1

1Proposition 4. The operation tr with 3 variations is a public and weakly 2n−3 -xor universal for Δ = Δpad1
=

{0}.

Proof. By definition, tr(0, x) = x. It is also easy to see that the number of x = x1 · · · xm such that

«1 «1 «1 «1 «1 «1 x2 · · · xmx = c or x3 · · · xmx x = c or x4 · · · xmx x x = c1 1 2 1 2 3

has at most eight solutions for any fixed constant c. So the condition W1 is true. The condition W2 trivially
holds since Δ = Δ1 = {0}. One can also show that the number of solutions of tr(i, x) ⊕ tr(j, x) = c is at most
four for any fixed constant c and 0 ≤ i = j ≤ 3. Combining all these observations we can see that condition

1W3 is true. Thus, tr is a weakly 2n−3 -xor universal.

Theorem 5. (Security Bound of GCBC2)

Advprf (q, σ) ≤ σ(σ−1) + Advprp(σ)GCBC2 2n−5 e

Proof. We apply the result of the above two propositions to the generalized cbc security bound (see Theo
rem 3).

6 Conclusion

In this paper we view many popular cbc type message authentication algorithms in a unified way. In particular
we introduce a wide class of authentication algorithms called generalized cbc algorithms. This class contains
almost all known cbc type secure authentication algorithms. Moreover, we have found two more secure
constructions GCBC1 and GCBC2 from this class which are optimum in key size and number of blockcipher
invocations. These constructions are significantly faster than the widely used candidates OMAC and CMAC
for short messages. We also characterize which generalized cbc constructions are prf-secure. We hope the
idea of generalizing cbc constructions can also help us to generalize other similar constructions in different
security goals.

References

1.	 Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In Neal
Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

2.	 Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade construction
and its concrete security. In FOCS, pages 514–523, 1996.

3.	 Mihir Bellare, Roch Guérin, and Phillip Rogaway. Xor macs: New methods for message authentication using
finite pseudorandom functions. In Don Coppersmith, editor, CRYPTO, volume 963 of Lecture Notes in Computer
Science, pages 15–28. Springer, 1995.

4.	 Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message authentication
code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

5.	 Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved security analyses for cbc macs. In Victor
Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 527–545. Springer, 2005.

6.	 Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Vaudenay [23], pages 409–426.

7.	 Mihir Bellare, Phillip Rogaway, and David Wagner. The eax mode of operation. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 389–407. Springer, 2004.

8.	 John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication.
In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer, 2002.

9.	 John Black and Phillip Rogaway. Cbc macs for arbitrary-length messages: The three-key constructions. J.
Cryptology, 18(2):111–131, 2005.

10.	 Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci., 18(2):143–154,
1979.

11.	 Joan Daemen and Vincent Rijmen. The design of rijndael: Aesthe advanced encryption standard., 2002.
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf.

12.	 Morris Dworkin. Recommendation for block cipher modes of operation: The cmac mode for authentication.
http://csrc.nist.gov/publications/nistpubs/index.html#sp800-38B.

13.	 Shai Halevi. Invertible universal hashing and the tet encryption mode. In Alfred Menezes, editor, CRYPTO,
volume 4622 of Lecture Notes in Computer Science, pages 412–429. Springer, 2007.

14.	 Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the merkle-damg̊ard scheme with a permu
tation. In ASIACRYPT, pages 113–129, 2007.

15.	 Tetsu Iwata and Kaoru Kurosawa. Omac: One-key cbc mac. In Thomas Johansson, editor, FSE, volume 2887 of
Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

http://csrc.nist.gov/publications/nistpubs/index.html#sp800-38B
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

16.	 Tetsu Iwata and Kaoru Kurosawa. Stronger security bounds for omac, tmac, and xcbc. In Thomas Johansson and
Subhamoy Maitra, editors, INDOCRYPT, volume 2904 of Lecture Notes in Computer Science, pages 402–415.
Springer, 2003.

17.	 Kaoru Kurosawa and Tetsu Iwata. Tmac: Two-key cbc mac. In Marc Joye, editor, CT-RSA, volume 2612 of
Lecture Notes in Computer Science, pages 33–49. Springer, 2003.

18.	 Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably secure macs from differentially-uniform permutations and
aes-based implementations. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer
Science, pages 226–241. Springer, 2006.

19.	 J. Patarin. Etude des generateurs de permutations bases sur le schema du d.e.s. Phd Thesis de Doctorat de
l’Universite de Paris 6, 1991.

20.	 Ronald L. Rivest, Matthew J. B. Robshaw, and Yiqun Lisa Yin. Rc6 as the aes. In AES Candidate Conference,
pages 337–342, 2000.

21.	 Phillip Rogaway. Bucket hashing and its application to fast message authentication. J. Cryptology, 12(2):91–115,
1999.

22.	 Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive,
Report 2004/332, 2004. http://eprint.iacr.org/.

23.	 Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Science. Springer, 2006.

24.	 Kan Yasuda. ”sandwich” is indeed secure: How to authenticate a message with just one hashing. In Josef
Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP, volume 4586 of Lecture Notes in Computer Science,
pages 355–369. Springer, 2007.

http:http://eprint.iacr.org

