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We present a unified treatment of frequency-standard biases that vary significantly during 
the period of measurement. We introduce three time-dependent weight functions built 
from the solution of the unperturbed equations of motion for a two-level system. By 
integrating a weight function together with the time dependence of a perturbation over 
the excitation period we find the change in the lineshape and can deduce any biases. The 
same weight function may be used for treating more than one cause of a bias. 

1. Introduction of weight functions 

We summarize a formulation based on the time-dependent Schrodinger 
equation as presented in [1]. A corresponding analysis may also be done by use 
of the three-component equations derived from the density matrix [2, 3]. 

The Hamiltonian for a two-level system excited by radiation at 
frequency ffi can be written H =-~oz +box ' where the OJ are the Pauli spin 

matrices. We have introduced the abbreviation ~ =+(00-000 ) for one half the 

detuning from the atomic resonance frequency ffi o. Similarly, b is one half the 
Rabi frequency associated with the excitation. The coefficients band LI are both 
real and may be time-dependent. We have applied the rotating-wave 
approximation and redefined the phases of the wave-function components to 
eliminate the rapid time dependence of the coupling coefficient b [1]. 

The components a and {3 of the wave function obey the time-dependent 

SchrOdinger equation, 

ida! dt =-~a+bp 
( 1)

idp!dt=ba+~p , 

with the initial conditions a(O) = 1 and (J(O) = O. The probability that a 

transition has occurred after excitation for a period "t is then P = !,8(t)12
• 

A two-level perturbation Hamiltonian can be represented by 

7--'-t =Ii Li Gi(t)Oi ' where the index i ranges over x, y, z and the G/t) are real. 

The x component of the sum represents a perturbation in the amplitude of the 
exciting field. The y component represents a perturbation in the phase of the 
exciting field. The z component represents a perturbation in either the 
frequency of the exciting field or the energy-level separation. 
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The presence of a perturbation alters the wave function by '\)J), which 

satisfies in!!... WI = HWI +7-4W to first order in the perturbation. A formal . dt 
solution to this equation at time T is 

WI (T) == -(if n)U(T,O) rU-I (t,O) 7-4 (t)W{t)dt, 

where U(t,O) is the evolution matrix for the unperturbed system. The wave 

function correction '\)JI is thus expressed as an integral over the time dependence 

of the perturbation with functions known from the solution of the unperturbed 
SchrOdinger equation. 

To first order the correction to the transition probability is also an 
inregral over the perturbation with a function built up from solutions of (I): 

~ (T) == rL j lV; (T, t) Gj (t)dt . (2) 

We call the real functions W;(T,t) weight functions, because they weight the 
averaging of the perturbation time dependence. Each weight function depends 
on intermediate and final times, as well as the unperturbed excitation amplitude 
band detuning A Each weight function can be expressed in terms of the 

unperturbed probability amplitudes a and f3 satisfying (1) as follows: 

Amplitude weight function: W. (T,t) = Im{2a(T)*~( T) *[a (t / -~(t /]} (3) 

Phase weight function: Wy (T,t) = Re{ 2a(T) *~( T)*[a(t)2 +~(t)2]} (4) 

Detuning weight function: W, (T,t) =- Im[4a (T) *~( T) *a(t) ~(t)J. (5) 

The detuning weight function is equivalent to the sensitivity function used in 
analysis of the Dick effect [3,4]. 

In figure 1 we plot the three weight functions as a function of t for half
sine-wave Rabi excitation b (t) == (1r / 2)bo sin (m / 'l'). These functions were 
found by inserting numerical solutions of (1) for a and ~ into (3)-(5). 

1.1. Propertjes of Weight Functions 

From the symmetries of the real and imaginary parts of a and ~, we 
find that Wx is an even function of the detuning ~, while Wyand Wz are odd 
functions. Thus an amplitude perturbation adds a symmetric contribution to the 
lineshape but does not shift the resonance frequency. Phase and detuning 
perturbations add asymmetric contributions to the lineshape and may shift the 
resonance frequency. 
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Fig. 1. Weight functions for Rabi excitation evaluated at boT = O.501t (optimum excitation) and� 
~T = 0.5441t (halfwidth of the Rabi lineshape).� 

From the time symmetry of the unperturbed Schrodinger equation we 
find that if the unperturbed excitation amplitude bet) is symmetric about the mid
excitation time 't/2, then Wx and Wz are symmetric about 't12, while Wy is anti
symmetric. Conversely, if bet) is antisymmetric about time 't/2, then Wyand Wz 

are symmetric about 't/2, while Wx is antisymmetric. These symmetries combine 
with the time symmetries of perturbations to null certain effects. 

1.2. Relations of weight functions 

From (1) and the definitions (3)-(5) we deduce that the weight 
functions obey the following differential equations: 

aw x / at = 2dWy� 

aw / at = -2dW - 2bWz.�y x 

awz /at =2bWy 

These equations have.the same form as the three-component equations [2,3], but 
have different initial conditions. 

2. Biases in Rabi excitation 

Consider slow square-wave modulation of the exciting frequency with 
amplitude COm' We define the resonance position by that detuning oco that makes 
the signals at the detunings com+oco and -com+oco equal. To first order, this 
resonance position becomes &v =- ~ (tV )/ap(tV )/atV. To obtain a bias, we m m 

compute the numerator from (2) and the denominator from the unperturbed 
lineshape. 
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Suppose the atomic resonance frequency varies during the period of 
excitation. The z-component of (2) tells us how to average the variation. Figure 
1 shows that the detuning weight function emphasizes the mid-time part of the 
variation. Any asymmetric part of the variation averages to zero. 

As an example of a phase perturbation, consider phase modulation at 

frequency Q with half Rabi amplitude b l and initial phase If>. It can be 

represented by the perturbation function Gy = bl sin (Qt +<p). If we add and 

subtract t Q't to the argument of the sine we can rewrite it as follows: 

sin (Qt + <p) = sin Q (t - t 't) cos (t Q't +<p) +cos Q (t - t 't) sin (t Q't +<p) . 

For excitations symmetric about t = t't , the phase weight function Wy is anti

syriunetric. The second term is symmetric, hence its integral with Wy vanishes. 
The factor cos(tQ't+<p) in the first term is independent of t, hence may be 

remoyed from the integral. The change in lineshape reduces to 

~ =rWy ( T, t) bl sin Q (t - t T) dt cos (t Q T +qJ) . 

The final cosine factor completely describes the dependence of PI and the 
corresponding shift on the initial phase. As discussed in [5] any thorough 

average over If> eliminates this first order shift. For constant excitation we can 

perform the integration. The result agrees with that given in (7) of [5]. 

3. Biases in Ramsey excitation 

Ramsey excitation consists of two short periods of excitation separated 
by a relatively long "drift" period T free of excitation. Weight functions for 
Ramsey excitation are still defined by (3)-(5), but the probability amplitudes 
now refer to the complete cycle spanning both excitations. The integral (2) must 
span both excitations. The symmetries of the weight functions are the same as 
given before. But note that time symmetry is now about the midpoint of the 
drift time. 

Figure 2 shows the shape of the three weight functions as a function of 
time for T = 4't' and 2 dB below optimum excitation. All of Wx and the central 
part of Wy vanish when the excitation is exactly optimum. 

Consider first that the atomic resonance 0)0 is changing, as it might in 
an inhomogeneous magnetic field. During the drift time, Fig. 2 shows that Wz is 
constant. Hence the unweighted time average of 0)0 is adequate. Changes in 0)0 

during excitation are underweighted toward the beginning of the first excitation 
and the end of the second excitation. 

The following four causes of frequency biases can all be interpreted as 
perturbations of phase and all treated using the same weight function Gy: end
to-end cavity phase shift, microwave leakage, distributed cavity phase shift and 
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FIg. 2. Weight functions for Ramsey excitation evaluated at 2bol: = O.401t and 2!:>T = .SOlt 

(halfwidth of a Ramsey fringe). 

sidebands or spurs on the exciting radiation. They differ in the regions over 
which the integral in (2) is zero. 

For example, the perturbation effect of phase modulation is found by 
use of the same perturbation function, as in the Rabi case. But the integration 
now extends over both excitation regions. For symmetric excitation about the 

mid-time t = +T + 't, we can factor out the initial phase dependence, just as we 

did in the Rabi case. We then find the perturbation transition probability 

The symmetry of the integrand assures us that the integration result is the same 
for both excitation regions. For constant excitation the integral· can be 
evaluated. The result is in agreement with (15) in [5], but the derivation here is 
much shorter. 

A more detailed paper with additional examples is planned for, 
publication elsewhere. 
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