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Abstract

We define a class of matroids A for which a fully polynomial random-
ized approximation scheme (fpras) exists for counting the number of bases
of the matroids. We then show that as the number of elements in a matroid
increases, the probability that a matroid belongs to A goes to 1. We thus
provide a fpras for counting the number of bases that applies to almost all
matroids.

The general problem of counting the bases of matroids represented by an in-
dependence oracle is known to be #P-complete and so it strongly suggests that
no polynomial time algorithm for this problem exists. Further, it has been shown
that under this model, even finding a deterministic approximation for the number
of bases is #P-complete [1]. Consequently, a majority of research on this prob-
lem has been in creating randomized approximation schemes for estimating the
number of bases (for example [3, 2]).

While several randomized schemes have been produced, these schemes tend
to be complicated and are able to count only specialized classes of matroids. In
contrast, Chavez-Lomeli and Welsh [2] gave a very simple randomized algorithm
for counting the bases of a matroid provided that the matroid belongs to a class
with a property that they termed frequent. We extend the result of Chavez-Lomeli
and Welsh to show that the bases of almost all matroids can be approximated
using their algorithm. Our result does this by proving a conjecture of Chavez-
Lomeli and Welsh [7] that there exists a frequent class containing a majority of all
matroids.

To describe the Chavez-Lomeli and Welsh result, we first define the frequent
property. We use the notation that if M is a matroid on a set E, then we denote
b(M) and r as the number of bases and the rank of M respectively. The class of
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all matroids is denoted as G and the set of all matroids with exactly n elements is
Gn. A class C of matroids is frequent if there exists a polynomial p such that if
M ∈ C on n elements has r rank, then

b(M) · p(n)≥
(

n
r

)
Chavez-Lomeli and Welsh’s main result is that for any frequent class there exists
a fully polynomial randomized approximation scheme (fpras) for estimating the
number of bases for the matroids in that class.

Our contribution is to show that if we pick any number ϕ > 5/2 then for
the bound p(n) = nϕ almost all matroids satisfy this condition. We define the
following classes of matroids

An =
{

M |M ∈ Gn and b(M)≥
(

n
r

)
/nϕ

}
and

A =
⋃
i≥0

Ai

From a result in the Chavez-Lomeli and Welsh paper, it already follows that all
paving matroids must be in A .

We use the class A to create Algorithm 1. This algorithm is a slight modi-
fication of the original Chavez-Lomeli and Welsh algorithm and the proof that it
is a fpras for all matroids in A follows directly from their paper. What we show
is that almost all matroids are in A and so the Algorithm 1 must almost always
work. More formally, we give the following theorem.

Theorem 1
lim
n→∞

|An|
|Gn|

= 1

We start by defining a function f between the class of all matroids and a subset
of the strings over the alphabet {0,1}. In other words, f : G → S where S ⊆
{0,1}∗. A matroid M is uniquely encoded by f with the following procedure. We
enumerate all the ways to select r base elements from the n element ground set.
Each base in M is specified by its order in the enumeration of the selection of its
rank elements. To make the string unique, we list all the bases in their enumeration
order. Specifying all the bases of M requires b(M) · dlog2

(n
r

)
e bits. In addition,

we need to record the sizes of n and r. They require dlog2 ne and dlog2 re bits
respectively and we add them as prefixes to the string encoding the bases. In order
to be able to distinguish the sizes of n and r from the encoding of the bases, we
use the standard technique of repeating each bit in the n and r fields and using the
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Require: a matroid M ∈A

Ensure: Pr
[
| Z

b(M) −1|> ε

]
≤ 1

4
Determine rank r of M
n← |E|
t← d4 ·nϕ · ε−2e
for i← 1 to t do

Select uniformly at random an r-subset A of E
if A is base of M then

Zi← 1
else

Zi← 0
end if

end for
Ẑ← Z1+Z2+...+Zt

t
Z← Ẑ ·

(n
r

)
return Z

Figure 1: Fully polynomial random approximation scheme for counting the num-
ber of bases for any matroid in the class A

sequence 01 as a separator between these fields. Thus the number of bits needed
to uniquely encode any matroid M using f is

| f (M)|= b(M) · dlog2

(
n
r

)
e+2 · dlog2 ne+2 · dlog2 re+4

Using this function we now define a class of matroids which uses the Kol-
mogorov complexity K(s) of its string mapping s as its membership criteria

F c
n = {M|M ∈ Gn and K( f (M))≥ blog2 |Gn|c− c}

for the natural number c ≥ 0. In other words, F c
n is the set of all matroids with

n elements and are c-complex. From a simple counting argument (see theorem
2.2.1 in [5]), it follows that

|F c
n |
|Gn|

> 1−2−c

We want to show that for all c≥ 0 there exists a constant pc ∈ N such that for
all n≥ pc if M ∈F c

n then b(M) ·nϕ ≥
(n

r

)
. That implies that for all n≥ pc

F c
n ⊆An

and so our result would be proved.
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To see this, choose an arbitrary M ∈F c
n . From the definition of F c

n , we know
that

blog2 |Gn|c− c≤ K( f (M))≤ b(M) · log2

(
n
r

)
+2 · dlog2 ne+2 · dlog2 re+4+a

where a is a constant that represents the additional number of bits needed to en-
code a Turing machine which has the string f (M) encoded in it and simply prints
the string out. Using a result of Knuth[4], we put a lower bound on the size of the
class Gn.

log2 log2 |Gn| ≥ n− 3
2

log2 n+O(log logn)

Combining these two results, we get

n− 3
2

log2 n+O(log logn)≤ log2 K( f (M))+ c≤

log2 b(M)+ log2 log2

(
n
r

)
+O(log logn)

If we assume that M 6∈A , i.e. b(M) <
(n

r

)
/nϕ then

n− 3
2

log2 n+O(log logn) < log2

(
n
r

)
−ϕ log2 n+ log2 log2

(
n
r

)
+O(log logn)

Since n > log2
(n

r

)
then

n− 3
2

log2 n+O(log logn) < n−ϕ log2 n+ log2 n+O(log logn)

or equivalently (
ϕ− 5

2

)
· log2 n < O(log logn)

Since ϕ > 5
2 then for n large enough this statement is always false. Thus, for any c

there can be at most a finite number of sets F c
n which contain a matroid M where

b(M) ·nϕ <
(n

r

)
. �

There are two notes concerning the practicality of this algorithm we should
mention. The first is that even though we do not know if an arbitrary matroid is in
the class A , we can use the Chernoff bound while our algorithm is performing its
sampling to verify the condition.

A second point is that although we have shown that the algorithm can be ap-
plied with a probability approaching 1 to large matroids there is a question about
how well it applies for smaller matroids. While not a complete answer, it can be
quickly verified using Mayhew and Royle’s database of small matroids [6] that all
matroids with at most nine elements are in the class A for any ϕ > 5/2. It seems
that finding a matroid not in A , even for small matroids, is the rare exception.
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