MNISTIR 5971

StopWatch User’s Guide Version 1.0

William F. Mitchell

. 5. Department of Commerce

Technology Administration

Mational |nstitute of Standards and Technology
Infarmation Technology Labaratory

Gaithersburg, MD 20899 USA

March 3. 1997

STOoPWaATCH User’s Guide Version 1.0

William F. Mitchell
Infarmation Technology Labaratory
National Institute of Standards and Technology
Gaithersburg, MD 20809 USA

March 3, 1997

Abstract

STorWarcH iz a Fortran 90 module for portable, easy-to-use measurement of execution time.
It supports four clocks = wall clock, CPT clock, user CPU clock and system CPTU clock =
and returns all times in seconds. It provides a simple means of determining which clocks are
available, and the precision of those clocks. STOPWATCH is nsed by instrumenting your code
with subroutine calls that mimic the operation of a stop watch. STorWarcH supports multiple
watches, and provides the concept of watch groups to allow functions to operate on multiple
watches simultanecusly.

The StorWarcy software and documentation have been produced as part of work done by
the U.5. Government, and are not subject to copyright in the United States.

The mention of specific products, trademarks, or brand names in the SToPWaTCH documenta-
tion is for purposes of identification only. 3uch mention is not to be interpreted in any way as an
endorsement or certification of such products or brands by the National Institute of Standards
and Technology. All trademarks mentioned herein belong to their respective owners.

Contents

1 Imtroduction 3
2 Quick Start 4
3 Obtaining and Compiling STorWarTcH B
4 Using STOPWATCH T
4.1 Watches, Clocks and Watch Groups 0 o 0 o o o o o e T
42 Operationson Watches L L a
4.3 Operations on Watch Groups 0 . 0 0 i i e e e e e e e 10
4.4 Options and System Inguiries _ L L. e e e 10

B Examples 12
8 Trouoble Shooting 13
T Subroutine cpu_second 15
8 Acknowledgments i)
8 Heference Manual 18
CREATEWATCH e e e e e e e e e o 19
CREATE WATCHGROUP e e e e e e e e o 22
DESTROY WATCH e e e e e e e 24
DESTROY WATCHGROUP e e e e a7

END PAUSE_WATCH o e e e e e e e 29

INQUIRY STOPWATCH i iz

JOINWATCHGROUP .. o o e e a4
LEAVE WATCHGROUP o . . i a8
OPTION STOPWATCH _ . o o i a8
PATUSE.WATCH e e 41
PRINT WATCH o e e e s 44
READ WATCH o e e e 47
RESET WATCH e e e s a0
START WATCH o e e e e e e 53
STOP WATCH e A6

Chapter 1

Introduction

STorWarcH is a Fortran 90 module for measuring execution time of program segments. Mea-
suring execution time is an important part of software development, especially for benchmark-
ing and performance tuning. Unfortunately, Fortran has never supported the measurement
of execution time, except through non-portable vendor extensions. Fortran 890 introduced a
subrontine for measuring wall clock time, but overlooked the more desirable CPTU time. It is
anticipated that the next Fortran standard, Fortran 95, will include a CPU time subroutine,
but it does not break the time into “wser” and “system™ time like many CPU clock rontines,
and the standard still does not gnarantee that either the wall clock or CPT clock rontines will
necessarily contain clock information. Moreover, direct use of the routines can be unwieldy,
requiring multiple variables to keep track of returned values, differencing the returned values,
and conversion of the values to useful units.

STorWaTcH is designed to be & portable, easy-to-nse means of measuring execuntion time. It
supporis the wall clock, CPU clock, & breakdown of the CPU clock into user and system times,
and returns all times in seconds. It provides a simple means of determining which clocks are
available, and the precision of those clocks. It is written in a style that allows it to be nsed
with the subset langnages ELF80 and F, as wall as full Fortran 80 and Fortran 85 compilers.

STorWarcH is used by instrumenting your code with subroutine calls that mimic the oper-
ation of a stop watch. The primary rouftines are start_watch, stop_watch, reset_watch,
read _watch and print_wateh. STopWarcH supports multiple watches, and provides the
concept of watch groups to allow functions to operate on multiple watches simultaneously.

Chapter 2

Quick Start

This saction provides just enough information to start using the basic featnres of STOPWATCH.
K you run into frouble or want to learn about the advanced features, read the rest of the
StorWarce User's Guide and the man pages.

1. Select a makefile that matches the configuration of your system. The makefile names
are of the form mf.<os>.<compiler>.<cpusec> where <os> is the operating system,
< pompiler> is the Fortran ¥ compiler, and < cpusec> is the form of subrootine epu_second.
If you don't find your system, select & makefile for & similar system and modify it. The
makefile contains examples of how to compile your program along with STopWarcw.

2. Using an example program as & model (for example, “simple”), modify the makefile to
compile your program.
3. In each program unit that calls & SToPWaTCH subroutine, insert the statement
uge stopwatch
4. Declare one or more variables to be of type watchtype, for example
type (watchtype] w
5. Instrument your code as appropriate with subroutine calls:

call create_watchiw]
call start_watchiw)
call stop_watch{w)

call reset_watchiw)
call print_watch(w)
call read_watch{val w,s]
call destroy_watch(w]

where s in read wateh is one of the character strings 'cpn’, "user', "sys', or 'wall’, de-
pending on what clock you want to read, and val iz & real variable (of defanlt kind) in
which the clock value iz returned.

Chapter 3

Obtaining and Compiling StopWatch

Information on STOPWATCH is available at the World Wide Web page
http://math.nist.gov/StopWatch.

STOPWATCH can be obtained by anonymous ftp from

ftp:/fmath.nist. gov/pub/mitchall fatopwatch/atopwatch-T.x. 102

where x.x is the version number. This is a gripped tar file which must be uncompressed with
gunzip and expanded by tar.

Untarring the file will create a directory called atopwatch with subdirectories doc and arc. doc
containg the [ser's (Guide in postscript and html formats, man pages for every STopWarch
subrontine, and an overview man page. 8rc contains the source code for the stopwatch module,
example programs, and makefiles.

The makefiles illustrate how to compile STOPWATCH along with your program. A makefile is
provided for several systems; see Table 3.1 for a list of the makefiles and the systems they have
been tested on. If your system matches one of these, then you need only modify the makefile to
use your Fortran 80 programs instead of the examples. I your system is not listed, youn might
need to modify one of the makefiles to match your system configuration. You might also need
to create a new cpu_second subrontine; see section 7. If you succeed in running StorWarcs
on a different system, you can contribute your makefile and for cpu_second by sending email
to william.mitchellénist.gov.

Contributions will be made available on the WWW page, so check there first before writing

FOUr own.

makefile computer operating system compdler
makelf bat Pentinm Pro Windows NT 3.51 Lahey EM90 v. 2.00¢c
maksalf bat FPentinm 90 Windows NT 3.51 Salford FTNSD V2,15
mf.aix.xlf atime_ IEM RS /6000 AIX 4.1 XLF 4.1
mf.cray.cfil.cray Cray CH0/6256 UNICOS 5.0.3.2 CFan 1.0.3.5

mf.dec.decflil etime
mi.dec.dectf3i {45

mf hpux. hpfUl.etime
mf hpuxl).nag etime
mf hpuxB.nag.etime
mf linnxaout.nag.cl
mf linuxelf F.c2
mf.mac.absoft nil

mf.solaris fujitsu.etime
mf.solaris.sunsoft etime
mf.sund epc.etime
mf.sund.nag etime

DEC AlphaServer
2100 EI,I'EE!D
DEC AlphaServer
2100 5 /250
HF 9000/710
HF EIEIUEII,I'T.'!E
HFP Ell:lﬂl:ll,l"i'.'iﬁ-
BMAsDX-50
BAa D X-50
PowerMac
E.ﬁl]ﬂll"lﬁﬂ
Sun SPARC 10
Sun SPARC 10
Sun SPARC 10
Sun SPARC 10

Digital UNIX V4.0
Digital UNIX V4.0

HP-TX 10.10
HP-TX 10.20
HP-TX 9.05
Linux 1.2.13
Linux 1.2.13
MMacO5 V753

Solarie 2.3
Sun08 5.4
Sands 4.1.3
Sunds 4.1.1

Digital Fortran 90 V4.1
Digital Fortran 90 V4.1

HF Fortran 890 1.0
NAGWare FOD 2.2 [284)
NAGWare FO0D 2.1 [678)

NAGWare Fi0 2.1

Imaginel F Compiler, R.96
Abhsoft FOO V1.0

Fujitsu Fortran 90 2.03
Sunsoft FO0 1.1
EFC Fortran G0 V. 1.1.2
NAGWare FO0Q 2.1

Table 3.1: Awvailable makefiles.

Chapter 4

Using StopWatch

The entities in SToPWaTCH that have public accessibility are two derived types and fiftesn
subroutines. Any program unit that references any of these entities must use the stopwatch
maodule, i.e., must contain the statement

use stopwatch
The derived types are:

s watchtype - usad for declaring a variable to be a watch

» watchgroup - used for declaring a variable to be a handle for a group of watches

These two types have public accessibility, but the internals of the type are private. Any opera-

tions performed on a variable of one of these types must be performed by one of the STorWarch
subroutines.

This section describes, in general terms, the operations that can be performed by the SToOP-

WarcH subroutines. The formal interfaces and detailed descriptions of the routines can be
found in Section 9.

4.1 Waitches, Clocks and Watch Groups

A watch is & variable declared to be of type watchtype. It can be passed to subrountines as an
actnal argnment or through modules like any Fortran variable, but can only be operated on by
the STorWarcH subroutines. Watches must be created by subroutine create_watch before
they are used. Attempting to use a watch that has not been created will generate a Fortran
90 error, hecaunse this amounts to passing a pointer with nndefined sssociation status to the
Fortran intrinsic function associated. Watches must be destroyed when no longer useful. For
example, consider & local variable of type watchtype in a subroutine. Since the contents of

T

a local variable are lost when the subroutine returns, the watch should be destroyed before
returning to the calling program. Failure to destroy watches can lead to a memory leak.

» create_watch - creates a watch

¢ destroy watch - destroys a waitch

Watches can optionally be given a name (up to 132 characters) throngh an optional argnment,
name, in create_watch. This name is nsed in error messages and print_watch to identify the
watch in the printed output.

Different applications demand different definitions of “time". SToPWATCH supports four clocks
in each watch, with each clock measuring a different concept of time. All of them measure time
in secomnds.

» user - the amonnt of CPU time used by the user's program

» 5y8 = the amount of CPU time used by the system in support of the user’s program
¢ cpu - the total CPU time, i.e., user4sys

s wall = the wall clock time, 1.e., elapsed real time

It is not reguired that all clocks be used. A watch can be created with any combination of the
four clocks. You can also specify & set of defaull clocks to be used whenever the clocks are not
explicitly determined.

Since Fortran 90 does not contain an intrinsic function for CPU time, the implementation of
the cpu, sys and user clocks is system dependent. Some implementations may support only cpa
and wall, not user and sys. Some implementations may support only wall. Since the Fortran
40 standard requires the existence of a system_clock subroutine, but does not require that
it provide clock information, it is possible that some implementations might not support wall.
Clock availability can be determined by inguiry stopwateh (see Section 4.4). Unavailable
clocks will automatically be removed from the set of default clocks, but if a clock that s not
available is explicitly requested, a warning message will be generated.

SToPWATCH supports multiple watches simultanecusly. (ften it is useful to perform the same
operation on several watches. This is essential for correct operation of pause_watch and
end_pause_watch and is convenient for procedures like read watch, print_watch and re-
set_watch. Tofacilitate this, SToPWATCH supports the concept of wateh groups. When calling
a SToPWATCH subroutine, & watch group can be specified instead of & watch. The group is
referenced by a variable of type watchgroup. Watch groups must be created before they are
used. Attempting to use a watch group that has not been created will generate a Fortran
90 error, because this amounts to passing a pointer with undefined association status to the
Fortran intrinsic fanction assoeciated. Watch groups must be destroyed when no longer nseful.
The watches themselves are not destroyed, only the gronping of them. Failure to destroy watch
gronps can lead to a memory leak.

» create_watchgroup - creates a new watch group

» destroy watchgroup - destroys a watch group (but not the watches in the group)

Most STOPWATCH snbrountines take walch as the first dommy argument, and accept several
forms of watch. The forms are:

» type (watchtype)] watch - a single watch
» type (watchtype) watch(:] = an array of watches

» type (watchgronp) watch - a watch group handle

In most STOPWATCH routines, an array of watches can be specified by an array constructor in
the calling statement, for example:

type (watchtype) watch :: wl, w2, w3
gall print_watch((/fwl,w2,%3/f]]

However, this can not be used in routines where watch has intent QUT or intent INOUT,
becanse the array comstructor is actually an expression, not a list of the variables. Currently
this prohibits the nse of array constructors in the arguments to the routines ereate watch and
destroy_watch.

Most STOPWATCH subroutines take ciock as the (optional) second duommy argument to deter-
mine which of the four clocks will be affected by the action. clock can be one of the character
strings 'nser’, 'sys’, ‘cpu’, or 'wall’, or can be an array of such character strings to specify
more than one clock. Since clock is always intent IN, an array of clock types can be built with
an array constructor. However, note that Fortran 90 requires all character strings in such a
comstruction to have the same length. Thus 'sys’ and "cpn’ shounld be padded with a blank, as
in:

call atart_watch(watch, (/'user',6'sys ",'cpu '/)]

If the optional argument clock is omitted, the corrent set of default clocks is nsed. The set

of default clocks is set with option_stopwatch (see Section 4.4) and initially consists of all
available clocks.

4.2 Operations on Watches

STorWarch is used by inserting subrontine calls into your program. These snhroutine calls
correspond to the actions performed with a common stop watch. The basic operation of &
watch involves starting it, stopping it, and resetting it's value to 0.

H

» start_watch - starts an idle watch, like the Start (Stop button on a stop watch
» stop_watch - stops & running watch, like the Start/Stop button on a stop watch
¢ reset_watch = sets the clocks on a watch to 0.0, like the Keset button on a stop watch

Of course, running a stop watch iz of little use unless you can see what it says. The following
routines can be called regardless of whether a watch is running, stopped or paused.

» read _wateh - returns the current clock value of a watch, like looking at the display of &
stop watch

print_watch = prints the current clock value of & watch to an output device. To push
the analogy to the limit, imagine a stop watch with a printer attached to it.

read _watch returns the clock value in the first argument. The resnlt variable is either a
scalar, a pointer to an array of rank one, or & pointer to an array of rank two depending on
whether waéch and clock are scalars or arrays. Unless it is a scalar, the result variable should
be deallocated after use to avold memory leakage.

When measuring CPT time, it is often desirable to not include the time nsed by certain parts
of the code, such as printing or graphics. In & subroutine, yon might not know which of the
clocks are currently running, so you can not simply stop them before the If0 and start them
up again after the [/0. For this, STorWaTCH provides the panse function.

s pause_watech - temporarily suspend any of the specified watches that are running

» end_pause wateh - resume suspended watches that were running before panse_watch

was called

4.3 Operations on Wateh Groups

Besides create_watchgroup and destroy_watchgroup, there are two operations that can be
performed on watchgroup variables:

s join_watchgroup - adds a watch to a watch group

o leave_watchgroup - removes a watch from a watch gronp

4.4 Options and System Inquiries

Subroutines are provided i{o set several options within SToPWATCH, to determine the current
value of these options, and to determine system dependent values of the implementation.

1

option_stopwateh = sets options within SToPWATCH.

inquiry_stopwatch = returns values of options and system dependent values

All arguments to these subroutines are optional. All arguments to option_stopwateh are
intent IN, and all arguments to inquiry_stopwatch are intent QUT. The options that can be
set by option_stopwatch and read by inguiry_stopwatch are:

defoult_clock - character(len=") or character(len=")(:) (must be an array in inquiry _stopwatech).
Specifies one or more clock types to be nsed as the defanlt clocks when the clock argu-

ment is omitted. Initial defaunlt (/'cpu *,'vser'sys ','wall'/). Unawvailable clocks will be
automatically dropped from the list.

i0_unil_print - integer. Specifies an [/ unit for printed output from routine print_wateh.
Initial defaunlt is8 6. The specified unit must be open for writing sequential formatted

output.

i0_unil_error - integer. Specifies an [/ wnit for printed error messages. Initial defaunlt is
fi. The specified unit must be open for writing sequential formatted output.

print_errors = logical. Flag to specify whether or not error messages shounld be printed.
Initial default is .true.

abort_errors - logical. Flag to specify whether or not the program should abort on an
error. If the program does not abort, then the requested operation is ignored and axecution
continues. Initial default is false.

print_form - character(len="). Specifies the form for printing time in print_watch.
Currently all the forms print the time to .01 seconds. The valid values are:

= 'gec’. Print seconds as a real number. This is the defanlt.
= 'hh:mm:ss’. Print t{ime as hours, minutes and seconds separated by colons.

= '||hh:jmm:|ss’. The same as 'hh:mm:ss' except hours and minutes are printed only if
they are monzero.

In addition, inquiry _stopwatch takes the following optional argnments:

epu_avail = logical. True if the cpu clock is available in the implementation.
user_avail - logical. True if the user clock is available in the implementation.
sys_avail = logical. True if the sys clock is available in the implementation.
wall_gvail - logical. True if the wall clock is available in the implementation.

cpu_prec = real. The cpu clock precision in seconds, i.e., the smallest amount of time that
the cpu, user and sys clocks can measure.

tweall_prec = real. The wall clock precision in seconds.

rersion = character(len=16). The version number of STOPWATCH.

11

Chapter 5

Examples

The STorWarch distribution contains several example programs to demonstrate how to use

StorWarcH, and to test the installation. These programs are located in the src directory.
Onece you select or create the correct makefile you should be able to compile these examples

with “make prog® where prog is the name of the source file without the .£30 extension.

simple. fi7 - This 18 a short example showing the simplest use of STOPWaATCH.

adpanced, f80) = This example illustrates the use of some of the advanced features of STOP-
WarcH, including array arguments and watchgroups.

overhead. f8{f = This program prints the clock precisions, and measures the amount of time

nsed by calls to SToPWATCH subroutines. As long as the clock precision is much larger
than the overhead of a STorWarch subroutine, STtorWarcH should not increase the

time being measured.

testsw f8) = This is & program that tests most of the functionality of SToPWarcH.
errors. f#{) = This is & program that tests many of the error conditions detected by STop-
Warca.

bomb. f8(t = This program attempts to make STorWarcH crash by uwsing & watch that
has not been created. Kunning this program should indicate how your system handles
this error condition, but there is no guarantee that your compiler will handle the Fortran
errar consistently.

12

Chapter 6

Trouble Shooting

All STorWaTcH subrontines take an optional argument err as the last dommy argument. This

is an INTENT{OUT) integer argument in which a status code is returned. The code is the sum
of the values listed below.

Errors can also be determined throngh printed arror messages. An error message will ba printed

to a specified 1/0 unit (6 by default) if print_errors is TRUE (defanlt is TRUE; see Section 4.4).
The error message contains more detail about the canse of the error than can be obtained from
just the status code, so you should set prinf_errors to THUE if you have trouble determining
the cause of the error.

All errors are non-fatal. If abori_errors is FALSE (default is FALSE, see Section 4.4) the
requested operation is ignored and execution will continune.

The relevant status codes and messages are:

I = operation sucecessful; no errors.

1 = Watch needs to be created. This occurs when you attempt to use a watch that has

been destroyed. Some compilers might also generate this error when yon attempt to use
& watch that has never been created.

2 - Watch is in the wrong state for this operation. This occurs when you attempt to start
a watch that is already running, stop & watch that is not running, ete.

4 - Watch is in an nnknown state. This occurs if SToPWaATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not ocenr, and indicates
an internal bug in STOPWATCH.

B = Invalid clock type. This occurs if clock is present and one of the specified clocks is not

supported by the implementation. See inguiry stopwatch (Section 4.4) to determine
what clocks are available.

168 = Too many clocks specified. This oceurs when the argnment clock iz an array longer than
four.

14

32

i

128

255

12

1024

2044

= Number of names is not equal to number of watches. This occurs in ereate_watech if
the array of watch names 18 not of the same length as the array of watches.

= Character string too long. This occurs when a watch name with more than 132 charac-
ters is passed into create_watch.

= Watch not found in given group. This occurs when you attempt to remowve a watch
from a group that it does not balong to.

= I/ unit is not open for writing. This can ocecur from print_wateh or when printing
ATl EITOT Message.

= Failed to allocate required memory. When a SToPWATCH routine is called with an array
or group of watches, temporary memory is allocated. This error occurs if the allocate
statement returns a nonzero status indicating that memory could not be allocated. Awvoid
memaory leaks by always destroying watches and groups before recreating them, destroying
local variable watches and groups before returning from a subroutine, and deallocating
array results from read_watch.

= Error ocenrred while deallocating memory. This error accurs if the deallocate statement
returns a nongero status while deallocating temporary memaory used for an array or group
of watches. The operation is performed, but be aware that other problems could develop

as a result of the deallocate error.

= Illegal ontput form. This error occurs in option_stopwatch or print watch if the
given print format is not one of the valid strings listed in section 4.4.

14

Chapter 7

Subroutine cpu_second

Althongh Fortran 90 standardized an intrinsic function for wall clock time, it does not inclode
a function for CPU time. At the time of this writing, it is anticipated that a CPU time intrinsic
function will be added to the language in Fortran 85. If this happens, then STopWarch
can become fully system independent once Fortran 95 compilers are widespread. Meanwhils,
STorWATCH requires that a system dependent CP1] time subroutine be provided by the user.
Several versions of this subrontine are included with the STopWarch package. One of these
may work on your system. The current versions, systems they have been tested on, and clock
precizions are shown in Table 7.1. The computers and version numbers of the operating systems
and compilers can be found in Table 3.1. Those based on the Cray routine second and the
Fortran 95 routine cpu_second do not provide the user and sys clocks. The version cpusec.nil f

containg no UPT clock information, and can be used on systems where there is no routine to
measure CPU time. I this routine is nsed, only the wall clock will be available.

K none of the cpu_second versions work on your system, you will have to write your own. The
interface is

subroutine cpu_second(cpn,usar,ayal
real, intent{0UT) :: cpu, user, ays

The first argnment is for CP T time in seconds. Where aveilable, the second and third arguments
should break down the CPT time into “user” and “system® CPT time. If the nnderlying system
does not provide for a way of accessing the breakdown (i.e., has only CPU time), then return
a negative constant in user and sys (for example, user=-1.; asys=-1.). The value returned
in cpu (and user and sys where available) should be a nonnegative real number such that the
difference between two successive calls is the amount of elapsed CPU time in seconds.

K you write a new version of cpu_second because none of the supplied versions worked on
your system, please send this information to the author so that it can be included in the next
releasa.

1h

file basis 08 compiler Cpu wall
precision | precision

cpusec.cl.c times Linux NAGWare FO0 1LE-2 1.E4+0

cpusec.c?.c times Linux Imaginel F 1.E-2 1.E+0

cpusec.cray.fa second UNICOS CFa0 4 F-6 4 E-9

cpusec.etima.f etime HP-TX NAGWare FO0 1LE-2 1.E40

cpusec.etime f90 etime Digital UNIX | Digital Fortran S0 1L.E-3 1.E-4

HP-TX HF Fortran 90 1.E-2 1.E-3

Solaris Fujitsn Fortran 90 1L.E-2 1.E-3

Solaris Sunsoft FU0 8.E-5 1.E-§

Sun()S EP(C Fortran 3 1L.E-2 1.E-3

Sun s NAGWare FU0 1.E-2 2.E-2

cpusec.etime_ U0 gtime AIX xXLF 1L.E-2 1.E-2

cpusec.f35.f30 | cpu_time | Digital UNIX | Digital Fortran 90 4 E-3 1.E-4

cpusec.nil. fH) none Windows NT Lahey ELf90 N/A 1.E-2

Windows NT Salford FTHNY0 N/A 1.E-3

Mac(s Absoft FO0 N/A 1.E-6

Tahble 7.1: Avasilable versions of cpu_second with clock precisions.

1f

Chapter 8

Acknowledgments

I would like to thank:

Ron Boisvert, Roldan Pozo, and Eite Tiesinga for many helpful suggestions.
Karin Kemington, Walt Brainard, Neil Campbell, Neil Carlson, Jeroen Groenenboom, Alan

Hoffman, Stewe Lionel, Christian de Polignac, Mitsn Sakamoto, David Vallance, and Mike Var-
menlen for beta testing or otherwise providing assistance.

17

Chapter 9

Reference Manual

This section contains an alphabetical listing of all STOPWATCH rontines. Each routine is
described in detail, along with diagnostics and examples. The information in this section can
also be obtained online through the man pages.

18

CREATE WATCH

creates and initializes & STOPWATCH watch

SYNOPSIS

subrontine create_watch walch, clock, name, err)

type (watchtype), intent[QOTT) :: watch
OR type (watchtype), intent(QOUT) : watch(:)

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

character(len="*), optional, intent(IN) :: name
OR character{len=*), optional, intent(IN) :: name(:)

integer, optional, intent(OTT) = err

DESCRIPTION

Creates and initializes the specified clocks of the specified watches. Upon return from cre-
ate_wateh, all clocks are not running and have the value 0. All watches must be created
before they are used or added to a watch gronp. In Fortran 90 it is impossible to test whether
or not & watch has been created, and using a watch that has not been created may caunse the

program to crash. It is not an error to create & watch that has already been created, howewver
the prior information and memory locations will be lost. Watches shounld be destroyed (see

destroy_watch(1)) before they are recreated. Also, local variable watches should be destroyed
before returning from a subroutine, to avoid memory leaks.

Omne or more watches must be specified. The argnment watch can be a single variable of type
waichiype (see stopwatch(d)] to create one watch, or an array of type walchfype to create
several watches.

The optional argunment eclock specifies which clocks to create on the specified watch(es). If
omitted, the current defanlt clocks (see option stopwatch(3)) are created. If present, clock
must be a character string containing 'cpu’, ‘user', 'sys’, or 'wall’, or an array of such character
sLTINgES.

The optional argnment name allows you to attach a name to the watch. The name is used when
printing error messages, or when printing clock values using print_wateh. If omitted, the name
of the watch is "unnamed watch’. If present, it must be of the same rank and dimension as
waich. Watch names are limited to 132 characters.

14

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to & specified I/0 unit (unit 6 by defanlt) if prini_errors is
TRUE (defanlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set print_errors to TRUE if you
hawve tronble determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continue execution but the watch(es) will not be created.

See option_stopwatch(3) for further information on print_errors, abort errors and [/ O units.

The relevant status codes and messages are:

]

32

Bl

1024

Mo errors; execution successful.

Invalid clock type. This occurs if elock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

MNuomber of names is not equal to number of watches. This occurs if the array of watch
names, name, is not of the same length as the array of watches, watch.

Character string too long. This ocours when a watch name has more than 132 characters.
The watch is created, but the name is truncated to the first 132 characters.

Failed to allocate required memory. Creating a watch involves allocating memory for it.
Alsn, when ereate_watch is called with an array or group of watches, temporary memory
is allocated. This error occurs if the Fortran allocate statement returns & nonzers status
indicating that memory could not be allocated. Avoid memory leaks by always destroying
watches and groups before recreating them, and destroying local variable watches and
groups before returning from a subrontine.

Error oceurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are created, but be aware that other problems
could develop as & result of the deallocate error.

In addition to the run time diagnostics generated by STOPWATCH, the following problems may

anse:

Since watch has intent OTT, you cannot use an array constructor as an actual argument
to construct an array of watches. Some compilers will recognize this as & compile time
error, but will generate an obscure error message, such as “no specific match for genaric
name”.

In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu ', and pad watch names so they all have the same length (within an
array constructor).

H)

EXAMPLES

type (watchtypel) wil, w2{3), w3
integer arrcode

call create watch{wl)
call create watch(w2, neme=(/'part 1', 'part 2', 'total 'f], err=errcoda)
call create watch(w3, (f'cpun *, 'wall'/), err=arrcoda)

The first call creates the defanlt clocks on a single watch with name 'nnnamed watch’. The
second call creates the defanlt clocks on three watches given as an array and with names 'part
1', 'part 2°, and *total’, and returns a status code. The third call creates one watch with the
cpu and wall clocks, the name *onnamed watch’, and returns a status code.

BUGHS

MNone known.

21

CREATE WATCHGROUP

creates a 3T0PWaTCH watch group

SYNOPSIS

subrontine ereate_watchgroup fwatch, handis, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent{OUT] :: handle
integer, optional, intent(OTT) :: err

DESCHRIPTION

Creates a new watch group and returns a handle for it. A watch group must be created by this
routine before it is passed to any other STOPWATCH routines. In Fortran 90 it is impossible to
test whether or not a watch group has been created, and nsing a watch group that has not been
created may caunse the program to crash. It is not an error to create a watch group that has
already been created, however the prior information and memory locations will be lost. Watch
groups should be destroyed (see destroy_watchgroup(3)) before they are recreated. Also,
local variahle watch groups should be destroyed before returning from a suhrontine, to avoid
memory leaks.

One or more watches may be optionally specified. If watch is present, the watch group will
initially contain the specified watch(es). If waich is omitted, the watch group will initially
be empty. Watches can be added and removed from the group with join_watchgroup and
leave watchgroup., The argument watch can be a single variable of type watchiype (see
stopwateh(3)] to start the gronp with one watch, or an array of type watchiype to start the
gronp with several watches.

The argument handle iz a variable of type watchgroup that will subsequently be used to access
the watch group.
DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by defanlt) if prini_errors is

TRUE (defanlt is TRIUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set prni_errors to TRUE if you

T

hawve tronble determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otharwise, the program will continue execution but the watch group will not be creatad.

See option _stopwatch(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

(1} Mo errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to put & watch that has been
destroyed in the gronp. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

512 Failed to allocate required memory. When a group is created, memory is allocated for
the group. Also, when ereate_watchgroup iz called with an array of watches, tempo-
rary memory i allocated. This error occurs if the Fortran allocate statement returns
a nonzero status indicating that memory could not be allocated. Avoid memory leaks
by always destroying watches and groups before recreating them, and destroying local
variahle watches and groups before returning from a subrountine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate

statement returns & nonzero status while deallocating temporary memory used for an
array of watches. The group is created, but be aware that other problems could develop
gz & result of the deallocate error.

EXAMPLES

type (watchtype) w(3]

type (watchgroup) gi, g2
integer arrcode

call create watchgroup{handle=gl)
call create watchgroup(w, g2, err=arrcoda)

The first call creates an empty group gi. The second call creates the group g2 with three
watches, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable has been created (passed as an
argnment to create_wateh). H a watch that has never been created iz passed into ere-
ate_watchgroup, it might generate a Fortran error due to passing a pointer with nndefined
association status to the Fortran intrinsic function associated. Some compilers will allow this
as an extension to the Fortran 90 standard and recognize that the pointer is not associated, in
which case the “Watch needs to be created” error message is generated.

s

DESTROY WATCH

destroys & SToPWATCH watch

SYNOPSIS

subrontine destroy_watch (watch, clock, err)

type (watchtype), intent(INOTUT) :: watch
OR type (watchtype), intent(INOTUT) :: watch(:)

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Destroys the specified clocks of the specified watches. If the watch has no remaining clocks
after the specified clocks are destroyed, then the watch is destroyed and associated memory
freed. To avoid memory leaks, watches should be destroyed when no longer useful, before being

recreated, and before returning from a subrountine in which the watch is & local variable.

Cme or more watches must be specified. The argnment watch can be a single variable of type
watchiype (see stopwateh(3)) to destroy one watch, or an array of type watehiype to destroy
several watches.

The optional argnment clock specifies which clocks to destroy on the specified watches). If
omitted, the current defanlt clocks (see option_stopwatch(3)) are destroyed. If present, clock
must be & character string containing 'cpu’, *user', 'sys’, or 'wall’, or an array of such character
strings.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, 5o you should set prini_errors to TRUE if you
have trouble determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.

24

Otherwise, the program will continue execution but the watch(es) will not be destroyed.

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

]
1

Bl12

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt to destroy & watch that has
already been destroyed. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

Failed to allocate required memory. When destroy_watch iz called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran allo-
cate statement returns a nonzero status indicating that memory could not be allocated.
Avoid memory leaks by always destroying watches and groups before recreating them,
and destroying local variable watches and gronps before returning from & subrontine.
Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating the memaory for the watch or tem-
porary memory nsed for an array or group of watches. The watches are destroyed, but
be aware that other problems could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by STOPWATCH, the following problems may

anse:

Since wateh has intent OUT, you cannot use an array constructor as an actual argument
to construct an array of watches. Some compilers will recognize this as & compile time
error, but will generate an obscure error message, such as “no specific match for generic
name”.

In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the nght to make a four character string,
for example, 'cpu .

EXAMPLES

type (watchtypel wil, w2(3)
integer errcode

call destroy watch{wl)
call destroy watch{w2, (f'ays ', 'user'f], arr=arrcoda)

The first call destroys the defanlt clocks on a single watch. Assuming the defanlt clocks hawve
not changed since the watch was created, the watch will be destroyed. The second call destroys
the sys and user clocks on three watches given as an array and returns a status code. Assuming
the watch also had the cpu or wall clock, the watches are not destroyed.

25

BUGS

It cannot be determined whether or not a watch variable or watch gronp has been created
[passed as an argnment to create_watch or ereate_watchgroup). If & watch or watch group
that has never been created is passed into destroy_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension to the Foriran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”

error message is generated.

DESTROY WATCHGROUP

destroyes & STOPWATCH watch gronp

SYNOPSIS

subrontine destroy_watchgroupfhandle, arr)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(OTT) = err

DESCRIPTION

Destroys a watch gronp. Only the group is destroyed, not the watches in the group. To avoid
memory leaks, watch groups should be destroyed when no longer useful, before being recreated,
and before returning from a subroutine in which the watch group iz a local variable.

The argument handle is & variable of type wafchgroup that iz the handle for the group to be
destroyed.

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a statnus code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by defanlt) if prini_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set prni_errors to TREUE if you
hawve tronble determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otharwise, the program will continue execution but the watch group will not be creatad.

See option _stopwatch(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

(1} Mo errors; execution successful.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero statns while deallocating memory nsed for the gronp. The
group is destroyed, but be aware that other problems could develop as a result of the
deallocate error.

a7

EXAMPLES

type (watchgroup) gi, g2

integer arrcode

call destroy watchgroup(gl]
call destroy watchgroup(g2, errcoda)

The first call destroys the group gf. The second call destroys the gronp g# and returns a status
code.

BUGS

None known.

END PATUSE WATCH

resumes & paused STOPWATCH watch

SYNOPSIS

subrontine end_pause_watch (watch, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Resumes the running status of the specified clocks of the specified watches that have previously
been pansed (see pause_watch(l)]. Pausing is useful when yon want to temporarily stop
the clocks to avoid timing a small segment of code, for example printed output or graphics,
but do not know which watches or clocks are running. When pause_wateh is called, the
information about which of the clocks were running 18 maintained, so that a subsequent call to
end_pause_watch will restart only those clocks that were running,.

Omne or more watches must be specified. The argnment watch can be a single variable of type
waichiype (see stopwatch(3)) to resume one watch, an array of type watchiype to resume
several watches, or a variable of type walchgroup (see stopwatehid)) to resume the watches in
a group.

The optional argnment clock specifies which clocks to resame on the specified watch(es). If
omitted, the current defanlt clocks (see option stopwatch(3)) are resumed. If present, clock
must be & character string containing 'cpu’, *user', 'sys’, or 'wall’, or an array of such character
strings.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error

it

than can be obtained from just the status code, so you should set prni_errors to TRUE if you
have trouble determining the canse of the error.

If abort errorais TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continne execution but the watch(es) will not be resumed.

See option_stopwatch(3) for further information on prini_errors, abort errors and [/ O units.

The relevant status codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to resume a watch that
has been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BTUGS section.

2 Watch is in the wrong state for this operation. This ocecurs when you attempt to resume
a watch that is currently runmning.

4 Watch 15 in an unknown state. This occurs if SToOPWATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not occur, and indicates
an internal bug in STOPWATCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

512 Failed to sllocate required memory. When end _pause_wateh is called with an array or
group of watches, temporary memory is allocated. This error occurs if the Fortran allo-
cate statement returns a nonzero status indicating that memory could not be allocated.
Avoid memory leaks by always destroying watches and groups before recreating them,
and destroying local variable watches and gronps before returning from & subrountine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are resumed, but be aware that other problems
could develop as & result of the deallocate error.

In addition to the run time diagnostics generated by STOPWATCH, the following problem may

arse:

» In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,

for example, 'cpu .

EXAMPLES

type (watchtypel wil, w2(3)
type (watchgroup) gi

integer errcode

call end paunse watch(wl]

H)

call end pause watch(w2, err=errcoda)
call end panse watch(gl, (f'cpn *, "wall'f], errcode]

The first call resnmes the defanlt clocks on a single watch. The second call resumes the defanlt
clocks on three watches given as an array and returns a statns code. The third call resumes the
cpu and wall clocks on the watches in the group gf, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If & watch or watch group
that has never been created is passed into end _pause_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension o the Fortran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”
error message is generated.

31

INQUIEY STOPWATCH

returns SToPWATCH options and system dependent values

SYNOPSIS

subrontine inguiry stopwatch (default clock, 10_unit_prini, i0_unit_error, print_errors, aborf_errors,
print_form, cpu_avail, user_avail, ays_avail, wall_avail, cpu_prec, wall prec, version, err)

character(len="*), optional, intent{OUT) :: defanlt clock{4]

integer, optional, intent{QTUT) :: io_unit_print, in_unit_arror

logical, optional, intent(QUT) :: print_errors, abort_errora
character(len="*), optional, intent{OTT) :: print_form

logical, optional, intent{QUT) = cpn_avail, user avail, sys_avail, wall _avail
real, optional, intent{QUT) :: cpu_prec, wall_prec

character(len=16), optional, intent{QTT) :: version

integer, optional, intent(OTT) :: err

DESCHIPTION

Returns the value of STorWarcH options and other system and implementation dependent
values. All arguments are optional and have intent OTT.

The following arguments can be set by option_stopwatch. See option_stopwatch(3) for
further details on their meaning. defaulf_clock is the set of clocks that are used when the clock
argument is omitted in & call toa 5ToPWATCH rontine. io_unil_prini returns the unit for ontput
from subroutine print_watech. 10 unif_error returns the unit for any error messages printed by
STorWarce. If print_errors is TRUE, then an error message will be printed to to_umit_error
whenever an error condition oceurs. If abort errors is TRUE, then the program will terminate
when &n error condition occurs. prind_form is the format used by print_watch(3) when the
form argument is omitted.

The remaining arguments return system information that can not be changed.

Since an interface {o the CPT] clock is not part of the Fortran % standard, the availability of
clocks and clock precisions are implementation dependent. Not all clocks are available in all
implementations. The logical argnments cpu avail, wser_aval, sys_gvail and wall avail return
TRUE if the respective clock is available in this implementation.

The precigion (the shortest time interval that can be measured) of the clocks also varies batwesn
implementations. The real variables cpu_prec and wall prec return the precision of the CPU
and wall clocks, in seconds. It is assumed that the user and sys clocks have the same precision
as the CPU clock. If the CPT clock is not available, then epu_prec will return 0., and similar

for the wall clock,

The character string version returns the version number of STOPWATCH.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defanlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, 5o you should set print_errors to TRUE if you
have trouble determining the cause of the error.

I abort_errors is TRUE (default 18 FALSE), the program will terminate on an error condi-
tion. (therwise, the program will continue execution but the requested value(s) might not be
returned.

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

0 Mo errors; execution successful.

A12 Failed to allocate required memory. This error occurs if the Fortran allocate statement
returns a nongero status indicating that memory could not be allocated. Avoid memory
leaks by always destroying watches and groups before recreating them, and destroying
local variable watches and groups before returning from a subroutine.

EXAMPLES

logical user_is_there
real cpu_prec

call inguiry setopwatch{user avail=nser is_thera)
call inguiry stopwatch{cpu prac=cpo prec)

The first call determines if the user clock is available in this implementation. The second call
determines the shortest time that can be measured by the CP1 clock.

BUGS

None known.

33

JOIN WATCHGROTUP

adds a SToPWaTCH watch to a watch group

SYNOPSIS

subrontine join_watchgroup fwatch, handie, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(OTT) :: err

DESCHRIPTION

Adds the specified watch{es) to the specified watch gronp. The watch(es) and group must have
been previously created with create_watch and create_watchgroup.

(me or more watches must be specified. The argnment watch can be a single variable of type
watchiype (see stopwatch(3)) to add one watch, an array of type walchiype to add several
watches.

The watch gronp is specified by handls, & variable of type watchgroup.

DIAGNOSTICS

If present, the optional intent OTUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by defanlt) if prini_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the arror
than can be obtained from just the status code, 5o you should set prini_errors to TRUE if you

hawve tromble determining the cause of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continue execution but the watch(es) will not be added to the

group.

See option_stopwatch(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

0 No errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to add & watch that has
been destroyed to a group. The watch must first be created again. See also the comment
about watches that have never been created in the BUGS section.

512 Failed to allocate required memory. Memory is allocated in the group when a watch
is added. Also, when join_watchgroup is called with an array or group of watches,
temporary memory 18 allocated. This error occurs if the Fortran allocate statement
returns a nonzero status indicating that memory could not be allocated. Awvoid memory

leaks by always destroying watches and groups before recreating them, and destroying
local wvariable watches and groups before returning from a subrountine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an

array or group of watches. The watches are added to the gronp, but he aware that other
problems could develop as a result of the deallocate error.

EXAMPLES

type (watchtypel wil, w2(3)
type (watchgroup) gi

integer errcode

call join watchgroup(wl, gl)
call join watchgroup(w2, gl, errcoda]

The first call adds the watch wi to watch group gf. The second call adds three watch to g1
and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch gronp has been created
[passed as an argument to create_watch or ereate_watchgroup). If & watch or watch group
that has never been created is passed into join_watchgroup, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension to the Fortran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”
eITor message is generated.

35

LEAVE WATCHGROUP

removes a STOPWATCH watch from a watch group

SYNOPSIS

subrontine leave watchgroup/waich, handie, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

type (watchgroup), intent(INOUT) :: handle
integer, optional, intent(OTT) :: err
DESCRIPTION
Removes the specified watch(es) from the specified watch group.

Omne or more watches must be specified. The argnment watch can be a single variable of type
waichiype (see stopwatch(3)) to remove one watch, or an array of type watchiype to remove
several watches.

The watch gronp is specified by handle, & variable of type watchgroup.

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed helow.

An error message will be printed to a specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, 50 you should set print_errors to TRUE if you

have trouble determining the canse of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
(rtherwise, the program will continue execution but the watch(es) will not be removed from the

group.
See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant status codes and messages are:

0 Mo errors; execution successful.

128 Watch not found in given gronp. This occurs when you attempt to remove & watch from
a group that it does not belong to. One canse of this is if you destroy a watch and later
try to remove it from a group.

512 Failed to allocate required memory. When leave_watchgroup is called with an array or
group of watches, temporary memory is allocated. This error oceurs if the Fortran allo-
cate statement returns a nonzero status indicating that memory could not be allocated.
Avoid memory leaks by always destroying watches and groups before recreating them,
and destroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches or the memory used for an entry in the group. The watches
are removed from the group, but be aware that other problems could develop as a result
of the deallocate error.

EXAMPLES

type (watchtype) wil, w2{3)
type (watchgroup) gl

integer arrcode

call leave watchgroup(wl, gi]
call leave watchgroup(w2, gl, errcode)

The first call removes the watch wi from watch gronp gi. The second call removes three watch
from g and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created
[passed as an argnment to create_watch or ereate_watchgroup). If & watch or watch group
that has never hesn created is passed into leave watchgroup, it might generate a Fortran
error due to passing a pointer with nndefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension o the Foriran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”
error message is generated.

a7

OPTION STOPWATCH

sets STOPWATCH options

SYNOPSIS

subrontine option_stopwatch (default_clock, to_unit_print, 1o0_unit_error, prini_errors, abort_errors,
print_form, err)

character(len="*), optional, intent(IN) :: defanlt_clock(:)
OR character{len=*), optional, intent(IN} :: defaunlt_clock

integer, optional, intent(IN) 1! io_unit_print, io_unit_error
logical, optional, intent(IN) :: print_errors, abhort errors
character(len="*), optional, intent(IN) :: print form
integer, optional, intent(QOTT) :: err

DESCRIPTION

Sets options that control the behavior of STOPWaATCH. All arguments are optional and have
intent IN, with the exception of the status code err which has intent QUT. These options are
global in nature, and remain in effect until another call to option_stopwatch changes them.

The argument defanlf clock determines what clocks will be used for all subsequent operations in
which the clock argument is omitted. This allows you to specify what clocks you are interested
in once and for all, and not have to specify those clocks with every subroutine call. The initial
default value is ({’cpu °, 'nser’, 'sys ', 'wall'/), i.e., all clocks. However, if any clocks are not
available in the implementation, they will be antomatically removed from the list of default
clocks.

Printed ontput can be redirected to any walid I/0 unit number. io_unif prinf determines the
unit for output from subroutine print_watch. fo_uni_error determines the unit for any error
messages printed by StopWarcu. When an I/ unit is reset by one of these variables, the unit
must already be open for writing. The initial defaunlt is 6 for both I/ O units, which is standard
ontput on many systemas.

What to do when an error occurs is controlled by the two logical variables prini_errors and
abort errors. I print errors is TRUE, then an error message will be printed to to_unit_error
whenever an error condition occurs. In all cases where an error can be detected, the program
can continue to execute, althongh the behawior of STOPWATCH might not be as expected. If
abort errors is TRUE, then the program will terminate when an error condition occurs. The
initial defaults are TRUE for prinf_errors and FALSE for abori_errors.

The argnment print form determines the form for printing time when form iz omitted in
print_watch. Currently all the forms print the time to .01 seconds. The valid values for
prini_form are:

sec’, seconds

"hh:mm:es’, colon separated hours, minutes and seconds

*||hh:jmm:|ss', same as *hh:mm:ss’ except hours and minntes are printed only if nonzero

The default value is ‘sec’.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is
the sum of the values listed below.

The relevant statns codes and messages are:

(1} Mo errors; execution successful.

B Invalid clock type. This occurs if defauli_clock 1z present and one of the specified clocks
is not supported by the implementation. See inqguiry stopwatch(3) to determine what
clocks are available.

16 Too many clocks specified. This occurs when the argument default clock is an array longer
than four.

256 /0 unit iz not open for writing. The I/0 onit requested for io_unit_print or 10_unit_arror
is not open for writing.

A12 Failed to allocate required memory. This error occurs if the Fortran allocate statement
returns a nongero status indicating that memory could not be allocated. Avoid memory
leaks by always destroying watches and groups before recreating them, and destroying
local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating memory. Be aware that other
problems could develop as a result of the deallocate error.

2048 Nllegal output form. This error occurs if print_form is not one of the strings listed above.

In addition to the run time diagnostics generated by SToPWarch, the following problem may

anse:

s In Fortran 80, the character strings in an array constructor must all have the sama length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu .

EXAMPLES

call option stopwatch(defanlt clock="cpu’, abort error=.true.]
call option stopwatch(icmonit print=11, io mmit error=12]

The first call sets the defanlt clock to be the cpu clock and says to terminate the program if an

34

error oceurs. The second call reassigns the [0 units.

BUGHS

MNone known.

PATUSE WATCH

pauses & SToPWaTcH watch

SYNOPSIS

subrontine pause_watch fwaich, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Pauses the specified clocks of the specified watches. This 1z useful when you want to tem-
porarily stop the clocks to avoid timing a small segment of code, for example printed ontput
or graphics, but do not know which watches or clocks are running. When pause_watch is
called, the information about which of the clocks were running is maintained, so that a sub-
sequent rall to end_pause_watch will restart only those clocks that were running. Watches
that are pansed can not be started, stopped, reset, or paused again until they are resumed by
end_pause_watch. However, they can be read and printed.

(me or more watches must be specified. The argnment watch can be a single variable of type
watchiype (see stopwatch(3)) to pause one watch, an array of type watchiype to pause several
watches, or a variable of type watchgroup (see stopwatch(3)) to pause the watches in a group.

The optional argnment elock specifies which clocks to panse on the specified watch{es). If
omitted, the current defanlt clocks (see option stopwatch(3)) are paused. If present, clock
must be & character string containing 'cpu’, *user', 'sys’, or 'wall’, or an array of such character
strings.

DIAGNOSTICS

If present, the optional intent OTUT integer argument err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error

41

than can be obtained from just the status code, so you should set prni_errors to TRUE if you
have trouble determining the canse of the error.

If abort errorais TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continne execution but the watch(es) will not be paused.

See option_stopwatch(3) for further information on prini_errors, abort errors and [/ O units.

The relevant status codes and messages are:

]
1

B12

1024

No errors; execution successful.

Watch needs to be created. This error oceurs if you attempt £o paunse a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BTUGS section.

Watch iz in the wrong state for this operation. This occurs when you attempt to panse a
watch that is currently paused.

Watch is in an unknown state. This occurs if STopWarcH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not occur, and indicates
an internal bug in STOPWATCH.

Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

Failed to allocate required memory. When pause_wateh is called with an array or group
of watches, temporary memory is allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awvoid
memaory leaks by always destroying watches and gronps before recreating them, and de-
stroying local variable watches and groups before returning from a subroutine.

Error oceurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are pansed, but be aware that other problems
could develop as & result of the deallocate error.

In addition to the run time diagnostics generated by STOPWATCH, the following problem may

arse:

In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,

for example, 'cpu .

EXAMPLES

type (watchtypel wil, w2(3)
type (watchgroup) gi

integer errcode

call panse watch(wl]

42

call panse watch(w2, err=arrcoda]
call panse watch(gl, (/'cpu ', 'wall'/f), errcode]

The first call pauses the defanlt clocks on a single watch. The second call paunses the defanlt
clocks on three watches given as an array and returns a status code. The third call panses the
cpu and wall clocks on the watches in the group gf, and returns a status code.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If & watch or watch group
that has never been created is passed into pause_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension o the Fortran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”
error message is generated.

43

PRINT WATCH

prints the current value of a STOPWaTCH watch

SYNOPSIS

subrontine print_wateh [watch, clock, tifle, form, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

character(len="*), optional, intent(IN) :: title, form

integer, optional, intent(OTT) :: err

DESCRIPTION

Prints the specified clocks of the specified watches. A title line is printed followed by two lines
for each watch. The first contains the name of the watch, which was defined in ereate_wateh(d)
and maintained internally, and the second contains the values of the specified clocks. (utput is
written to a user specified I/0 unit (see option_stopwatch({3)]) which s 6 by default. Clocks
can be printed regardless of whether they are running, stopped or pansed.

Cme or more watches must be specified. The argnment watch can be a single variable of type
watchiype (see stopwateh(d)) to print one watch, an array of type watchiype to print several
watches, or a variable of type watchgroup (see stopwatch(3)) to print the watches in a group.

The optional argunment clock specifies which clocks to print from the specified watches). If
omitted, the current defanlt clocks (see option stopwatch(3)) are printed. If present, clock
must be & character string containing 'cpu’, *user', 'sys’, or 'wall’, or an array of such character
strings.

The optional argument fifle is a character string to be printed before printing the watch values.
If omitted, the string “Times printed by StopWatch:" is printed.

The optional argnment form determines the form for printing time. Currently all the forms
print the time {2 .01 seconds. The valid values are:
*sec’, seconds

*hh:mm:es®, colon separated hours, minutes and seconds

*||hh:jmm:|ss', same as hh:mm:ss’ except hours and minntes are printed only if nonzero

K omitted, the current default form 18 weed. The defanlt form is initially "sec’ and can be reset
by option_stopwateh(3).

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to & specified I/0 unit [unit 6 by defanlt) if prinf_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the arror
than can be obtained from just the status code, 3o you should set prini_errors to TRUE if you
hawve tromble determining the cause of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continue execution but the watch(es) will not be printed.

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

0 Mo errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to print a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

4 Watch 15 in an unknown state. This occurs if SToPWAaATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not occur, and indicates
an internal bug in STOPWATCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

256 /0 unit is not open for writing. The I/(r unit to which print_watch expects to write is
not open for writing. The I/ unit number is set by io_unil_print in option_stopwatch
and is & by default.

512 Failed to allocate required memory. When print_watch is called with an array or group
of watches, temporary memory 15 allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awoid
memaory leaks by always destroying watches and groups before recreating them, and de-
stroying local variable watches and groups before returning from a subroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are printed, but be aware that other problems
could develop as & result of the deallocate error.

2048 Tlegal ontput form. This error occurs if form iz not one of the strings listed above.

In addition to the run time diagnostics generated by STOPWaATCH, the following problem may

45

ATiEe!

o In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu °.

EXAMPLES

type (watchtype) wi, w2(3)
type (watchgroup) gl

integer arrcode

call print watch(wi]
call print watch(w2, title='Array of 3 watches', err=errcode)
call print watch(gl, (/'cpu ', 'wall'/f), errcoda]

The first call prints the defanlt clocks from a single watch, and the defanlt title. The second call
prints the defanlt clocks on three watches given as an array and the title “Array of 3 watches”,
and returns a status code. The third call prints the cpu and wall clocks on the watches in the
gronp gf, and returns a statns code.

BUGHS

It cannot be determined whether or not a watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If & watch or watch group
that has never hesn created is passed into print_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension to the Fortran 90 standard and
recognize that the pointer is not associated, in which case the "Watch needs to be created”
error message is generated.

READ WATCH

reads the wvalues from a SToprWaTon watch

SYNOPSIS

subrontine read _watch (read result, waich, clock, err)

real, intent(QUT) :: read_result
OR real, pointer 1 read_result(:)
OR real, pointer :: read_result(:,:]

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QOTT) :: err

DESCRIPTION

Esturns the value of the specified clocks from the specified watches. The result 15 returned in
read_resulf. Clocks can be read regardless of whether they are running, stopped or pansed.

Omne or more watches must be specified. The argnment watch can be a single variable of type
walchiype (see stopwatch(l)])] to read one watch, or an array of type waichiype to read several
watches. watch can not be a watchgroup because there is no natural order of the watches in the
group to use in constructing an array for the result.

The optional argnment clock specifies which clocks to read from the specified watch{es). If
omitted, the corrent defanlt clocks (see option_stopwateh(3)) are read. If present, clock must
be a character string containing 'cpu’, 'user’, ‘sys’, or ‘wall', or an array of such character
sLTINgES.

The type of read_result must agree with the form of the arguments watch and clock:

If watch s a scalar and clock is & scalar, then read_resulf must be a real scalar.

o If wafch is an array and clock is & scalar, then read_resulf must be a pointer to a rank 1
real array. The it entry of the result is the specified clock value on watch/i).

If watch 15 & scalar and clock is either an array or omitted, then read_resull must be
a pointer to a rank 1 real array. The i*® entry of the result is the value in clockfi)
on the specified wafch. In the case that clock is omitted, note that the default clocks

47

specify the contents of the result, and the defanlt clocks can be determined using in-
quiry stopwatech(3).

o If walch iz an array and clock is either an array or omitted, then read_resull must be a
pointer to a rank 2 real array. The {i.,j']l'h entry of the result is the value in clock(y) on
wateh(i).

K read_result is a pointer to an array, it will be allocated by read_watch, and should be
deallocated after use to avoid memory leakage.

DIAGNOSTICS

If present, the optional intent OUT integer argument err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by defanlt) if prini_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set print_errors to TRUE if you
hawve tromble determining the cause of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continue execution but the watch(es) will not be read.

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant status codes and messages are:

0 Mo errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt to read a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

4 Watch 15 in an unknown state. This occurs if STOPWATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not occur, and indicates
an internal bug in STOPWATCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwatch(3) to determine what clocks
are available.

512 Failed to sllocate required memory. When read_watch iz called with an array or gronp
of watches, temporary memory is allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awvoid
memaory leaks by always destroying watches and gronps before recreating them, and de-
stroying local variable watches and groups before returning from a snbroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are read, but be aware that other problems counld
develop as a result of the deallocate arror.

In addition to the run time diagnostics generated by STOPWATCH, the following problem may

45

ATiEe!

o In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu °.

EXAMPLES

type (watchtype) wi, w2(3)
Teal x

real, pointer :: y(:], =(:,:)

integer errcode

call read watchi{x, wl, ‘user']

call read watch(y, wl, err=arrcoda)

call read watch(z, w2, (/'cpu ', 'wall'/], errcods]
deallocata(y, z)

The first call reads the user clock on a single watch. The second call reads the defanlt clocks
on a single watch and returns a status code. y is allocated with dimension equal to the nuomber
of default clocks. The third call reads the cpun and wall clocks from three watches given as
an array and returns a status code. The deallocate statement frees the memory allocated in
read_watch.

BUGS

It cannot be determined whether or not a watch variable or watch group has been created
[passed as an argument to create_watch or create_watchgroup). If & watch or watch group
that has never been created is passed into read_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension o the Fortran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”
error message is generated.

44

RESET_WATCH

resets 8 STOPWATCH watch to 0.0

SYNOPSIS

subrontine reset_watch fwatch, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QOTT) :: err

DESCRIPTION

Hesets the specified clocks of the specified watches to 0. Clocks can be reset regardless of
whether they are running or not.

Omne or more watches must be specified. The argnment watch can be a single variable of type
waichiype (see stopwatch(3)) to reset one watch, an array of type watchiype to reset several
watches, or a variable of type walchgroup (see stopwateh(3)) to reset the watches in a group.

The optional argument clock specifies which clocks to reset on the specified watch(es). If
omitted, the current defanlt clocks (see option_stopwatch(3)) are reset. [f present, clock
must be a character string containing 'cpu’, *user', 'sys’, or 'wall’, or an array of such character
sLTINgES.

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified 1/0 unit (unit 6 by default) if prini_errors is
TRUE (defanlt is TRIUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set prni_errors to TRUE if you
have trouble determining the canse of the error.

If abort errorsis TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continne execution but the watch(es) will not be reset.

&)

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

]
1

Bl

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt to reset a watch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when you attempt to reset &
watch that is currently pansed.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not oceur, and indicates
an internal bug in SToPWaTCH.

Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwateh(3) to determine what clocks
are available.

Failed to allocate required memory. When reset_watch is called with an array or group
of watches, temporary memory 15 allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awoid
memory leaks by always destroying watches and groups before recreating them, and de-
stroying local variable watches and groups before returning from a snbroutine.

Error oceurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or gronp of watches. The watches are reset, but be aware that other problems conld
develop as a result of the deallocate error.

In addition to the run time diagnostics generated by SToPWarcH, the following problem may

anse:

In Fortran 80, the character strings in an array constructor must all have the sama length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu °.

EXAMPLES

type (watchtypel wi, w2({3)

type (watchgroup) gl
integer arrcode

call reset watchiwl)
call reset_watch(w?, err=errcode)
call reset watch(gl, (f'cpu ', 'wall'/f), errcode)

The first call resets the defanlt clocks on & single watch. The second call resets the defanlt

clocks on three watches given as an array and returns a status code. The third call resets the
cpu and wall clocks on the watches in the gronp gf, and returns a status code.

a8l

BUGS

It cannot be determined whether or not a watch variable or watch gronp has been created
[passed as an argnment to create_watch or ereate_watchgroup). If & watch or watch group
that has never been created is passed into reset_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension to the Foriran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”

error message is generated.

START WATCH

starts & STOPWATCH watch

SYNOPSIS

subrontine start watch [waich, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QTT) :: err

DESCRIPTION

Starts the specified clocks of the specified watches. Any time previously accumulated in the
clock is NOT cleared before starting. ([/se reset_watch to clear accumulated time.)

Omne or more watches must be specified. The argnment watch can be a single variable of type
waichiype see stopwatch(3)) to start one watch, an array of type watchiype to start several
watches, or a variable of type watchgroup (see stopwateh(3)) to start the watches in a group.

The optional argument clock specifies which clocks to start on the specified watch(es). If
omitted, the current defanlt clocks (see option_stopwatch(3)) are started. If present, clock
must be a character string containing 'cpu’, ‘user', 'sys’, or 'wall’, or an array of such character
sLTINgES.

DIAGNOSTICS

If present, the optional intent OUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by default) if prini_errors is
TRUE (defanlt is TRIUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, so you should set prni_errors to TRUE if you
have trouble determining the canse of the error.

I abort errorsis TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continne execution but the watch(es) will not be started.

B

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant status codes and messages are:

]
1

Bl

1024

Mo errors; execution successful.

Watch needs to be created. This error occurs if you attempt to start a waetch that has
been destroyed. The watch must first be created again. See also the comment about
watches that have never been created in the BUGS section.

Watch is in the wrong state for this operation. This occurs when you attempt to start a
watch that is currently running or paused.

Watch is in an unknown state. This occurs if STOPWATCH does not recognize the state
(running, stopped, etc.) that the watch is in. This error shonld not oceur, and indicates
an internal bug in SToPWaTCH.

Invalid clock type. This occurs if elock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwateh(3) to determine what clocks
are available.

Failed to allocate required memory. When start_watch is called with an array or group
of watches, temporary memory 15 allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awvoid
memory leaks by always destroying watches and groups before recreating them, and de-
stroying local variable watches and groups before returning from a subroutine.

Error ocenrred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are started, but be aware that other problems
could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by SToPWarcH, the following problem may

anse:

In Fortran 80, the character strings in an array constroctor must all have the samea length.
Pad three letter clock names with a blank on the right to make a four character string,
for example, 'cpu °.

EXAMPLES

type (watchtypel wi, w2({3)

type (watchgroup) gl
integer arrcode

call start watchiwi)
call start watch(w2, err=errcode)
call atart watch(gl, (/'cpu ', 'wall'/f), errcode)

The first call starts the defanlt clocks on & single watch. The second call starts the defanlt

clocks on three watches given as an array and returns an status code. The third call starts the
cpu and wall clocks on the watches in the gronp gf, and returns a status code.

b

BUGS

It cannot be determined whether or not a watch variable or watch gronp has been created
[passed as an argnment to create_watch or ereate_watchgroup). If & watch or watch group
that has never been created is passed into start_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension o the Foriran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”

error message is generated.

55

STOP_WATCH

stops a STorPWaTCH watch

SYNOPSIS

subrontine stop_watch fwaich, clock, err)

type (watchtype), intent(IN) :: watch
OR type (watchtype), intent(IN) :: watch(:)
OR type (watchgroup), intent(IN) :: watch

character(len="*), optional, intent(IN) :: clock
OR character{len=*), optional, intent(IN} 11 clock(:)

integer, optional, intent(QOTT) :: err

DESCRIPTION
Stops the specified clocks of the specified watches.

Omne or more watches must be specified. The argnment wateh can be a single variable of type
waichiype (see stopwatch(d)) to stop one watch, an array of type watchiype to stop several
watches, or a variahle of type walchgroup (see stopwatch(3)) to stop the watches in a group.

The optional argument clock specifies which clocks to stop on the specified watch(es). If omitted,
the current defanlt clocks (see option_stopwatch(3)) are stopped. If present, clock must be &
chararter string containing 'epu’, *nser', 'sys’, or 'wall’, or an array of such character strings.

DIAGNOSTICS

If present, the optional intent OTUT integer argnment err returns a status code. The code is
the sum of the values listed below.

An error message will be printed to a specified I/0 unit (unit 6 by defanlt) if prini_errors is
TRUE (defaunlt is TRUE). The error message contains more detail about the canse of the error
than can be obtained from just the status code, 5o you should set prini_errors to TRUE if you
hawve tromble determining the cause of the error.

If abort_errors is TRUE (default is FALSE), the program will terminate on an error condition.
Otherwise, the program will continue execution but the watch(es) will not be stopped.

See option stopwateh(3) for further information on print_errors, abort errors and [/ O units.

The relevant statns codes and messages are:

0 Mo errors; execution successful.

1 Watch needs to be created. This error occurs if you attempt fo stop & watch that has been
destroyed. The watch must first be created again. See also the comment about watches
that have never been created in the BUGS section.

2 Watch 18 in the wrong state for this operation. This occurs when youn attempt to stop a
watch that is corrently pansed or not running.

4 Watch is in an unknown state. This occars if STOPWATCH does not recognize the state
(running, stopped, etc.)] that the watch is in. This error shonld not oceur, and indicates
an internal bug in SToPWaTCH.

B Invalid clock type. This occurs if clock is present and one of the specified clocks is not
supported by the implementation. See inquiry_stopwateh(3) to determine what clocks
are available.

512 Failed to allocate required memory. When stop_watch is called with an array or gronp
of watches, temporary memory 15 allocated. This error occurs if the Fortran allocate
statement returns a nonzero status indicating that memory could not be allocated. Awoid
memory leaks by always destroying watches and groups before recreating them, and de-
stroying local variable watches and groups before returning from a snbroutine.

1024 Error occurred while deallocating memory. This error occurs if the Fortran deallocate
statement returns a nonzero status while deallocating temporary memory used for an
array or group of watches. The watches are stopped, but be aware that other problems
could develop as a result of the deallocate error.

In addition to the run time diagnostics generated by SToPWarcH, the following problem may

anse:

o In Fortran 80, the character strings in an array constructor must all have the same length.
Pad three letter clock names with a blank on the right to make a four character string,

for example, 'cpu °.

EXAMPLES

type (watchtypel wi, w2({3)

type (watchgroup) gl
integer arrcode

call stop_watch(wl]
call atop_watch(w2, err=errcode)
call atop watch(gl, (f'cpu ', 'wall'f], errcoda]

The first call stops the defaunlt clocks on a single watch. The second call stops the defanlt clocks
on three watches given as an array and returns a status code. The third call stops the cpn and
wall clocks on the watches in the group gi, and returns a status code.

a7

BUGS

It cannot be determined whether or not a watch variable or watch gronp has been created
[passed as an argnment to create_watch or ereate_watchgroup). If & watch or watch group
that has never been created is passed into stop_watch, it might generate a Fortran error
due to passing a pointer with undefined association status to the Fortran intrinsic function
associated. Some compilers will allow this as an extension to the Foriran 90 standard and
recognize that the pointer is not associated, in which case the “Watch needs to be created"”

error message is generated.

