NIST Form-Based Handprint Recognition System
(Release 2.0)

NISTIR 5959

Michael D. Garris, JamesL. Blue, Gerald T. Candela,
Patrick J. Grother, Stanley A. Janet, and CharlesL. Wilson

National Institute of Standards and Technology,
Building 225, Room A216
Gaithersburg, Maryland 20899

ACKNOWLEDGEMENTS

We would like to acknowledge the Internal Revenue Service and the Bureau of the
Censuswho provided funding and resourcesin conjunction with NIST to support the
development of this standard reference optical character recognition system.

TABLE OF CONTENTS

1. INTRODUCTION
1.1 First System Release
1.2 Second System Release
1.3 Document Organization

2. INSTALLATION INSTRUCTIONS
2.1 Ingtalling from CD-ROM
2.2 Organization of Software Distribution
2.3 Source Code Subdirectory
2.4 Automated Compilation Utility

3. INVOKING TEST-BED PROGRAMS
3.1 mis2evt - computing eigenvector basis functions
3.2 mis2patl - generating patterns for the PNN classifier
3.3 hsfsysl - running the updated version of the original NIST system
3.4 mis2pat? - generating patterns for training the MLP classifier
3.5 trainreg - training to register a new form
3.6 hsfsys2 - running the new NIST recognition system

4. ALGORITHMIC OVERVIEW OF NEW SYSTEM HSFSY S2
4.1 The Application

4.2 System Components
4.2.1 Batch Initiaization; src/lib/hsf/run.c; init_run()
4.2.2 L oad Form Image; src/lib/image/readrast.c; ReadBinaryRaster()
4.2.3 Register Form Image; src/lib/hsf/regform.c; genregform8()
4.2.4 Remove Form Box; src/lib/rmline/remove.c; rm_long_hori_ling()
4.2.5 |solate Line(s) of Handprint; src/lib/phrase/phrasmap.c; phrases from_map()
4.2.6 Segment Text Ling(s); src/lib/adseg/segchars.c; blobs2charss()
4.2.7 Normalize Characters; src/lib/hsf/norm8.c; norm_2nd_gen_blobls8()
4.2.8 Extract Feature Vectors; src/lib/nn/kl.c; kl_transform()
4.2.9 Classify Characters; src/lib/mlp/runmip.c; mlphypscons()
4.2.10 Spell-Correct Text Line(s); src/lib/phrase/spellphr.c; spell_phrases Rel2()
4.2.11 Store Results; src/lib/fet/writefet.c; writefetfile()

5. PERFORMANCE EVALUATION AND COMPARISONS
5.1 Accuracies and Error Rates
5.2 Error versus Rejection Rate
5.3 Timing and Memory Statistics
6. IMPROVEMENTSTO THE TEST-BED
6.1 Processing New Forms with the HSFSY S2
7. FINAL COMMENTS

8. REFERENCES

© N O oW W N Bk

[y
o

N N P R R
N B © N 01 W W

gwwmwwl\)r\)wl\)r\)wml\)
N NMNNPFP OOONOOO Ol b b

AOD W W
= O 01 O

5 & R R

A. TRAINING THE MULTI-LAYER PERCEPTRON (MLP) CLASSIFIER OFF-LINE
A.1 Training and Testing Runs
A.2 Specification (Spec) File
A.2.1 String (Filename) Parms
A.2.2 Integer Parms
A.2.3 Floating-Point Parms
A.2.4 Switch Parms

A.3 Training the MLP in hsfsys2

A.4 Explanation of the output produced during MLP training
A.4.1 Pattern-Weights
A.4.2 Explanation of Output
A.4.2.1 Header
A.4.2.2 Training Progress
A.4.2.2.1 Second progress lines
A.4.2.2.2 First progress lines
A.4.2.2.3 Pruning lines (optional)
A.4.2.3 Confusion Matrices and Miscellaneous Information (Optional)
A.4.2.4 Final Progress Lines
A.4.2.5 Correct-vs.-Rejected Table (Optional)
A.4.2.6 Final Information

48
48

49
49
50
51
52

55

56
56

56
56
57
58
59
60
61
63

65

NIST Form-Based Handprint Recognition System
(Release 2.0)

Michael D. Garris (mgarris@nist.gov)

James L. Blue, Gerald T. Candela, Patrick J. Grother,
Stanley A. Janet, and Charles L. Wilson

National Institute of Standards and Technology,
Building 225, Room A216
Gaithersburg, Maryland 20899
FAX: (301)840-1357

ABSTRACT

The National Institute of Standards and Technology (NIST) has developed a new release of a standard refer-
ence form-based handprint recognition system for evaluating optical character recognition. Aswith the first release,
NIST is making the new recognition system freely available to the general public on CD-ROM. This source code test-
bed, written entirely in C, contains both the original and the new recognition systems. New utilities are provided for
conducting generalized form registration, intelligent form removal with character stroke preservation, robust text-line
isolation in handprinted paragraphs, adaptive character segmentation based on writing style, and sophisticated Multi-
Layer Perceptron (MLP) neural network classification. A software implementation of the machinelearning algorithm
used to train the new MLP isincluded in the test-bed, enabling recipients to train the neural network for pattern rec-
ognition applications other than character classification. A host of data structures and low-level utilities are also pro-
vided. These include the application of spatial histograms, affine image transformations, simple image morphology,
skew correction, connected components, Karhunen Loéve feature extraction, dictionary matching, and many more.
The software test-bed has been successfully compiled and tested on ahost of UNIX workstationsincluding computers
manufactured by Digital Equipment Corporation, Hewlett Packard, IBM, Silicon Graphics Incorporated, and Sun
Microsystems. Approximately 25 person-years have been invested in this software test-bed, and it can be obtained
free of charge on CD-ROM by sending a letter of request via postal mail or FAX to NIST. This report documents the
new recognition software test-bed in terms of its installation, organization, and functionality.

1. INTRODUCTION

In August of 1994, the National Institute of Standards and Technology (NIST) released to the public a stan-
dard reference form-based handprint recognition system for evaluating optical character recognition (OCR) [1]. The
system served as avehiclefor transferring recognition and performance assessment technology from our government
laboratory to system developers and researchers in the private sector. As of August 1996, over 700 copies of the tech-
nology had been distributed to more than 40 countries around the world. This was NIST’sfirst large-scale public
domain OCR technology transfer, and by all accounts it has been a tremendous success.

Since 1994, NIST has continued to conduct research in form-based handprint recognition. Thisresearch is
critical to the continued advancement of the technology. Thisis especially true with regards to system integration.
Form-based OCR has the potential of solving many economically important problems using state-of-the-art technol-
ogy, but currently there is no universal off-the-shelf solution available for large-scale, centralized forms processing
applications. These applications are comprised of many tasks or functional components, and the literature contains a
plethora of algorithms and techniques for accomplishing these various tasks[2]. Even so, one cannot expect to be able
to arbitrarily pick and choose techniques available as off-the-shelf products, organize them into a standard work flow,
and proceed to universally solve applications. The fact is, interactions between components are often nonlinear and

1. Specific hardware and software products identified in this paper were used in order to adequately support the devel opment of the tech-
nology described in this document. In no case does such identification imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.

non-additive [2]. The economically useful systems being deployed today are successful because they are constructed
from components that have been customized to capitalize on all the constraints afforded by a particular application.
The more constraints available and incorporated, the higher the probability of success. Therefore, these systems are
defined more by their intended application than by available general purpose technology.

The interactions between recognition system components are complex and difficult to model, thereforeit is
not possible with conventional knowledge to measure the performance of a component in isolation and to predict a
component’simpact on overall system performance. The only meaningful way to compare aternative componentsfor
usein an application is by integrating each alternative into an end-to-end system and comparing their impact on overall
system performance. This has been the focus of much of our research, as effective performance assessment facilitates
the comparison of technical alternatives and more importantly helpsinsure successful deployment of technology to
specific applications. To support thisresearch, NIST has devel oped numerous al gorithms and techniques, and to study
their impact on recognition performance, these components have been integrated into a prototype (or test-bed) system.
This software test-bed is what comprises this new release of the NIST form-based handprint recognition system.

Using the software test-bed, a component of the system may be easily replaced by an alternative a gorithm.
The same set of input data can be run through the augmented system, and performances between the original and aug-
mented system can be compared. Also, by retraining and testing the recognition systemin acontrolled fashion, training
sets can be collected and eval uated that improve system robustness. Devel opers may find that the techniques provided
in the standard reference test-bed provide complementary resultsto their own systems. If thisisthe case, then combin-
ing their recognition results with those from NIST may improve overall recognition performance.

A CD-ROM distribution of this software can be obtained free of charge by sending aletter of request via
postal mail or FAX to Michael D. Garris at the address above. Requests made by electronic mail will not be accepted,
however electronic mail is encouraged for handling technical questions. The letter, preferably on company letterhead,
should identify the requesting organization or individuals. Any portion of this software test-bed may be used without
restrictions because it was created with U.S. government funding. This software test-bed was produced by NIST, an
agency of the U.S. government, and by statute is not subject to copyright in the United States. Redistribution of this
standard reference softwareis strongly discouraged as any subsequent corrections or updateswill be sent to registered
recipients only. Recipients of this software assume all responsibilities associated with its operation, modification, and
maintenance.

1.1 First System Release

This new software release contains the latest technology from our |aboratory. Due to the factors described
above, thereis no best algorithm for a specific system component, and thereis no best suite of componentsto comprise
auniversal system. The question should not be which component algorithm is best, but rather which combination of
algorithms performs best for a particular application. What works best for one application may not work as well for
another. Therefore, this new technology does not necessarily replace or make the technology distributed in the first
release obsolete. Asaresult, the new software distribution contains both the new and the original recognition systems.
The new system is an embellishment to the old one.

The software provided with the first release remains mostly intact. We are happy to say that, among the more
than 700 recipients over that last two years, there were only a handful of bugs reported from the 19,000 lines of code
distributed. These included a couple of syntax errors and a few memory inefficiencies and leaks. None of these prob-
lems were reported to cause fatal errors at run-time. By correcting one memory inefficiency, the time required by the
dictionary matching process was cut by more than 25%. Other inefficiencies removed include changing system calls
from calloc() to malloc() wherever possible, thus avoiding the overhead of unnecessarily zeroing out memory. By mak-
ing implementation changes to the existing algorithms, the first system’s execution time was reduced by more than
40%, and memory allocation requirements were reduced by 35%. The file doc/changes.txt lists the changes made to
the source code between its first and second release.

1.2 Second System Release

Asaready mentioned, the new release contains the latest improved technology from our laboratory. Alterna-
tives to system components are provided that are more general, more robust, and statistically more adaptive. With the
new recognition system, the application remainsthe same. Both the new and the old systems are designed to read hand-
written responses on Handwriting Sample Forms (HSF) like those distributed in NIST Special Database 19 (SD19)
[3]. An example of one of these completed formsis shown in Figure 1. The new system incorporates new methods for
form registration [4], form removal [5], text line isolation in handprinted paragraphs [6], character segmentation [7],
and new pattern classification [8]. The only component remaining virtually the same from the original system isthe
dictionary-based spelling correction [9].

1.3 Document Organization

Thisdocument providesinstallation instructions, describes the organization of the softwaretest-bed including
its compilation and invocation, and presents a high-level description of each of the major algorithms utilized in the
new recognition system. Section 2 contains instructions for installing the test-bed from CD-ROM. Thisincludes a
description of the test-bed’s organization, the size of various parts of the distribution, and instructions on compiling
the provided software. Section 3 documents how each of the provided programs (excluding classifier training) were
used to generate the supporting files provided in the distribution and how these programs can be invoked on new sets
of data. Section 4 describes the mgjor algorithms designed and integrated into the new NIST recognition system. Sec-
tion 5 contains comprehensive performance evaluation results. This section compares three recognition systems: the
original system asit was distributed in thefirst release, an updated version of the original system asit isdistributed in
thisrelease, and the new NI ST recognition system containing thelatest technol ogy developedin our laboratory. Results
arereported from running these systemsacrossall of SD19. Statisticsand comparisonsare reported on character, word,
and field-level accuracies, error versus reject performances, system timings, and memory usages. To conduct thiseval-
uation, atotal of 3669 writers, 109,200 words, and 667,758 characterswere used in the tests. Improvementsto the soft-
ware test-bed are discussed in Section 6 along with a short description of how the new recognition system can be set
up to process new and different types of forms. A few final comments and concluding remarks are provided in Section
7, and references are listed in Section 8. Note that all NIST publications referenced in this document are provided in
PostScript format on the CD-ROM.

The NIST recognition software test-bed not only contains pre-trained classifiers, but it provides extensive
training data a ong with the machine learning algorithmsimplemented in software for retraining the classifiers. In fact
it ispossible for recipients of thistest-bed to train the provided classifiers on other pattern recognition applications, in
addition to character classification. The new NIST recognition system utilizes a sophisticated Multi-Layer Perception
(MLP) neural network-based classifier, the training program for which is documented in Appendix A.

HANDWRITING SAMPLE FORM

CITY

DATE STATE _ZIP
£2-03- Z%I r A5

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.

0123456789

0123456789 0123456789

Lraz4567 29 (07 23 451703 (2723 w2 777)
97 420 5290 15880 932784
/5280l (232774 |

QSIQ 6104 53943 420501 ' 69
w/o4 539431 42050/ | léZ]
3291 60118 047763

1329/] [¢0//f)

35424 183567

ﬁ#??éé | - 207 -

25924 /3527] = I_é7| /25%]
/73225 (72F) [Z/%4) [77223]

ixnvlksjbuhtpwoygqefmdrcaz

[Anv/iksI baw bt Pi)oV T3 efmdrca= |

EDOSMZLTUBGRXWKAFNVJYQIPCB

EDosSm 2 LT UHG RYX WEAFVIIVAIHE

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessmgs of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America.

% the 7960 ’C of The ///7/7%4575?2“5 mj{""—""ﬁ fovm A

+ 1A sute
meove ?e ni1ov, esﬂ"a)i s usTice

vide oy The Common
o[omes-l-.c,/\:‘nniunh"')'l F":e',,a\ Welfave , and
,,OM.'I"e C

’Dofeﬂ se f A ~t -13 Ou,~$¢‘V¢S
S&C,;ng’rka;gn)ésjlﬂaso Oifda'i aZ‘J es‘!‘&\)\\slq
o i

‘red States

Figure 1. An example of a completed HSF form from SD19.

2. INSTALLATION INSTRUCTIONS

The public domain recognition system software is designed to run on UNIX workstations and has been suc-
cessfully compiled and tested on a Digital Equipment Corporation (DEC) Alpha, Hewlett Packard (HP) 9000, IBM
RS6000, Silicon Graphics Incorporated (SGI) Indy and Challenge, and Sun Microsystems (Sun) SPARCstation 10 and
SPARCstation 2. Porting the software to smaller Personal Computer (PC) platformsis left entirely to the recipient as
NIST does not have resources allocated to support such efforts at this time.

As mentioned in the introduction, this distribution contains two different recognition systems. An updated
version of the original system, hsfsysl, is provided along with a new and improved system, hsfsys2. Unlike the first
release which contained some isolated FORTRAN, the new software release is written completely in C (traditional
Kernighan & Ritchie, not ANSI) and isorganized into 15 libraries. In all, there are approximately 39,000 lines of code
supporting more than 725 subroutines. Source codeis provided for tasks such asform registration, form removal, field
isolation, field segmentation, character normalization, feature extraction, character classification, and dictionary-based
postprocessing. A host of data structures and low-level utilities are also provided. These utilities include the applica-
tion of CCITT Group 4 decompression [10][11], IHead file manipulation [1], spatial histograms, L east-Squaresfitting
[12], affineimagetransformations, skew correction, simple morphology [13], connected components, Karhunen Loeve
(KL) feature extraction [14], Probabilistic Neural Network (PNN) classification [15], Multi-Layer Perceptron (MLP)
classification [16], and Levenstein distance dynamic string alignment [17].

Several other programs are provided that generate data files used by the two recognition systems. The first
program, mis2evt, computes a covariance matrix and generates eigenvectors from a sample of segmented character
images. The next program, mis2pat1, produces prototype feature vectors for use with the PNN classifier in hsfsysl,
while mis2pat2 produces prototype feature vectors for use with the new MLP classifier in hsfsys2. The program mip
trainsan MLP neural network on the feature vectors produced by mis2pat2 and stores the resulting weight matricesto
filefor later usein classification. These feature vectors are computed using segmented character images and the eigen-
vectors produced by mis2evt. To support these programs, atraining set of 1499 writers contributing 252,124 segmented
and labeled character imagesis provided in the distribution. These writers correspond to partitions hsf_4, hsf_6, &
hsf_7in SD19.

2.1 Installing from CD-ROM

The NIST recognition software is distributed on CD-ROM in the 1SO-9660 data format [18]. Thisformat is
widely supported on UNIX workstations, DOS or Windows-based personal computers, and VMS computers. There-
fore, the distribution can be read and downloaded onto these various platforms. Keep in mind that the source code has
been devel oped to compile and run on UNIX workstations. If necessary, it isthe responsibility of the recipient to mod-
ify the distribution source code so that it will execute on their particular computer architectures and operating systems.

Upon receiving the CD-ROM, load it onto your computer using a CD-ROM drive equipped with a device
driver that supportsthe | SO-9660 data format. You may need to be assisted by your system administrator as mounting
afile system usualy requires root permission. Then, recursively copy its contents into a read-writable file system.
Table 1 lists the size (in kilobytes) of the directories on the CD-ROM before and after compilation. The entire distri-
bution requires approximately 360 M egabytes (Mb) to copy. Thetop-level distribution directory doc containsjust over
105Mb of PostScript reference documents, and the directory train about 27.5Mb of training data. These files are not
necessary to compile and run the recognition systems, so they do not haveto be copied from the CD-ROM if disk space
islimited on your computer. However, the segmented characters within train are required if you wish to retrain any of
the neural network classifiers. The entire distribution requires approximately 365Mb upon compilation.

Directory Pre-Comp | Post-Comp
Jbin 1 1146
Jdata 637 637
Jdict 1 1
Jdoc 105276 105276
Jinclude 99 99
Jlib 0 796
Jman 54 54
Jsrc 2232 5310
Jtmplt 97 97
Jtrain 27493 27493
Jweights 224110 224110

Jweights/pnn 55145 55145

Jweightsmip 168964 168964
Total 360000 365019

Table 1. Sizes (in 1024 byte blocks) of distribution directories before and after compilation.

The CD-ROM can be mounted and the entire distribution copied with the following UNIX commands on a
Sun SPARCstation:

mount -v -t hsfs-o ro /dev/srO /cdrom
mkdir /usr/local/hsfsys2

cp -r /cdrom /usr/local/hsfsys2

umount -v /cdrom

where /dev/srO isthe devicefile associated with the CD-ROM drive, /cdrom represents the directory to which the CD-
ROM is mounted, and /usr/local/hsfsys2 is the directory into which the distribution is copied. If the distribution is
installed by the root user, it may be desirable to change ownership of the installation directory using the chown com-
mand. CD-ROM is aread-only medium, so copied directories and files are likely to retain read-only permissions. The
file permissions should be changed using the chmod command so that directories and scripts within the copied distri-
bution arereadable, writable, and executable. All catal og files should be changed to be read-writable. In general, source
code files can remain read-only. Section 2.2 identifies the location of these various file types within the distribution.
Specifically, thefile bin/catal og.csh must be assigned executable permission, and fileswith the name catal og.txt under
the top-level src directory must be assigned read-writable permission.

By default, the distribution assumestheinstallation directory to be/usr/local/hsfsys2. If thisdirectory isused,
the software can be compiled directly without any path name modifications. To minimize installation complexity, the
directory /usr/local/hsfsys2 should be used if at all possible. If insufficient space existsin your /usr/local file system,
the install ation can be copied elsewhere and referenced through a symbolic link.

If you decidetoinstall thisdistribution in some other directory, then editing anumber of source codefileswill
be necessary prior to compiling the programs. Edit theline“PROJDIR = /usr/local/hsfsys2” in the file makefile.mak in
thetop-level installation directory, replacing /usr/local/hsfsys2 with the full path name of theinstallation directory you
have chosen. Likewise replace all references to /usr/local/hsfsys2 in the files hsfsys.h and hsfsys2.h found in the top-
level directory include. Remember, to make these file modifications, the permission of these files will have to be
changed first. Once these edits are made, follow the instructions in Section 2.4 for compilation.

2.2 Organization of Software Distribution

<installation directory>

bin data dict doc include lib man src tmplt train weights

Figure 2. Thetop-level directory structure in the software distribution.

Thetop-level directoriesin thisdistribution are shownin Figure 2. Thefirst directory, bin, holdsall distributed
shell scripts and locally compiled programs that support the recognition system. The full path name to this directory
should be added to your environment’s search path prior to compilation. Upon successful compilation, the programs
mis2evt, mis2patl, hsfsysl, mis2pat2, trainreg, mlp, and hsfsys2 areinstalled in thetop-level bin directory. Instructions
on running these programs are provided in Section 3 with the exception of mip which isdiscussed in Appendix A. The
directory bin also containsthefile catal og.csh that must be assigned executable permission. Thisfileisa C-shell script
that is used to automatically catal og programs and library routines.

Thedirectory data contains 10 subdirectories, f0000_14 through f0009 06, containing completed HSF forms
from SD19. Each subdirectory holds aform image in an IHead format file with extension pct, a reference file with
extension ref (listing the values the writer was instructed to enter in each field), three system output files generated by
hsfsysl, and two system output files generated by hsfsys2. The hypothesis file with extension hyl lists all the field val-
ues recognized on the form by hsfsysl, while the file with extension hy2 lists all those recognized by hsfsys2. The con-
fidence file with extension col lists the corresponding confidence values for each character classification reported by
hsfsysl, whilethefile with extension co2 lists confidence valuesfor hsfsys2. A timing filewith extension til, generated
by hsfsysl, is also provided in each form directory. A single timing report, hsfsys2.ti2, generated by hsfsys2 running
across al 10 forms, is stored in the top-level directory data. All of these system output files were generated at NIST
on a Sun SPARCstation 2 with a Weitek CPU upgrade.

The directory dict contains the dictionary file const.mfs listing in alphabetical order all the words present in
the Preamble to the U.S. Constitution. The directory include holds all the header files that contain constants and data
structure definitions required by the recognition system source code. Thedirectory lib holdsall locally compiled object
code libraries used in compiling the distribution programs. The directory src contains all the source code files (exclud-
ing header filesin thetop-level directory include) provided with the recognition system distribution. The organization
of src subdirectoriesis discussed in Section 2.3.

Documentation on this software test-bed is provided in the top-level directory doc. The file changes.txt lists
all the source code modifications made to the software between the first and second releases. A significant number of
PostScript reference documents are also contained in this directory. The PostScript file for this specific document is
hsfsys2.ps. The remaining filesin this directory form abibliography of papers and reports published by NIST that are
relevant to this software release. For example, the user’s guide for the first release of the software, NISTIR 5469 [1],
iscontained inthefilebib_15.ps. NISTIR 5469 should be referenced for its algorithmic description of the original rec-
ognition system which in the new release is renamed hsfsysl and contains only minor modifications. The installation
and organizational notesincluded in bib_15.ps are made obsol ete by the notes provided in this (the new release) user’s
guide. Thebibliography files are assigned file names according to the order of their publication date. Thetext filebib_-
lis.txt cross-references all the bibliography file names to their associated publication titles and full references. All but
three of the bibliography files are PostScript documents ending with the extension ps. The files bib_05.tar and
bib_13.tar were created with the UNIX tar command, and they contain multiple PostScript files. For example, the
PostScript files contained in thefile bib_05.tar can be extracted into the current working directory using the following
command:

% tar xvf bib_05.tar

Thefileshib_14.psand bib_14.z contain the Second Census Optica Character Recognition Systems Conference report
[19]. Thefirst part isaPostScript file, whereas the second part isa UNIX compressed tar file. To extract the PostScript
filesarchived in bib_14.z, use the following command. Warning, extracting these files requires alarge amount of disk
space.

% zcat < bib_14.z | tar xvf -

On-line documentation is also provided in the top-level directory man in the form of UNIX-style manual
pages. These manual entries give instructions on running each of the programs provided in the test-bed. For example,
assuming the installation directory is/usr/local/hsfsys2, one can bring up amanual page on the screen for the program
mis2evt by typing the following command on a Sun workstation. Command options may vary on your particular sys-
tem.

% man -M /usr/local/hsfsys2/man mis2evt

The directory tmplt contains files pertaining to the processing of HSF forms. A blank HSF form is provided
in both Latex and PostScript formats. The Latex file hsf_0.tex or the PostScript file hsf_0.ps can be printed, filled in,
scanned at 12 pixels per millimeter (300 dpi), and then recognized by both recognition systems. The points used to
register an HSF form in hsfsysl are stored in the file hsfreg.pts. The coordinates used to register formsin hsfsys2 are
stored in the file hsfgreg.pts. Hsfsys2 uses a generalized method of form registration that is automatically trained with
the program trainreg. Points defining the location of each HSF entry field are stored in thefile hsftmplt.pts. A registered
blank HSF form image is stored in the file hsftmplt.pct, and a dilated version of this form used for form removal in
hsfsysl is stored in the file hsftmplt.d4.

A large sample of training data is provided in the top-level directory train. As mentioned earlier, there are
252,124 segmented and labeled handprint characters contained in this directory. In all there are 179,829 images of
handprint digits, 35,783 lowercase | etters, and 36,512 uppercase | etters. The handprint from 1499 different writersare
represented in this set of character images, which isdivided among three subdirectorieshsf_4, hsf_6, and hsf_7. These
subdirectories correspond directly to those distributed in SD19. The images of segmented characters are stored in the
Multiple Image Set (MIS) file format [1]. Each MISfile ends with the extension mis. Those files beginning with d con-
tain data related to handprint digits, files beginning with | correspond to lowercase | etters, and files beginning with u
correspond to uppercase letters. The four digit number embedded in each file nameis an index identifying the writer.
For each MISfilein the training set, there is an associated classification file containing the identity of each character
contained in the MISfile. These classification files end with the extension cls. Thefirst linein a classification file con-
tains the number of character images contained in the corresponding MISfile. All subsequent lines store the identity
(in hexadecimal ASCII representation) of each successive character image. MISfiles containing images of lowercase
letters have a second classification fil e associated with them that ends with the extension cus. Thesefiles store the iden-
tity of each lowercase |etter astheir corresponding uppercase equivalent. For example, animage of the lowercase char-
acter 'k’ isstored in aclsfile as 6b, whereasit is stored in a cus file as 4b (the hexadecimal ASCII representation for
the uppercase character K). The labelling of lowercase |etters as uppercase is used when classifying charactersin the
Preamble box.

Thelast top-level directory weights holds the files associated with feature extraction and character classifica-
tion. Thisdirectory is divided into two subdirectories. Subdirectory pnn contains files that support the PNN classifier
used in hsfsysl, whereas the subdirectory mlp contains files that support the MLP classifier used in hsfsys2. The files
under each of these two subdirectories are organized according to the types of fields found on an HSF form. Digit con-
tainsfilesfor numeric recognition, lower for lowercase recognition, upper for uppercase recognition, and const for Pre-
ambl e recognition. Within the weights/pnn subdirectories, files with the extension evt were generated by the program
mis2evt and contain eigenvector basis functions used to compute Karhunen Loéeve (KL) coefficients. The pattern (or
prototype) files with the extension pat contain training sets of KL prototype vectors and a search tree[20] used by the
PNN classifier. Files with extension med in this subdirectory contain class-based median vectors computed from the
prototypes stored in the corresponding pat file. Pattern and median vector files stored under pnn were computed by the
program mis2pat1.

Thefilesinweights/pnn/digit: h6_d.evt, h6_d.pat, and h6_d.med were computed from 61,094 images of digits
intrain/hsf_6 and are used by hsfsysl to compute features and classify segmented images of digits. Thefilesinweights/
pnn/lower: h46_|.evt, h46_|.pat, and h46_|.med were computed from 24,205 lowercase imagesin both train/hsf_4 and
train/hsf_6 and are used by hsfsysl to compute features and classify lowercase characters. The files in weights/pnn/
upper: h46_u.evt, h46_u.pat, and h46_u.med were computed from 24,420 uppercase images in both train/hsf_4 and
train/hsf_6 and are used by hsfsysl to compute features and classify uppercase characters. The files in weights/pnn/
const: h46_ul.evt, h46_ul.pat, and h46_ul.med were computed from 48,625 images of both lower and uppercasein
train/hsf_4 and train/hsf_6 and are used by hsfsys1 to computefeatures and classify charactersfor lower and uppercase
combined. Two additional pairs of evt, pat, and med files are provided so that computers with limited memory of at
least 8 Megabytes are able to execute all options of hsfsysl. The filesin weights/pnn/const: h6_ul_s.evt, h6_ul_s.pat,
and h6_ul_s.med were computed from 24,684 images of both lower and uppercase only in train/hsf_6, whereasin
weights/pnn/digit: h6_d_s.evt, h6_d_s.pat, and h6_d_s.med were computed from 21,293 images of digitsin train/
hsf_6. In general, the recognition accuracy of the PNN classifier decreases as the number of prototypes is decreased.
Therefore, the larger pattern files should be used when possible.

Unlikethe PNN classifier, the MLP classifier requires extensive off-linetraining, and thisis performed by the
program mip. The MLP classifier also uses KL feature vectors, but in adifferent file format than isused by PNN. The
program mis2evt is used to compute eigenvector basis functions, and mis2pat? is used to generate pattern filesfor use
with the program ml p. Within the wei ghts/ml p subdirectories, eigenvectorsare stored in fileswith extension evt, pattern
fileswith extension pat, and output weights files from the program mip are stored with extension wts. The same set of
writers and characters was used to train the MLP classifier (on digits, lowercase, uppercase, and mixed case for the
Preamble box) that were used to generate the patternsfiles for the PNN. An additional set of 500 writers contained in
train/hsf_7 was used as an evaluation set during the off-line training of the MLP. Appendix A describes how the pro-
gram mlp was used to generate the provided weights files.

2.3 Source Code Subdirectory

The organization of subdirectories under thetop-level directory srcisillustrated in Figure 3. The subdirectory
src/bin contains all program main routines. Included in thisdirectory is a catal og.txt file providing a short description
of each program provided in the test-bed. In this distribution there are seven programs and therefore seven subdirec-
toriesin src/bin: mis2evt, mis2patl, hsfsysl, mis2pat2, mip, trainreg, and hsfsys2. The program mis2evt takes M1Sfiles
of segmented character images and computes eigenvectors from the collection; mis2pat1 generates a patterns file and
median vector file for use with the PNN classifier; hsfsysl is an updated version of the recognition system distributed
in the first software release; mis2pat2 generates patterns files to be used in training the MLP classifier; mip is the off-
line training program that computes weights for the new MLP classifier; trainreg trains the generalized form registra-
tion module (used in the new recognition system) on new types of forms; and the last program, hsfsys2, is the new
recognition system that contains the latest technology from our laboratory and performs significantly better than its
older counterpart. Each of these program directories contains a C source code file containing the program’s main rou-
tine (designated with the extension ¢) and anumber of different architecture-dependent compilation scripts used by the
UNIX make utility (designated with the root file name makefile). The use of the make utility is discussed in Section
2.4. Upon successful compilation, the directories under src/bin will contain compiled object files and a devel opment
copy of each program’s executabl efile. Production copies of these programs are automatically installed in thetop-level
directory bin.

biln lib
SE I I |
mis2evt hsfsysl mip hsfsys2
misZpatl mis2Zpat2 trainreg
I I] I , I
adseg fet hsf image mis nn rmline util
dict hblas ihead mfs mip phrase stats

Figure 3. Directory hierarchy under the top-level directory src.

The subdirectory src/lib contains the source code for all the recognition system’s supporting libraries. This
distribution has 15 libraries each represented as a subdirectory under src/lib. Each library contains a suite of C source
code files designated with the extension ¢ and a set of different architecture-dependent compilation scripts designated
with the root file name makefile. Also included in each library subdirectory is a catal og.txt file providing a short
description of each routine contained in that specific library. Upon successful compilation, each library subdirectory
under src/libwill contain compiled object files (with file extension 0) and adevelopment copy of each library’sarchive
file (with file extension a). Production copies of the library archive files are automatically installed in the top-level
directory lib.

The adseg subdirectory contains routines that support the adaptive segmentation method [7] used by hsfsys2;
dict contains routines responsible for dictionary manipulation and matching [17], fet is responsible for manipulating
Feature (FET) structures and files; and hblas contains several basic linear algebra subroutines (blas). If the user’s com-
puter system already has a“real” blaslibrary installed, it may be more efficient to compile the test-bed programs by
linking the system’slibrary in place of the one provided. The hsf library isresponsiblefor form processing with respect
to HSF forms, ihead contains routines for manipulating IHead structures and files, image contains general image
mani pulation and processing routines; the mfs library is responsible for manipulating Multiple Feature Set (MFS)
structures and files; mislibrary isresponsible for manipulating Multiple Image Set (M1S) structures and files; the mip
library holds all the supporting routines for the new MLP classifier [8]; nn contains general feature extraction [14] and
neural network routinesincluding the PNN classifier [1]; phrase holds routines responsible for processing the seg-
mented text from paragraph fields like the Preamble box on HSF forms [6]; rmline holds routines that conduct intelli-
gent lineremoval from formswhile preserving character strokeinformation [5]; the stats subdirectory contains general
statistics routines; and lastly, util contains a collection of miscellaneous routines.

2.4 Automated Compilation Utility

Before compiling the standard reference software test-bed, the full path name to the top-level directory binin
the installation directory must be added to your shell’s executable search path. For example, if the distribution is
installed in /usr/local/hsfsys2, your search path should be augmented to include /usr/local/hsfsys2/bin. It may also be
necessary to edit the path names contained in a number of files as discussed in Section 2.1.

Compilation of the software in the test-bed is controlled through a system of hierarchical compilation scripts
used by the UNIX make utility. Each one of these scriptsis contained in afile with the root name makefile. This auto-

10

mated compilation system is responsible for installing all architecture-dependent source code files and compilation
scripts, removing al compiled object files and devel opment copies of libraries and programs, automatically generating
source code dependency lists, and installing production versions of libraries and programs. One makefile.mak file
existsin thetop-level installation directory, and one makefile.mak file existsin each of the src, src/bin, and src/lib sub-
directories. These compilation scripts are architecture independent and contain Bourne shell commands.

This standard reference software test-bed has been successfully ported and tested on the various UNIX com-
puterslisted in Table 2. There are numerous differences between these different computers and their operating systems.
Common discrepancies include differences in the syntax of compilation scripts and their built-in macro definitions;
some operating systems require manually building the symbol table in archived library files, while other systems
update these symbol tables automatically; every one of these operating systems has an install command, but each
requiresits own specia set of arguments; each manufacturer’s compilers has different options and switches for con-
trolling language syntax and optimization; and so on. To account for these variations, there are architecture-dependent
compilation scripts provided for each program and library in the distribution. These compilation scripts have the root
file name makefile and end with an extension identifying their corresponding architecture. The right column in Table
2 liststhe set of extensions used to identity architecture groups for the computers and operating systems tested.

Man. Model o.S Ext.
DEC Alpha 3000/400 OSF/1V1.3 osf
SGl Indy & Challenge IRIX 5.3 SO
IBM RS6000 Model 370 AlX 4.1 aix

HP 9000/735 HP-UX A.09.05 hp
Sun SPARCstation 10 SunOS 5.4 (Solaris) sol
Sun SPARCstation 2 Sun0S4.1.3 sun

Table 2. Machines tested and their identifying file extensions.

There are also a number of architecture-dependent source code files provided in the distribution. These files
share the same root file name and end with an architecture-identifying extension consistent with those used for com-
pilation scripts. There are architecture-dependent source code files provided to support DEC-like machines that use an
Intel-based byte order to represent unformatted binary data. All unformatted binary datafiles provided in this distribu-
tion were created on machines using the Motorola-based byte order. When these files are read by amachine using a
different byte order, the bytes must be swapped before the data can be used. The overhead of swapping the bytesin
these datafiles can be avoided by regenerating them with locally compiled versions of mis2evt, mis2patl, and mis2pat2
on your computer. Thelibrariesin src/lib contain the following architecture-dependent source code files: image/byte2-
bit.{osf, sun}, nn/basis_io.{osf,sun}, nn/pat_io.{osf,sun}, nn/kd_io.{osf,sun}, util/ticks.{osf,sun}, mip/getpat.{ osf,sun},
and mip/rd_words.{osf,sun}.

It was stated earlier that the automated compilation systemisresponsiblefor installing all architecture-depen-
dent source code files and compilation scripts, removing all compiled object files and development copies of libraries
and programs, automatically generating source code dependency lists, and installing production versions of libraries
and programs. These tasks are initiated by invoking the make command at the top-level installation directory. All sub-
sequent lower-level makefile.mak scriptsareinvoked automatically in aprescribed order, and the 39,000 lines of source
code are automatically maintained and object files and executables are kept up to date. The make command can be
invoked from the location of any lower-level makefile.mak file to i sol ate specific portions of the source code for recom-
pilation. However, the details of doing this are dightly involved and left to the installer to pursue on his own.

The NIST recognition software test-bed is entirely coded in C. Assuming the installation directory is/usr/
local/hsfsys2, the following steps are required to compile the distribution for the first time on your UNIX computer:

11

% cd /usr/local/hsfsys2

% make -f makefile.mak instarch INSTARCH=<arch>
% make -f makefile.mak bare

% make -f makefile.mak depend

% make -f makefile.mak install

The first make invocation uses the instarch option to install architecture-dependent files required to support
the compilation and execution of the distribution’s programsand libraries. The actual architectureis defined by replac-
ing the argument <arch> with one of the extensionslisted in Table 2. For example, “INSTARCH=sun” must be used
to compile the distribution on computers running SunOS 4.1.X. If you are installing this software on a machine not
listed in Table 2, you first need to determine which set of architecture-dependent filesis most similar to those required
by your particular computer. Invoke make using the instarch option with INSTARCH set to the closest known archi-
tecture. Then, edit the resulting makefile.mak files in the subdirectories under src/bin and src/lib according to the
requirements of your machine. One other hint, if you are compiling on a Solaris (SunOS 5.X) machine using the par-
allel make utility, you may haveto add a“-R” option prior to the “-f” option for each of the make invocations.

The bare option causes the compilation scripts to remove all temporary, backup, core, and object files from
the program directories in src/bin and the library directories in src/lib. The depend option causes the compilation
scripts to automatically generate source code dependency lists and modify the makefile.mak files within the program
and library directories. Your C compiler may not have this capability, in which case you may want to generate the
dependency lists by hand. Theinstall option builds source code dependency lists as needed, compiles all program and
library source codefiles, and installs compiled libraries and programsinto their corresponding production directories.
Compiled libraries are installed in the top-level directory lib, while compiled programs are installed in the top-level
directory bin.

One other capability, the automatic generation of catalog files, has been incorporated into the hierarchical
compilation scripts. A formatted comment header isincluded at the top of every program and library source codefile
in the software test-bed. When theinstall option is used, the low-1evel makefile.mak files invoke the C-shell script bin/
catalog.csh. The script catal og.csh extracts all source code headers associated with all the programs or a specific
library in the distribution and compiles a catalog.txt file. A catalog.txt file existsin the subdirectory src/bin, and one
catalog.txt file exists in each of thelibrary directoriesin src/lib. This provides a convenient and quick reference to the
source code provided in the distribution.

12

3. INVOKING TEST-BED PROGRAMS

This section describes how the programs distributed with this software rel ease (with the exception of mip) are
invoked and how they were used to generate the supporting data files provided in the test-bed. The invocation of the
off-line neural network training program mip is much more involved, and it can be used for pattern recognition prob-
lems other than character classification. Therefore, its description is provided separately in Appendix A. On-line doc-
umentation is provided for each of these programsin the form of UNIX-style manual pages under the top-level
directory man.

3.1 mis2evt - computing eigenvector basis functions

Both of the NIST standard reference recognition systems, hsfsysl and hsfsys2, use the Karhunen Loéve (KL)
transform to extract features for classifying segmented character images. This transform is obtained by projecting a
character image onto eigenvectors of the covariance computed from a set of training images. The mathematical details
of the KL transform are provided in Reference [14].

The eigenvectors are computed off-line and stored in a basis function file because computing them from a
large covariance matrix is very expensive. The recognition systems read the basis function file during their initializa-
tion, and then reuse the eigenvectors across all the character images segmented from fields of a specified type (digit,
lowercase, uppercase, or Preamble box). The program mis2evt compiles a covariance matrix and then computes its
eigenvectorsfrom aset of segmented character images and generates abasis function file. The program’s main routine
islocated in the distribution directory src/bin/mis2evt. The command line usage of mis2evt is as follows:

% mis2evt

Usage: mis2evt:
-n for 128x128 input, write normed+sheared 32x32 intermediate MISfiles
-v beverbose - notify completion of each misfile
<nrequiredevts> <evtfile> <mfs_of misfiles>

Arguments:

* Thefirst argument nrequiredevts specifies the number of eigenvectors to be written to the output file. It is
aso the number of KL featuresthat will ultimately be extracted from each binary image using the associated
utilities mis2patl and mis2pat2. Thisinteger determines the dimensionality of the feature vectors that are
produced for classification. Its upper bound istheimage dimensionality (which is 32x32 = 1024). Typically,
this argument is specified to be much smaller than 1024 because the KL transform optimally compacts the
representation of the image datainto its first few coefficients (features). Hsfsysl uses a value of 64, while
hsfsys2 uses 128. Reference [22] documents an investigation of the dependency of classification error on
feature vector dimensionality.

* The second argument evtfile specifies the name of the output basis function file. The format of thisfileis
documented by the routine write_basis() found in src/lib/nn/basis io.c.

* Thethird argument mfs_of _misfiles specifies atext file that lists the names of all the MIS files containing
images that will be used to calculate the covariance matrix. This argument is an MFSfile with the first line
containing an integer indicating the number of MIS files that follow. The remaining linesin the MFSfile
contain MIS file names, one name per line. The format of an MFSfile is documented by the routine write-
mfsfile() found in src/lib/mfsiwritemfs.c.

Options:

» The option “-n" specifies the storing of intermediate normalized character images. Mis2evt can process
binary images that are either (128x128) or (32x32). In the case of the former, the program invokes a size
normalization utility to produce 32x32 images and then applies a shear transformation to reduce slant vari-
ations. If the input images are already 32x32, this flag has no effect. If normalization does occur, the result-
ing normalized images are stored to M1 S files having the same name as those listed in the MFSfile, with the

13

additional extension 32 appended. These intermediate files offer computational gains because usually the
same images are used with mis2pat1 and mis2pat?2.

» The option “-v’ produces messages to standard output signifying the completion of each MISfile and other
computation steps.

This program is computationally expensive and may require as long as 60 minutes to compute the eigenvec-
torsfor alarge set (50,000 characters) of images. The program mis2evt was used to generate the basis function files
provided with thisdistribution in the top-level directory weights and ending with the extension evt. Thesefiles contain
eigenvectors computed from the images provided in the top-level directory train. The MFSfiles used as arguments to
mis2evt are also provided in weights and end with the extension ml. For example, the basis function file weights/pnn/
lower/h46_|.evt was generated with the following command:

% mis2evt -v 64 h46_|.evt h46_|.ml
The basis function file weights/mlp/digit/h6_d.evt was generated with the following command:

% mis2evt -v 128 h6_d.evt h6_d.ml

14

3.2 mis2patl - generating patternsfor the PNN classifier

Mis2patl is algorithmically equivalent to the program mis2pat distributed with the first software release. It
takesa set of training images along with the eigenvectors generated by mis2evt and computes feature vectors using the
KL transform that can be used as prototypesfor training the PNN classifier used in hsfsysl. Typically, the sameimages
used to compute the eigenvectors are used here to generate prototype vectors. The program mis2pat1 also builds a kd-
tree as described in Reference [20]. The prototypes along with their class assignments and kd-tree are stored in one
patterns file, while median vectors computed from the prototype vectors are stored in a separate median vector file.
Notethat all FORTRAN dependencies have been removed from thisrelease. In doing so, the format of the patternsfile
generated by mis2pat1 has changed from that generated by the original program mis2pat. The main routine for mis2-
patlislocated in src/bin/mis2patl. The command line usage of mis2patl is as follows:

% mis2patl
Usage: mis2patl:
-h accept hexadecimal classfiles
-n with 128x128 images, write normed+sheared 32x32 intermediate MIS files
-v beverbose - notify completion of each misfile
<classset> <evtfile> <outroot> <mfs of clsfiles> <mfs_of misfiles>

Arguments:

* Thefirst argument classset specifiesthe name of atext file (MFSfile) containing the label s assigned to each
class. Theinteger on the first line of the file indicates the number of classes following, and the remaining
lines contains one class label per line. For example, adigit classifier uses ten classes labeled 0 through 9.
The format of an MFSfile is documented by the routine writemfsfile() found in src/lib/mfs/writemfs.c.

* The second argument evtfile specifies the basis function file containing eigenvectors computed by mis2evt.
The number of featuresin each output vector is determined by the number of eigenvectorsin thisfile. The
format of thisfile is documented by the routine write_basis() found in src/lib/nn/basis _io.c.

* The third argument outroot specifies the root file name of the output pattern and median vector files. The
name of the output pattern file has extension pat while the median vector file has extension med. The format
of the patterns’kd_treefile is documented by the routine kdtreewrite() in src/lib/nn/kd_io.c whereas the
median vector file format is documented by the routine writemedianfile() in src/lib/nn/med_io.c.

« Thefinal arguments are the names of text files (MFSfiles) that contain listings of file names. The argument
mfs_of_clsfiles lists file names containing class assignments corresponding to the images in the MISfiles
listed in the argument mfs_of misfiles. Each class assignment file must have the same number of class
assignments as there are images in its corresponding MISfile, and the classes assignhed must be consistent
with those listed in the argument classset.

Options:

» The option “-h” specifies that the class labels listed in the classset file are to be converted to ASCII charac-
tersvalues represented in hexadecimal. All the class assignmentsin the files listed in the argument mfs_of_-
clsfiles use the convention where [30-39] represent digits, [41-5a] represent uppercase, and [61-7a]
represent lowercase. If the classset file contains al phabetic representations such as [0-9], [A-Z], and [&-Z],
then this flag must be used to effect conversion of these labelsto their hexadecimal equivalents.

» The option “-n" specifies the storing of intermediate normalized character images. Mis2pat1 can process
binary images that are either (128x128) or (32x32). In the case of the former, the program invokes size and
slant normalization utilities to produce 32x32 images. If the input images are already 32x32, this flag has
no effect. If normalization does occur, the resulting normalized images are stored to MIS files having the
same name as those listed in mfs_of _misfiles, with the extension 32 appended.

» The option “-v" produces messages to standard output signifying the completion of each MISfile.

15

This program was used to generate the patterns files provided with this distribution in the directory weights/
pnn and ending with the extension pat and median vector files ending with extension med. The patterns files contain
KL feature vectors, their associated classes, and akd-treein its new format as documented by the routine kdtreewrite()
found in src/lib/nn/kd_io.c. The feature vectors were computed using the eigenvectors found in the same directory and
from the images provided in the top-level directory train. The MFS files used as arguments to mis2pat1 are aso pro-
vided in the weights/pnn subdirectories, as are the classset files which end with the extension set. The class assignment
filesare listed in files ending with the extension cl, whereas the MISfiles are listed in files ending with the extension
ml. For example, the patterns file weights/pnn/lower/h46_|.pat and median vector file weights/pnn/lower/h46_|.med

were generated with the following command:

% mis2patl -vh |.set h46_|.evt h46_| hd6_I.cl ha6_|.ml

16

3.3 hsfsysl - running the updated version of the original NIST system

Hsfsysl is an updated version of the NIST recognition system distributed in the first release of the software.
This system is designed to read the handwriting entered on HSF forms like those included in the top-level directory
data. The most significant changesto this system include more efficient memory usage (improving recognition speed),
and all dependencies on FORTRAN-coded subroutines have been removed. A detailed description of the algorithms
used in this system is provided in the original user’s guide (NISTIR 5469) [1].

Therecognition systemisrunin batch mode with imagefileinputsand ASCI| text file outputs, and the system
contains no Graphical User Interface. The command line usage of hsfsysl is as follows:

% hsfsysl
Usage:
hsfsysl [options] <hsf file> <output root>
-d process digit fields
-l process lowercase fields
-u process uppercase fields
-c nodict process Constitution field without dictionary
-cdict process Constitution field using dictionary
-m small memory mode
-S silent mode
-V verbose mode
-t compute and report timings

The command line arguments for hsfsysl are organized into option specifications, followed by an input file
name specification, and an output (root) file name specification. The options can be subgrouped into three categories
(field type options, memory control options, and message control options).

Field type options:
-d designates the processing of the digit fields on an HSF form.
-l designates the processing of the lowercase field on an HSF form.
-u designates the processing of the uppercase field on an HSF form.

-C designates the processing of the Constitution field on an HSF form. This option requires an argument.
If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw
character classifications and associated confidence values are reported. If the argument dict is speci-
fied, then dictionary-based postprocessing is performed and matched words from the dictionary are
reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -l option to process the lower-
case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-
case fields, then specify both options -| and -u (or an equivalent syntax -lu). The system processes all of the
fields on the form if no field type options are specified, and dictionary-based postprocessing is performed on
the Constitution field by default.

Memory control options:

-m specifiestheuse of aternative prototypefilesfor classification that have fewer training patterns, so that
machines with limited main memory may be able to completely processall thefields on an HSF form.
In general, decreasing the number of training prototypes reduces the accuracy of the recognition sys-
tem’s classifier. It is recommended that this option be used only if necessary.

Message control options:

17

-s specifies that the silent mode isto be used and all messages sent to standard output and standard error
are suppressed except upon the detection of afatal internal error. Silent mode facilitates silent batch
processing and overrides the verbose mode option. By default, the system postsits recognition results
to standard output as each field is processed.

-V specifiesthat the verbose mode isto be used so that messages providing afunctional trace through the
system are printed to standard error.

-t specifies that timing datais to be collected on system functions and reported to atiming file upon sys-
tem completion.

File name specifications:

<hsf file> specifiesthe binary HSFimage in IHead format that isto be read by the system. The IHead
file format is documented by the routine ReadBinaryRaster () found in src/lib/image/rea-
drast.c.

<output root> theroot file name that isto be appended to the front of each output file generated by the
system. Upon completion, the system will create a hypothesis file with the extension hyp
and a confidence file with the extension con. If the -t option is specified, atiming file with
the extension timwill also be created. These text files can be manipulated as FET files, the
format of which is documented by the routine writefetfile() in src/lib/fet/writefet.c.

For example, to run the system in verbose mode on all the HSF fields on the form in data/f0000_14 and store
the system results in the same location with the same root name as the form, the following commands are equivalent
(assuming the installation directory is/usr/local/hsfsys?). In each case, the files f0000_14.hyp and f0000_14.con will
be created by the system in the directory /usr/local/hsfsys2/data/f0000_14.

% hsfsysl -v /ust/local/hsfsys2/data/f0000_14/f0000_14.pct /ust/local/hsfsys2/data/f0000_14/f0000_14

% hsfsysl -v /ust/local/hsfsys2/data/f0000_14/f0000_14{ .pct,}

% (cd /ust/local/hsfsys2/datal/f0000_14; hsfsysl -v f0000_14.pct f0000_14)

Torunthe systemin silent mode on only the digit and uppercasefields on the same form with resultsincluding
timing data all stored in /tmp with the root name foo, the following command can be used.

% hsfsysl -stdu /usr/local/hsfsys2/data/f0000_14/f0000_14.pct /tmp/foo
In this example, the files created by the system will be /tmp/foo.hyp, /tmp/foo.con, and /tmp/foo.tim.

The program hsfsysl was used to generate the files with extension hyl, col, and ti1 located within the form
subdirectories under the top-level directory data.

18

3.4 mis2pat? - generating patternsfor training the ML P classifier

Mis2pat? takes a set of training images along with the eigenvectors generated by mis2evt and computes fea-
ture vectors using the KL transform that can be used as prototypesfor training the ML P classifier used in hsfsys2. Typ-
ically, the same images used to compute the eigenvectors are used here to generate prototype vectors. The prototypes
along with their class assignments are stored in apatternsfile that is of adifferent format than those generated by mis2-
patl. The format of the patterns file created by mis2pat2 is documented in the routine write_bin_patterns() found in
src/lib/nn/pat_io.c. The program’s main routine is located in src/bin/mis2pat2. The command line usage of mis2pat2
isasfollows:

% mis2pat2
Usage: mis2pat2:
-h accept hexadecimal classfiles
-n with 128x128 images write normed+sheared 32x32 intermediate MISfiles
-v beverbose - notify completion of each misfile
<classset> <evtfile> <outfile> <mfs_of clsfiles> <mfs_of _misfiles>

Arguments:

* Thefirst argument classset specifiesthe name of atext file (MFSfile) containing the label s assigned to each
class. Theinteger on the first line of the file indicates the number of classes following, and the remaining
lines contains one class label per line. For example, adigit classifier uses ten classes labeled 0 through 9.
The format of an MFSfile is documented by the routine writemfsfile() found in src/lib/mfsiwritemfs.c.

* The second argument evtfile specifies the basis function file containing eigenvectors computed by mis2evt.
The number of featuresin each output vector is determined by the number of eigenvectorsin thisfile. The
format of thisfile is documented by the routine write_basis() found in src/lib/nn/basis _io.c.

* The third argument oultfile specifies the file name of the output patternsfile. The format of this patternsfile
is documented by the routine write_bin_patterns() in src/lib/nn/pat_io.c.

* Thefinal arguments are the names of text files (MFSfiles) that contain listings of file names. The argument
mfs_of_clsfileslists file names containing class assignments corresponding to the images in the MISfiles
listed in the argument mfs_of misfiles. Each class assignment file must have the same number of class
assignments as there are images in its corresponding MISfile, and the classes assigned must be consistent
with those listed in the argument classset.

Options:

» The option “-h” specifiesthat the class |abels listed in the classset file are to be converted to ASCII charac-
tersvalues represented in hexadecimal. All the class assignmentsin the files listed in the argument mfs_of_-
clsfiles use the convention where [30-39] represent digits, [41-5a] represent uppercase, and [61-7a]
represent lowercase. If the classset file contains al phabetic representations such as [0-9], [A-Z], and [&-Z],
then this flag must be used to effect conversion of these labelsto their hexadecimal equivalents.

» The option “-n" specifies the storing of intermediate normalized character images. Mis2pat2 can process
binary images that are either (128x128) or (32x32). In the case of the former, the program invokes size and
slant normalization utilities to produce 32x32 images. If the input images are already 32x32, this flag has
no effect. If normalization does occur, the resulting normalized images are stored to MIS files having the
same name as those listed in mfs_of _misfiles, with the extension 32 appended.

» The option “-v" produces messages to standard output signifying the completion of each MISfile.
This program was used to generate the patterns files provided with this distribution in the directory weights/
mlp and ending with the extension pat. These patterns files contain KL feature vectors along with their associated

classes. The feature vectors were computed using the eigenvectors found in the same directory and from the images
provided inthetop-level directory train. The MFSfiles used as argumentsto mis2pat2 are al so provided in the weights/

19

mlp subdirectories, as are the classset files which end with the extension set. The class assignment files are listed in
files ending with the extension cl, whereas the MISfiles are listed in files ending with the extension ml. For example,
the patterns file weights/mlp/lower/h46_|.pat was generated with the following command:

% mis2pat2 -vh |.set h46_|.evt h46 _|.pat h46_|.cl h46_|.ml

20

3.5trainreg - training to register a new form

The new recognition system, hsfsys2, uses a generalized method of form registration described in Reference
[4]. Thetechniquelocatesthe most dominant |eft and right, top and bottom lines on the form image and then transforms
the image so that these form structures are positioned at registered coordinates. To accomplish this, dominant lines on
anew form must be determined and the coordinates of their registered position must be measured and stored. The pro-
gram trainreg does this automatically, storing the resulting x-coordinates of the left and right-most dominant lines on
the form and the y-coordinates of the top and bottom-most dominant lines on the form. The program’s main routineis
located in the distribution directory src/bin/trainreg, and its main supporting subroutine is found in src/lib/hsf/reg-
form.c. The command line usage of trainreg is as follows:

% trainreg <form_image> <out_points>
* Thefirst argument form_image specifies the name of the input file containing the image of the new form.

Thisimage must be in the binary (black and white) IHead file format which is documented in Reference[1]
and by the routine ReadBinaryRaster () found in src/lib/image/readrast.c.

* The second argument out_points specifies the name of the output file to hold the coordinate positions of the
detected dominant linesin theimage. Thisisan MFSfile, the format of which is documented by the routine
writemfsfile() found in src/lib/mfs/writemfs.c.

This program was used to generate the file tmplt/hsfgreg.pts, which is used by hsfsys2 to register input HSF
forms. Thisfile was created with the following command:

% trainreg hsftmplt.pct hsfgreg.pts

21

3.6 hsfsys2 - running the new NI ST recognition system

The new recognition system, hsfsys2, contains significant technical improvements over its predecessor, hsf-
sysl. It uses new methods of generalized form registration [4], intelligent form removal [5], line isolation within hand-
printed paragraphs [6], adaptive character segmentation [7], a new robust ML P-based classifier [8], among other
improved techniques which are described in Section 4. Hsfsys2 is designed to read the handwriting entered on HSF
forms like those included in the top-level installation directory data, and it is capable of reading every HSF form
included in SD19.

Therecognition systemisrunin batch modewith imagefileinputsand ASCII text file outputs, and the system
contains no Graphical User Interface. The command line usage of hsfsys2 is as follows:

% hsfsys2
Usage:
hsfsys2 [optiong] <list file>
-d process digit fields
-l process lowercase fields
-u process uppercase fields
-c nodict process Constitution field without dictionary
-cdict process Constitution field using dictionary
-S silent mode
-V verbose mode
-t <timefile> compute and report timings

The command line arguments for hsfsys2 are organized into option specifications and afile containing multi-
ple pairs of input file name and output (root) file name specifications. The options can be subgrouped into two general
types (field type options and message control options).

Field type options:

designates the processing of the digit fields on an HSF form.
designates the processing of the lowercase field on an HSF form.
designates the processing of the uppercase field on an HSF form.

designates the processing of the Constitution field on an HSF form. This option requires an argument.
If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw
character classifications and associated confidence values are reported. If the argument dict is speci-
fied, then dictionary-based postprocessing is performed and matched words from the dictionary are
reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -1 option to process the lower-
case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-
case fields, then specify both options -| and -u (or an equivalent syntax -lu). The system processes all of the
fields on the form if no field type options are specified, and dictionary-based postprocessing is performed on
the Constitution field by default.

M essage control options:

-S

specifies that the silent mode isto be used and all messages sent to standard output and standard error
are suppressed except upon the detection of afatal internal error. Silent mode facilitates silent batch
processing and overrides the verbose mode option. By default, the system postsits recognition results
to standard output as each field is processed.

22

-V specifiesthat the verbose modeisto be used so that messages providing afunctional trace through the
system are printed to standard error.

-t <timefile> specifies that timing datais to be collected on system functions and reported to the specified
timing file upon system completion.

File name specification:

<list file> isatwo column ASCII file. Thefirst column listsall the binary HSF imagesin IHead format
that are to be read by the system in the current batch. The IHead file format is documented
by the routine ReadBinaryRaster () found in src/lib/image/readrast.c. Along with each
input image fileis a second argument that specifiesthe root file name to be appended to the
front of each output file generated by the system when processing the corresponding form
image. An exampleof alist fileisfound in data/hsfsys2.lis. Upon compl etion of each form,
the system will create a hypothesis file with extension hyp and a confidence file with exten-
sion con. These output text files can be manipulated as FET files, the format of whichis
documented by the routine writefetfile() in src/lib/fet/writefet.c.

Assuming theinstallation directory is/usr/local/hsfsys2, the following commands can be used to run the new
system in verbose mode on all the fields on all the HSF forms in data.

% cd /usr/local/hsfsys2/data
% hsfsys2 -v -t hsfsys2.tim hsfsys2.lis

The program hsfsys2 was used to generate the timing file hsfsys2.ti2 and the output files with extension hy2
and co?2 located under the top-level directory data.

23

4. ALGORITHMIC OVERVIEW OF NEW SYSTEM HSFSYS2

Reference [2] describes the complexities of integrating various technology components into a successful
OCR system. Very little can befound in theliterature published on theinternal workings of complete systems. Granted,
many of the technologiesrequired for successful OCR have been researched and results have been published, but these
components aretypically tested in isolation and their impact on overall recognition is not measured. Also, many of the
algorithmsimplemented in an end-to-end system are proprietary. Companiesdisclose research resultson piecesof their
recognition systems, but no current publications can be found that disclose the details of acompletely operational sys-
tem.

In contrast, NIST has developed a completely open recognition software test-bed for which the components
arefully disclosed, and in fact, the source codeis publicly available. This software provides abaseline of performance
with which new and promising technol ogies can be compared and evaluated. This section describes the application for
which the new system, hsfsys2, was designed and provides a high-level description of the algorithms used in each of
the system’s major components. An algorithmic overview of the updated original recognition system, hsfsysl, can be
found in Reference [1].

4.1 The Application

It was already noted that the successful application of OCR technology requires more than off-the-shelf sys-
tem integration. State-of-the-art solutions require customization and tuning to the problem at hand. Thisbeing true, an
operational system islargely defined by the details of the application it isto solve.

The NIST system is designed to read the handprinted characters written on Handwriting Sample Forms
(HSF). An example image of a completed HSF form is displayed in Figure 1 on page 4. This form was designed to
collect alarge sample of handwriting to support handprint recognition research. A CD-ROM named NIST Special
Database 19 (SD19), containing 3669 completed forms, each filled in by a unique writer, and scanned binary at 11.8
pixels per millimeter (300 pixelsper inch), ispublicly available[3]. Thisdataset also contains over 800,000 segmented
and labeled characters images from these forms. There are 10 completed HSF forms provided with this software test-
bed. In addition, there is one blank form provided both in Latex and PostScript formats that can be printed, filled in,
scanned, and then recognized. For additional HSF forms, SD19 may be purchased by contacting:

Standard Reference Data Program

National Institute of Standards and Technology
NIST North (820), Room 113

Gaithersburg, MD 20899

voice: (301) 975-2208

FAX: (301) 926-0416

email: srdata@enh.nist.gov

The new NIST system isdesigned to read all but the top line of fields on the form. The system processes the
28 digit fields and the randomly ordered | owercase and uppercase al phabet fields along with the handprinted paragraph
of the Preamble to the U.S. Constitution at the bottom of the form.

4.2 System Components

Figure 4 contains adiagram that illustrates the organization of the functional components within the new sys-
tem hsfsys2. Generally speaking, each one of these components has many possible algorithmic solutions. Therefore,
the new system is designed in amodular fashion so that different methods can be evaluated and compared within the
context of an end-to-end system. This section provides a brief description of the most recent techniques devel oped by
NIST for each of these tasks. Listed with each component subheading is a path name followed by a subroutine
name.These listings are provided to guide the reader to specific areas of the software test-bed for further study and
investigation.

24

NIST Form-Based Recognition System Hsfsys2

Batch Initialization

Next Form in Batch
Load Form Image

Register Form Image

Next Field on Form
Remove Form Box
Isolate Line(s) of Handprint
Segment Text Line(s)
Normalize Characters
Extract Feature Vectors
Classify Characters

Spell-Correct Text Line(s)
(if dictionary available)

Store Results

Figure 4. Organization of the functional components within the new recognition system.

4.2.1 Batch Initialization; src/lib/hsf/run.c; init_run()

The new system isanon-interactive batch processing system designed to process one or more images of com-
pleted HSF forms with each invocation. Thefirst step loads all the precomputed items required to process a particular
type of form (in this case HSF forms). These itemsinclude alist of the image files to be processed in abatch, proto-
typical coordinate locations of dominant form structures used for form registration, a spatial template containing the
prototypical coordinate location of each field on the form, basis functions used for feature extraction, neural network
weights for classification, and dictionaries for spelling correction. There are four types of fields on the HSF form:
numeric, lowercase, uppercase, and the Preamble paragraph. Each type of field requires a separate set of basis func-
tions and neural network weights. Only the Preamble paragraph has adictionary available. The use of these itemswill
be explained in more detail later.

25

Because the new system only processes HSF forms, form identification isnot utilized. Form identification can
be avoided for any application when it iseconomically feasible to sort forms (whether automatically or manually) into
homogeneous batches. Unfortunately, thisis not practical for all applications.

4.2.2 Load Form Image; src/lib/image/readrast.c; ReadBinaryRaster ()

The new system is strictly an off-line recognition system, meaning that the time at which images are scanned
isindependent from when recognition takes place. Thisistypical of large-scale OCR applications where operators
work in shifts running high-speed scanners that archive images of forms to mass-storage devices for later batch con-
version. For each form in the batch, the new system reads a CCITT Group 4 compressed binary raster image from a
file on disk, decompresses the image in software, and passes the bitmap along with its attributes on to subsequent com-
ponents.

4.2.3 Register Form Image; src/lib/hsf/regform.c; genregform8()

A considerable amount of image processing must take place in order to reliably isolate the handprint on a
form. The form must be registered or aligned so that fields in the image correspond with the prototypical template of
fields (or zones). The new system uses a generalized method of form registration that automatically estimates the
amount of rotation and translation in the image without any detailed knowledge of the form [4].

To measurerotational distortion, atechnique similar to the oneinvented by Postl is used [21]. Thistechnique
traces parallel rays across the image accumulating the number of black pixels along each ray using a non-linear func-
tion. A range of ray angles are sampled, and the angle producing the maximum response is used to estimate the rota-
tional skew. Theimage is rotated based on this estimate, and it is then analyzed to detect any translational distortion.
This step capitalizes on the fact that most forms contain afixed configuration of vertical and horizontal lines. Oncethe
rotational skew isremoved, these lines correspond well with the raster grid of theimage. A run-based histogram is
computed to detect the top and bottom, left and right, dominant lines in the image.

For example, to locate the top and bottom-most dominant lines, the horizontal runsin theimage are computed.
Then-longest runs (in the new system, n=3) on each scanline of the image are accumulated into ahistogram bin. These
bins arethen analyzed for rel ative maxima as described in Reference [4]. The accumulation of the n-longest runs effec-
tively suppresses regions of the form containing handwriting and noise, and accentuates the lines on the form. The
same analysisis conducted on vertically-oriented runsto locate the left and right-most dominant lines. Given the loca-
tions of these lines, translation estimatesin x and y are computed with respect to the coordinates of prototypical lines,
and the image is translated accordingly. At this point, fields in the image correspond to the coordinates of the proto-
typical spatial template.

By using thisgeneral registration technique, new form types can betrained automatically. A prototypical form
is scanned, its rotational distortion is automatically measured and removed, and the position of the detected dominant
lines are stored for future registrations. The results of registering 500 HSF formsis shown in Figure 5. Theimage dis-
played istheresult of logically ORing corresponding pixels across a set of 500 registered images. Notice the tight cor-
respondence of the boxes and the printed instructions.

26

ey s s care = MY g 24 frfFe
B i i K

XX] _
he ol oo the Binngs

Figure 5. Composite image of 500 registered HSF formslogically ORed together.

4.2.4 Remove Form Box; src/lib/rmline/remove.c; rm_long_hori_ling()

Upon registration, a spatial template is used to extract a subimage of each field on the form. Fields are
extracted and processed one at atime. Given afield subimage, black pixels corresponding to the handwriting must be
separated from the black pixels corresponding to the form. Thisis a difficult task because a black pixel can represent
handwriting, the form, or an overlap of both. Asall the fields on the HSF form are represented by boxes, the new sys-
tem uses a general algorithm that locates the box within the field subimage, and intelligently removes the sides so as
to preserve overlapping characters [5]. The sides of the box are detected using a run-based technique that tracks the
longest runs across the subimage. Then, by carefully analyzing the width of the sides of the box, overlapping character
stokesareidentified using spatia cues, and only pixelsthat are distinctly part of the form’sbox are removed. Thisway,
descenders of lowercase characters, for example, are not unnecessarily truncated. Figure 6 showstwo fields before and
after form removal.

27

Field Subimage (A)

[T T NPT T T T e e e e v W Y W R W e~ W BaAN WM — = = = = m o m m e e e e e e e e e o e e e e e e A

ldypyveprsinifituwoxohpr maz |

S S O 4 LI I o 4

Isolated Handprint

__

__

Field Subimage (B)

Uitttk Sudediedibedbdiboliilh Sl Bt oy

===

Figure 6. Results of form box removal.

4.2.51solate Ling(s) of Handprint; src/lib/phrase/phrasmap.c; phrases from_map()

The numeric and alphabetic fields on an HSF form are written as single-line responses. After the box is
removed, the handprint contained in afield isisolated (or lifted out) by simply extracting all the connected components
that overlap theinterior region of the detected box. A connected component is defined asthe largest set of black pixels
where each pixel isadirect neighbor of at least one other black pixel in the component. Single isolated black pixels
are also considered components.

Lineisolation ismuch more difficult for multiple-line responses such as the handprinted paragraph of the Pre-
ambl e at the bottom of the HSF form. There are no lines provided within this paragraph box to guide awriter, nor are
there any instructions of how many words should be written on aline. The handwriting isrelatively unconstrained, and
as aresult, the baselines of the writing at times significantly fluctuate. This, along with the fact that the paragraph con-
tains handprinted punctuation marks, makes tracking the lines of handprint difficult. Histogram projections (used
extensively for isolating lines of machine printed characters) are rendered unreliable in this case.

The new system uses a bottom-up approach to isolate the lines of handprint within a paragraph. Thistech-
nigue starts by decomposing a paragraph into a set of connected components. Each component is represented by its
geometric center. To reconstruct the handprinted lines of text, a nearest neighbor search is performed left-to-right and
top-to-bottom through the system of 2-dimensional points[9]. The search is horizontally biased and links sequences
of pointsinto piecewise-linear segments. Simple statistics are used to sort componentsinto categories of too small, too
tall, problematic, and normal. Only those components determined to be normal are linked together by the search.

Given these piecewise-linear trajectories, the tops and bottoms of linked components are interpolated and
smoothed forming line bands. An example of these bandsis shown in Figure 7. These bands form a spatial map, and

28

all the componentsin theimage are sorted into their respective linesin correct reading order according to their overlap
and/or proximity to these bands[6]. At this point, the handwriting in the paragraph isisolated into individual text lines.

% ‘I'AC ?Deo ’C Offl& //Z/)/‘/'d%f_s m DYJCY‘ﬁ ﬁvm A

m o ve ?er ec /anlan estab s us+|<:c_, 1N suve

+ vide oy The Common
olomes+“— Y"miu.h 7 Y;o,e:rn\ l:)&lfavu an

Ye c
D&f&ﬂ5¢’ FY.OMO -,— 'T Oursg lvd.S
of Libev 0
Se.c.wve.‘f‘l«&o/B):?_iM&jo ovdlain 37,\ establish

o ConsTituTioN for the (o Hed States

Figure 7. Line-bands computed from the paragraph image above.

4.2.6 Segment Text Ling(s); src/lib/adseg/segchar s.c; blobs2char s8()

Connected components are used as first-order approximations to single and complete characters. Connected
components frequently represent single characters and are computed very quickly. On the other hand, their direct use
ascharacter segmentsisproneto error. Errors occur when characterstouch one another and when charactersarewritten
with disconnected strokes (naturally occurring with dotted letters). The new system was initially designed to process
the numeric fields on HSF forms. Numeric fields typically do not have any linguistic context; therefore, the utility of
oversegmentation schemes is severely compromised in this case.

Building upon the utility of connected components, the new system utilizes amethod of handprint character
segmentati on that uses a simple adaptive model of writing style[7]. Using thismodel, fragmented characters are recon-
structed, multiple characters are split, and noise components are identified and discarded. Visual features are measured
(thewidth of the pen stroke and the height of the characters) and used by fuzzy rules, making the method robust. Exam-
ples of segmentation results areillustrated in Figure 8 and Figure 9. The segmentor performs best when applied to sin-
gle-line responses, and then even better when the fields are numeric.

29

With minor modification, the same method is used to segment the isolated lines extracted from paragraphs of
handprinted text as described in Reference [6].

Broken Characters
7549
/ N\
3 X
Detached Strokes

MYQULLHMENWXDFRLBUDTPYILISAZ
E F P
Dotted Characters

vagfl'CCyQSkhouwdph bxcz/FJ'i—

/ J

Figure 8. Segmentor results of merging components together.

30

Two Characters Touching

37 o B B0
7 6598 QU

More Than Two Characters Touching

qod 2450
40\ 23450

Upper case Char acter s Touching

HY QKL HLI\)\({/XDFI?.(pﬁUD'TPUULlSHZ_

X{/ D7 ZLS

Figure 9. Segmentor results of splitting components apart.

4.2.7 Normalize Characters; src/lib/hsf/norm8.c; norm_2nd_gen_blobls8()

The recognition technique used by the new system falls under the category of feature-based pattern classifi-
cation. The segmented character images vary greatly in size, slant, and shape. Image normalization is performed to

deal with the size and slant of writing, leaving the recognition process primarily the task of differentiating characters
by variation in shape.

31

The segmented character images are size-normalized by scaling the image either up or down so that the char-
acter tightly fitswithin a20x32 pixel region. The stroke width isalso normalized using simple morphology: if the pixel
content of the character imageistoo high, it is eroded (strokes are thinned), and if too low, it is dilated (strokes are
widened).

Slant isremoved by interpolating aline between the top left-most black pixel in the scaled image and the bot-
tom left-most black pixel. Theline (centered on theimage) is used as a horizontal shear function. The slant of the char-
acter is removed as horizontal rows of pixelsin theimage are increasingly shifted (left or right) outwards from the
center of the image. Upon normalization, each character is centered in a 32x32 pixel image. Size and slant normaliza-
tion are discussed in greater detail in Reference [1].

4.2.8 Extract Feature Vectors; src/lib/nn/kl.c; kl_transform()

At this point, characters are represented by 1024 binary pixel values. The Karhunen Loéve (KL) transformis
applied to these binary pixel vectorsin order to reduce dimensionality, suppress noise, and produce optimally compact
features (in terms of variance) for classification [14].

A training set of normalized character imagesis used to compute a covariance matrix which is diagonalized
using standard linear algebraroutines, producing eigenval ues and corresponding eigenvectors. Thiscomputationisrel-
atively expensive, but is done once off-line, and the top-n ranked eigenvectors are stored as basis functions and used
subsequently for feature extraction. Feature vectors of length 128 are used in the new system, and each coefficient in
the vector is the dot product of a subsequent eigenvector with the 1024 pixel vector of the character being classified.

4.2.9 Classify Characters; src/lib/mlp/runmlp.c; mlphypscons()

Once segmented characters are represented as feature vectors, awhole host of different pattern classification
techniques can be applied. NIST has conducted extensive research on classification methods that utilize machine learn-
ing, and most of these have been various types of neural networks. In previouswork, the Probabilistic Neural Network
(PNN) was shown to provide better zero-reject error performance on character classification problems than Radial
Basis Function (RBF) and Multi-Layer Perceptron (MLP) neural network methods[22]. Later work demonstrated that
various combined neural networks could provide performance equal to PNN and substantially better error-reject per-
formance. However, these systems were very expensive to train and were much slower and less memory efficient than
ML P-based systems[23].

NIST has developed arabust training method that produces ML P networks with performance equal to or bet-
ter than PNN for character recognition [8]. Thisis achieved with a single three-layer network by integrating funda-
mental changesin the network optimization strategy. These changes are: 1) Sinusoidal neuron activation functions are
used which reduce the probability of singular Jacobians; 2) Successive regularization is used to constrain the volume
of the weight space; 3) Boltzmann pruning is used to constrain the dimension of the weight space [24]. All three of
these changes are madein theinner loop of aconjugate gradient optimization iteration [25] and areintended to simplify
the training dynamics of the optimization. On handprinted digit classification problems, these modifications improve
error-reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

To classify a character, the appropriate eigenvectors (or basis functions) and MLP weight matrices must be
loaded into memory. As mentioned earlier, thisisaccomplished during batch initialization. Using the eigenvectors, the

normalized image is transformed into a feature vector. The feature vector is then presented to the MLP network. The
result is an assigned classification along with a confidence value.

4.2.10 Spell-Correct Text Line(s); src/lib/phrase/spellphr.c; spell_phrases Rel2()

The only field on the HSF form that has any linguistic information that can be applied is the Preamble field.
The Preamble is comprised of 38 unique words which are used to form afield-specific dictionary.

32

The dictionary-based processing conducted by the new system is somewhat different than other correction
techniques [26][27]. Up to this point, segmented character images have been extracted from the handprinted para-
graph, sorted into reading order line by line, and classified. This results in one long contiguous character stream for
each linein the paragraph. The MLP weights used to process the Preambl e paragraph were trained to map lowercase
and uppercase instances of the same | etter into the same class, making the output of the classifier case-invariant. There

are also no interword gaps identified by the system at this point. Figure 10 shows an example of these raw classifica-
tions.

Words are parsed from each line of raw classifications by applying the preloaded dictionary as described in
reference [9]. This process identifies words within the character stream while simultaneously compensating for errors
due to wrong segmentations and classifications. The limited size of the dictionary hel ps offset the burden placed on
this process.

We., *he.’PeoR\e, c?—k\ne Urnsite S*\-o:\'fs n order 4o

o0 MOTre pertecy N\om e.S‘\' \ce_,\msL)re,
Aorestic: T"‘O“ U‘\‘ I_ f“ comMMmMQAn)
:De-?e.mee_,pr-omo e s_meu-a re, an
Secure —\—\ne’B\e.SS\Nc‘s —\-o ourse\uesS

o) or&)m cmlc:\ establiah
i'ﬁi, Con ?rs’\%zg—‘nkm For the Vpited Stores

O‘F Amc.!‘ \CO.,

Raw Classifications

WEJTHEPEOPIEOPTHEUNITEASTATFSILNORDERTO
AMOREPQRFKTUNIONJEBTAEIBHIJUSTICEJINSURE
DOMDLCITRONGUIIJTYIPROVIDEFPRTHFCOMMQN
DEFENBELPROMOTETHEGENEMIWELNRELAND
SECURETHEBLCSSINPOFLIBBHYTOOURSELUES
ANDOURPOSTERLTYIDOORBINANDQDADLISH
THISCONETITUTIBNFORTHEUNIFEDSBTES
OFAMERICA

Spell-Corrected Words

WE THE PEOPLE THE UNITED A STATES ORDER TO

A MORE UNION THE JUSTICE INSURE

DO TRANQUILITY PROVIDE FOR THE COMMON
DEFENSE PROMOTE THE GENERAL WELFARE AND
SECURE THE BLESSINGS OF LIBERTY TO OURSELVES
AND OUR POSTERITY DO FOR IN AND A

THIS CONSTITUTION FOR THE UNITED STATES

OF AMERICA

Figure 10. Results from processing the top paragraph image.

Hypothesized words are constructed from sequences of the classifier output and then matched to the dictio-
nary. When there is a sufficiently good match, the dictionary word is output, the process resynchronizesitself in the

33

character stream, and parsing resumes. The matching criterion takes into account the number of errorsin the word rel-
ative to the length of the word. This way longer words are permitted to tolerate more errors.

4.2.11 Store Results; src/lib/fet/writefet.c; writefetfile()

When processing the Preamble paragraph, the system produces a sequence of spell-corrected words as out-
put. Results of spell-correcting the paragraph image in Figure 10 are listed at the bottom of the figure. Shorter words
such as articles and prepositions tend to be frequently deleted and in other places inserted, while the system does a
reasonable job of recognizing longer words. This type of dictionary processing is better suited to word-spotting than
to full OCR transcription.

For the numeric and randomly ordered al phabet fields, the new system outputs for each segmented character
an assigned class and its associated confidence as determined by the MLP classifier. Example output filesfrom the rec-
ognition system can be found under the top-level directory data.

5. PERFORMANCE EVALUATION AND COMPARISONS

This section evaluates and compares the performances of three recognition systems.The first release of the
recognition system (based on the PNN classifier) is named HSFSYS the updated version of the original system distrib-
uted with this (the second) releaseis named HSFSYSL, and the new system (based on the MLP classifier) isSHSFSYS2.
Each of these systems was designed to process the HSF forms distributed in NIST Special Database 19 (SD19) [3].
HSFSY S and HSFSY Sl are capable of processing theformsin SD19 partitionshsf_0, 1, 2, & 3, whereasthe new sys-
tem, HSFSY S2, is capable of processing every one of the 3669 forms in the database. This section presents compre-
hensive results primarily for HSFSY S1 and HSFSY S2 across SD19. Statistics are provided on accuracy, error versus
reject performance, timings, and memory usage.

5.1 Accuraciesand Error Rates

In order to compile statistics on accuracy and error rates, each system was run across the formsin SD19 and
recognition resultswere stored to file. Recognition system classifications were stored to hypothesisfiles, and their asso-
ciated confidence values were stored to confidence files. Once generated, these files were processed using the NIST
Scoring Package [28], and performance statistics were compiled at the character, word, and field levels.

Table 3 lists the digit recognition results of running HSFSY S1 on the first 2,100 forms (partitions hsf_0 to
hsf_3) in SD19. The formsin the remaining partitions differ enough that the method of form registration used in HSF-
SY Sl fails. Thetop portion of the table reports character-level statistics, and the bottom reportsfield-level accuracies.
33 of the 2,100 forms were rejected due to form registration failures and their characters are not included in the table.
It was determined that a majority of these failures occurred due to writing outside the provided boxes with continued
responses or annotations. A small number (about 5) failed registration due to spurious noise in critical areas on the
form. HSFSY Sl isan implementation improvement over the originally released system, HSFSY S. The same methods
are applied in both, only HSFSY S1 has been improved in terms of its memory usage, more efficient execution, and
thereisno longer any dependence on FORTRAN subroutines. Both systems use the PNN classifier. Aswas expected,
theresultsin Table 3 are very similar to those reported for the original system in Reference [1].

The performance statistics in Table 3 can be compared to those listed in Table 4. The second table reportsthe
digit recognition results from the new ML P-based system, HSFSY S2. These two systems use significantly different
algorithms for more than just classification, and as can be seen, HSFSY S2 performs significantly better than HSF-
SY S1. Interms of digit accuracy, HSFSY S2 is 3.2% more accurate at 96.3% and it recognizes 86% of the digit fields
entirely correctly (6% more than HSFSY S1). This difference in accuracy is primarily attributed to the different seg-
mentation methods used in the systems, not to the different classifiers. Studies have shown that at zero-rejection, PNN
and the new MLP classifier have similar accuracy [8]. Looking at deletion errors, HSFSY S2 cuts them by 80% which
confirmstheimproved performance of the system’s stati stically adaptive segmentor [7]. In addition, HSFSY S2 iscapa-
ble of registering every formin SD19, with only 10 fields (6 digit fields, 1 lowercase field, and 3 Preamble fields)
rejected due to poor image quality. The characters from these 10 fields have been tallied into the reported statistics as
deletions.

35

HSFSY S1 DIGIT RECOGNITION

h 0 | hss 1 | hs 2 | hs 3 | Total

Correct | 92.9% | 93.0% | 92.6% | 93.9% | 93.1%

59288 59868 58258 72872 250286

. | Substituted | 39% | 39% | 41% | 36% [39%
) 2481 2531 2578 2782 10372
8| Inserted| 06% | 07% | 06% | 07% | 07%
E 398 475 385 539 1797
© Deleted | 32% | 30% | 33% | 25% | 3.0%
2061 1951 2084 1956 8052

Total | 63830 | 64350 | 62920 | 77610 | 268710

o Correct | 79.0% | 79.5% | 79.1% | 81.7% | 79.9%
% 10865 11012 10717 13662 46256
s Total | 13748 | 13860 | 13552 | 16716 | 57876

Table 3. HSFSY S1 accuracies and error rates for digit fields across the first part of SD19.

HSFSY S2 DIGIT RECOGNITION

hf O | hss1 | hsf2 | hs§3 | hsi4 | hsf 6 | hsf 7 | hsf 8| Total

Correct | 96.6% | 96.5% | 96.1% | 97.2% | 93.7% | 97.3% | 96.3% |96.9% 96.3%
62772 62731 62486 75804 60933 63144 62615 8817 459302

Substituted | 2.8% 2.9% 3.0% 2.4% 5.5% 2.1% 3.0% | 25% 3.1%

Characters

1816 1871 1972 1891 3575 1367 1920 229 14641
Inserted | 0.7% 0.7% 0.7% 0.7% 0.8% 0.5% 0.6% | 0.3% 0.7%
454 487 425 571 489 318 422 25 3191
Deleted | 0.6% 0.6% 0.8% 0.4% 0.8% 0.6% 0.7% | 0.6% 0.6%
412 398 542 305 492 359 465 54 3027

Total | 65000 | 65000 | 65000 | 78000 | 65000 | 64870 | 65000 | 9100 | 476970

Fields

Correct| 86.3% | 86.7% | 86.2% | 88.6% | 77.5% | 89.6% | 86.5% |88.2% 86.0%
12084 12139 12068 14881 10855 12517 12105 1728 88377

Total | 14000 | 14000 | 14000 | 16800 | 14000 | 13972 | 14000 | 1960 | 102732

Table 4. HSFSY S2 accuracies and error rates for digit fields across SD19.

(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)

36

The results of uppercase recognition can be compared between Table 5 and Table 6. HSFSY S2 recognizes
uppercase characters at nearly 90% (4.6% higher than HSFSY S1). Again, the difference in performance can be prima-
rily attributed to the segmentation methods used. With HSFSY S2, insertion errors are reduced by 46% and deletion
errors by 58%.

HSFSY S1 UPPERCASE RECOGNITION

h 0 | hs 1 | hst 2 | hst 3 | Tota
Correct | 84.7% | 855% | 84.7% | 86.2% | 85.3%
10808 11004 10661 13377 45850
, | Substituted | 128% | 11.8% | 128% | 120% | 12.3%
o 1636 1524 1609 1858 6627
S Inserted| 47% | 43% | 55% | 46% | 48%
E 599 556 687 717 2559
© Deleted | 25% | 2.7% | 25% | 18% | 2.4%
322 342 314 287 1265
Total | 12766 | 12870 | 12584 | 15522 | 53742

Table 5. HSFSY S1 accuracy and error rates for uppercase fields across the first part of SD19.

HSFSY S2 UPPERCASE RECOGNITION

hf 0 | hss 1 | hsf 2 | hss3 | hsf 4* | hsf 6* | hsf 7 | hsf 8 [Total

Correct | 89.1% | 89.3% | 89.2% | 89.9% | 90.3% | 93.0% | 88.9% |89.5% | 89.9%

11587 11603 11591 14029 11740 12062 11563 1629 85804

| Substituted | 9.7% | 9.3% | 9.4% | 91% | 91% | 65% | 104% | 88% | 9.1%
oo} 1256 1210 1223 1425 1187 847 1347 161 8656
@ Inserted | 23% | 23% | 25% | 27% | 34% | 24% | 26% | 14% | 2.6%
_ECE 294 300 320 426 436 315 336 25 2452
© Deleted | 1.2% | 1.4% | 1.4% | 09% | 06% | 05% | 0.7% | 1.6% | 1.0%
157 187 186 146 73 65 20 30 934

Total | 13000 | 13000 | 13000 | 15600 | 13000 | 12974 | 13000 | 1820 | 95394

Table 6. HSFSY S2 accuracy and error rates for uppercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)

37

Lowercase statistics are listed in Table 7 and Table 8. HSFSY S2 correctly recognizes not quite 80% of the
lowercase charactersin SD19. Not only doesthe new system employ a new segmentor, it also conductsintelligent line
removal that preserves character stroke data that overlaps with the form and extends beyond the immediate limits of
the field. An independent study [5] shown that one can expect up to a 3% improvement in lowercase accuracy when
using this method of line removal. The difference between HSFSY S1 and HSFSY S2 is 2.8%, some of which can be
directly attributed to the line removal. Adaptive character segmentation is also contributing, as insertion errors are
reduced by 70%. This demonstrates the segmentor’s ability to compose characters from multiple connected compo-
nents, as unattached fragments contribute to insertion errors. On the other hand, the number of deletion errorsincreases
with HSFSY S2. This leads one to conclude that the adaptive segmentor may be over-aggressive in merging compo-
nents, and not aggressive enough when it comesto splitting touching characters. An independent study has shown that
the general segmentation method used in HSFSY S2 can benefit from further refinement for lowercase characters [6].

HSFSY S1 LOWERCASE RECOGNITION

h 0 | hs 1 | hst 2 | hst 3 | Tota
Correct| 751% | 76.8% | 765% | 78.7% | 76.9%
9593 9890 9625 12217 41325
| Substituted | 22.9% | 21.4% | 22.3% | 19.9% | 215%
o 2927 2748 2804 3092 11571
S Inserted| 32% | 26% | 30% | 32% | 3.0%
E 405 336 381 500 1622
© Deleted | 1.9% | 18% | 12% | 14% | 1.6%
246 232 155 213 846
Total | 12766 | 12870 | 12584 | 15522 | 53742

Table 7. HSFSY S1 accuracy and error rates for lowercase fields across the first part of SD19.

HSFSY S2 LOWERCASE RECOGNITION

h 0 | hss 1 | hsf 2 | hsf3 | hsf 4* | hsf 6% | hsf 7 | hsf 8 [Total
Correct | 77.2% | 78.6% | 77.8% | 80.4% | 82.6% | 82.9% | 79.1% |755% | 79.7%

10042 10218 10109 12541 10739 10756 10280 1374 76059

. | Substituted | 20.4% | 19.2% | 20.3% | 17.8% | 15.1% | 152% | 18.4% |205% | 18.1%
o} 2654 2495 2645 2781 1967 1966 2397 373 17278
@ Inserted | 09% | 08% | 08% | 11% | 08% | 06% | 09% | 1.0% | 09%
_ECE 119 102 110 168 110 75 114 18 816
© Deleted | 2.3% | 22% | 19% | 18% | 23% | 19% | 25% | 40% | 22%
304 287 246 278 294 252 323 73 2057

Total | 13000 | 13000 | 13000 | 15600 | 13000 | 12974 | 13000 | 1820 | 95394

Table 8. HSFSY S2 accuracy and error rates for lowercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)

38

The last pair of tables (Table 9 and Table 10) lists the results of recognizing words across SD19's Preamble
fields. SD19 has completed Preamble paragraphs only in itsfirst 4 partitions. These word-level statistics were com-
puted by tokenizing each word in the system output. The NIST Scoring Package [28] was used to align theword tokens
with the known Preambl e text, and statistics were accumulated. Much effort was spent in improving the lineisolation
algorithm used in HSFSY S2 [6]. Even so, overall word accuracy only improved 2.3% (61.6% to 63.9%). Considerable
work still remains in improving the segmentation of vertically and horizontally touching characters, the detection of
punctuation marks, and dictionary-based spelling correction.

HSFSY S1 PREAMBLE RECOGNITION

h 0 | hss 1 | hs 2 | hs 3 | Total

Correct | 60.3% | 59.8% | 60.5% | 65.0% | 61.6%

15403 15387 15237 20166 66193

Substituted | 15.29% | 14.3% | 14.0% | 12.7% | 14.0%

1) 3871 3676 3525 3943 15015
©

5| Inserted| 11% | 09% | 11% | 11% | 1.0%

; 283 224 270 335 1112

Deleted | 24.5% | 25.9% | 255% | 22.3% | 24.4%

6258 6677 6406 6935 26276

Total | 25532 | 25740 | 25168 | 31044 | 107484

Table 9. HSFSY S1 accuracy and error rates for Preamble fields across SD19.

HSFSY S2 PREAMBLE RECOGNITION

h O | h 1 | hs 2 | hst 3 [Total

Correct | 62.6% | 62.4% | 62.7% | 67.2% | 63.9%

16276 16231 16304 20961 69772

Substituted | 15.4% | 15.29% | 14.7% | 12.6% | 14.4%

» 4012 3958 3833 3940 15743
©

5 Inserted | 1.6% | 1.0% | 11% | 1.3% | 1.3%

; 405 260 287 418 1370

Deleted | 22.0% | 22.4% | 22.6% | 202% | 21.7%

5712 5811 5863 6299 23685

Total | 26000 | 26000 | 26000 | 31200 | 109200

Table 10. HSFSY S2 accuracy and error rates for Preamble fields across SD19.

Asafinal note on these accuracy statistics, realize that results are reported with HSFSY S2 having processed
the entire set of formsin SD19. Thisis one of the largest published experiments of itskind, and it is reproducible by
purchasing the SD19 database from NIST. In all, sample handwriting from 3669 writers was tested and a total of
109,200 words and 667,758 characters were recognized and scored. As SD19 is our only handprint database, training
sampleswere extracted from specific writer partitionsand used to train the PNN and ML P character classifiersoff-line.
From the 667,758 characters, 109,719 were used in training. In the case of digits, the writersin hsf_6 (61,094 charac-
ters) were used in the training set, and in the case of upper and lowercase, writersin both hsf_4 and hsf_6 (totalling
24,420 uppercase characters and 24,205 |lowercase characters) were used. It isworth pointing out that the machine pro-
cesses used to isolate the character training samples were different, as they predate the technology used in HSFSY S2.

39

Comparing the HSFSY S2 resultson hsf_6 to other partitions, it isinteresting to see that theinclusion of hsf_6
in the classifier training does have some influence, however the influence is small. With digits, HSFSY S2 is 97.3%
correct on hsf_6 whereasthe resultson hsf_3 are almost as good at 97.2%, and the other partitions (with the exception
of hsf_4) range between 96% and 97%. The writersin hsf_4 are from a different population and are known to be sta-
tistically more difficult to recognize [29]. The influence of training is abit more pronounced with the results on upper
and lowercase fields. On uppercase, HSFSY S2 is 93% correct on hsf_6, and the other partitions range between 89%
to 90%. For lowercase, HSFSY S2 is 83% correct on hsf_6, and other partitions range between 77% to 80%. These
small differences (particularly for the digits) demonstrate that the ML P character classifier is doing areasonably good
job at generalizing on writersit hasn’t seen during its off-line training. The ML P-based system doesn’t generalize as
well on upper and lowercase recognition in part because fewer training samples were used than for digits.

5.2 Error versus Regjection Rate

The advantages of using a machine for OCR in many ways complement the performance of humans [2].
Machines are very efficient in doing tasks that are primarily repetitive and reflexive, whereas humans quickly fatigue
under these conditions. Humans, on the other hand, are very adept at performing tasksrequiring higher-level reasoning,
and asaresult, provide more robust but much slower solutionsto complex problems. Accounting for these differences,
successful recognition systems allow a machine to perform the bulk of the work, and on an exception basis, humans
can be used to resolve ambiguities and potential errors. Thisis accomplished through rejection mechanisms that auto-
matically route low-confidence machine decisions to humans for verification. This section compares the ability of the
NIST recognition systems to effectively reject low-confidence character classifications.

The graph in Figure 11 plots error versus rejection rates with error plotted on alogarithmic scale. The results
plotted were computed from the first 500 writers (partition hsf_0) in SD19. Results are shown for both HSFSY S1 and
the new system HSFSY S2, and they are broken out by digit, upper, and lowercase recognition. In general, asthe num-
ber of rejected character classifications increases, the error rate on the remaining accepted (or non-rejected) classifica
tions decreases, and accuracy improves. Also, the impact of rejection on accuracy tapers off as more and more
characters are rgjected. In the figure, the bottom two curves represent the performance of the new and old systems on
recognizing charactersin the numeric fields on the HSF forms. With no rejection, HSFSY S2 has an error rate near 4%,
and HSFSY S1 has an error rate over 7.5%. As the number of rejected digit classificationsisincreased, the error rate
proceedsto drop, only HSFSY S2 falls at asignificantly faster rate than does HSFSY S1. The difference in the slope of
the two digit curves confirms the robustness of the MLP classifier used in HSFY S2 over the PNN classifier used in
HSFSY S1. The digit error rate of HSFSY S2 continues to drop to nearly 1.2% at 15% rejection. One concludes from
these results, that in terms of recognizing numeric fields, the new NIST recognition system is more than twice as good
asthe original system.

The differences between the two systems are less dramatic with upper and |owercase recognition. Themiddle
two curvesin Figure 11 correspond to the results of recognizing the uppercase alphabet fields on the HSF forms. The
HSFSY S2 curve doesfall off dightly faster than does HSFSY S1's, but the distance between the curvesisnot aslarge
asthat of the digit curves. With no rejection, HSFSY S2 has an error rate of ailmost 13% and HSFSY Sl isjust over
19%. Thetwo lowercase curves are even closer to each other, and their distance only dlightly increases acrosstherange
of rejections plotted. This emphasizes that |owercase recognition is still the most difficult for the NIST systems. The
minimal increase in separation between these two curves can be attributed to a combination of two factors. First, the
decision surfacestrained within the ML P classifier for |owercase are much more complex than those of uppercase, and
the decision surfacesfor uppercase are more complex than those of digits[8]. Second, the challengesremaining in the
system that are impacting accuracy lie primarily in components other than the classifier. Otherwise, the rel ative slopes
in the upper and lowercase curves would more closely resemble those of the digit classifications.

40

100 T T T T T

HSFSYS2 digit
HSFSYS1 digit
HSFSYS2 upper
HSFSYS1 upper
HSFSYS2 lower
HSFSYS1 lower

Pttt

S
o 10f
O\O \\7
. + + ——t T
DM]
1
0] 10 15 20 25 30

% Rejected

Figure 11. Error versus rejection rates for digit, upper, and lowercase recognition between HSFSY S1 and HSFSY S2.

5.3 Timing and Memory Statistics

Over the two years following the first system’s rel ease, a number of significant improvements were made to
the existing source code so that amodified version of the old system now runsfaster and uses memory more efficiently.
Asnew methods were developed to improve the NIST system, the focus was primarily onimproving system accuracy,
although considerable effort was made to ensure that the resulting implementations were time-efficient. This section
first compares the timing results between the original system (HSFSY S) as it was distributed in the first release, the
augmented original system (HSFSY S1) asit isdistributed in this release, and the new system (HSFSY S2).

Table 11 lists timing statistics (in seconds) for each of the major componentsin the original and augmented
versions of the old recognition system. The timings reported in Table 11 and Table 12 were generated on a Sun Micro-
systems SPARCstation 2 with a Weitek CPU upgrade, and the reported user times are an average over the 10 HSF
formsincluded in the test-bed. Thefirst pair of data columnsin Table 11 lists results from the implementation distrib-
uted in the first release, and the second pair of columns lists results from the augmented version distributed with this
release. Virtually the same algorithms are used throughout, only memory usage has been made more efficient, and in
several places, the source code was modified to execute more quickly. The most significant change isin spelling cor-
rection, where in the development of the new release, it was discovered that memory was being alocated and then
deallocated every time aword was being matched to the dictionary. By simply allocating a matrix only once, the aver-
age time required to spell-correct a handprinted Preamble paragraph dropped by almost a factor of 9. Another time
improvement to noteisthat the PNN character classifier was modified to use new internal data structures and now runs
24% faster. Thisis dightly offset by field initialization taking 2 seconds longer due to a new PNN-supporting file for-
mat. Also note that the time reguired to compute the KL transform (within character feature extraction) has been cut
in half. Asaresult of implementation changes, the component taking the most timein HSFSY Sl is now the PNN clas-

41

sifier, requiring nearly a quarter of the time. Form registration, field initialization, then segmentation also require sig-
nificant amounts of time.

Task HSFSYS HSFSY S1
form init 11 1.4% 0.9 2.0%
form register 9.8 12.3% 9.4 20.6%
form remove 1.0 1.3% 0.8 1.8%
field init 55 7.0% 7.7 16.8%
field isolate 1.0 1.3% 1.0 2.3%
field segment 7.0 8.8% 6.8 14.9%
chr normalize| 0.9 1.2% 0.9 1.9%
chr shear 0.3 0.4% 0.3 0.6%
chr feature 5.6 7.0% 2.7 6.0%
chr classify 13.8 17.4% 105 231%
chr sort 0.2 0.3% 0.2 0.5%
field spell 332 41.7% 3.8 8.3%
total 79.6 100.0% 45.6 100.0%

Table 11. Timing statistics in seconds between original and augmented versions of old system.

Task HSFSY S2
batch init 1.7 5.1%
form load 15 4.6%

form register 5.6 17.1%
field isolate 8.9 27.2%
field segment 11 3.2%
chr normalize| 0.9 2.7%
chr feature 54 16.4%
chr classify 4.0 12.2%
field spell 3.8 11.4%

total 32.9 100.0%

Table 12. Timing statistics in seconds for new version of recognition system.

Table 12 reports the average user times required to run the new system, HSFSY S2, across the same set of 10
HSF forms. First, notice that the overall time required has decreased by nearly 28% when compared to HSFSY S1. The
speed increase can be explained in part by using the new MLP classifier in place of the PNN. The MLP character clas-
sifier isafactor of 2.6 faster, and using the MLP does not require field initialization. All the MLP weights for all the
types of fields on the HSF form can be held in memory simultaneously, so they are read from file once during batch
initialization. Thetimefor thisinitialization is factored across the number of forms processed within the batch. Asthe
number of forms increases, the percentage of time required for the reading of the weights becomes negligible. The
PNN classifier requires much more memory, and it becomes infeasible to hold all of its weights (training prototypes)
in memory at once. Every time the PNN-based system begins processing a new type of field, alarge number of new
field-specific prototypes must be read from file.

In order to analyze memory usage, the SUNOS/UNIX routine mallinfo() was used to measure the maximum
arena size of the various NIST recognition systems. During the execution of the original system, HSFSY S grew to

42

requireatotal arenasize of 33.7Mb; the more efficient implementation (HSFSY S1) required only 21.9Mb; and the new
ML P-based HSFSY S2 required 25.1 Mb. The number of floating point values required by the PNN in HSFSY S1 to
classify digitsisover 4 million (61,094 prototypesx 64 KL coefficients), whereasthe ML P digit weightsin HSFSY S2
contain about 18,000 floating point values (a 128x128x10 network). One would expect this dramatic differencein the
required weight sizeto be reflected in the overall arena sizes between the two systems, but instead, HSFSY S2 actually
uses more memory than HSFSY S1.

Thisis primarily due to the internal representation of image used in the two systems. While HSFSY S1
attempts to maintain a general binary image representation with eight pixels packed in one byte, HSFSY S2 expands
images to be one pixel per byte. This makes arbitrary pixel addressing less expensive, but it does utilize 8 times more
memory. A full page 11.8 pixel/millimeter (300 pixels/inch) binary image requires about 1Mb of memory when pixels
are packed 8 per byte. Expanded, the same image with one pixel per byte requires over 8 Mb. In general, an image
transformation on the expanded image will result in two imagesin memory (the source image and the resulting image).
These two images now require atotal of 16Mb, whereas the 8 pixels per byte representation would require only 2Mb.
In effect, the 16Mb of PNN weights (4 million floatsx 4 bytes/float) replaced by the 18,000 MLP weightsis offset (and
then some) by the 16Mb of additional image representation. Thusthe new ML P-based system uses slightly more mem-
ory than the PNN-based one.

Aspart of thetesting of the second release, the software wasinstalled and executed, and resultswere analyzed
on anumber of different UNIX platforms. These systemsincluded computers manufactured by Digital Equipment Cor-
poration, Hewlett Packard, IBM, Silicon Graphics Incorporated, and Sun Microsystems. Times are listed in Table 13
for both the augmented original system (HSFSY S1) and for the new system (HSFSY S2). The times reported are the
average user times required to process an HSF form, and the statistics were computed across the 10 HSF forms pro-
vided with this distribution. On all the machines, HSFSY S2 processed the 10 forms faster than did HSFSY S1. Two
computers, the SGI Challenge and the Sun SPARCstation 10, have multiple processors. However, the recognition sys-
tems were compiled serially on these machines and run on single processors, so no parallel processing was employed.
Therange of user times varies by afactor of 3to 4 over the set of machinestested. On the faster machines, HSF forms
are processed 10 to 15 seconds a page.

Man. M odel 0.S. RAM HSFSYS1 | HSFSY S2
DEC Alpha 3000/400 OSF/1V1.3 32Mb 10.4 10.0
SGl Indy (1P22) IRIX 5.3 128 Mb 13.2 10.3
IBM RS6000 Model 370 AIX 4.1 128 Mb 171 15.4
SGl Challenge (8-IP19's)* IRIX 5.3 512 Mb 175 143
HP 9000/735 HP-UX A.09.05 32 Mb 18.2 14.1
Sun SPARCstation 10 SunOS 5.4 (Solaris) | 128 Mb 34.3 24.4

(2-CPU’g)*
Sun SPARCstation 2 Sun0S4.1.3 64 Mb 45.6 32.9
(Weitek 80MHz CPU)

Table 13. Table of timings in seconds from the different UNIX computers tested.
(* Those computers with multiple processors were compiled and tested serially.)

43

6. IMPROVEMENTSTO THE TEST-BED

With the new technol ogiesrel eased in thisdistribution, the NIST recognition software test-bed is much closer
to being a usable product than its first release. There should be significantly less effort commercializing the new tech-
nology within the framework provided. Nonetheless, the new system is atechnology transfer rather than a shrink-
wrapped product. One item missing from the test-bed, which may be required for its commercialization, isaforms
identification component so that the system can process more than one type of form within abatch. Also missingisan
integrated work flow for routing and correcting rejected classifications with human key operators. The modular system
architecture does however provide handles to support this work flow. Finally, aformalized form definition utility is
needed, supported by an interactive interface that sets up the recognition system to process new types of forms.

6.1 Processing New Formswith the HSFSY S2

To set up the new recognition system, hsfsys2, to process a new type of form, trainreg must be run on a pro-
totypical form and the output coordinates stored. I n addition, thefields or zones on aregistered version of the new form
must be measured manually with an interactive image display tool (not provided with this distribution), and the coor-
dinates of each field must be stored to an MFSfile. The file tmplt/hsfsmplt.pts contains the field coordinates for areg-
istered HSF form. The source code must be modified to load these two new files (the registration coordinate file and
the field coordinate file).

If anew form contains fields different than those on an HSF form, then the MLP classifier will need to be
retrained and the resulting weights files will need to be loaded into the system. For example, if a new form contains
money fields that include dollar signs, commas, and decimal points, then it will be desirableto train the MLP network
to classify these three new charactersin addition to the ten numeric characters. A futureimprovement to hsfsys2 would
be to devel op and incorporate a forms definition tool that locates the zones on a new form (preferably automatically)
and then systematically prompts an operator to identify the types of each field on the form so that the appropriate clas-
sifier weights, form removal, syntax checking, and field-specific dictionaries can be automatically applied by the sys-
tem. Currently, this must all be done manually through the coding of a new application-specific main program.

7. FINAL COMMENTS

A number of NIST Internal Reports (NISTIR’s) have been referenced in this document. These reports are pro-
vided in PostScript format in thetop-level directory doc. Thefile doc/hsfsys2.ps containsthis specific document. These
reports along with many other NIST Visual Image Processing Group publications are available in PostScript format
over the Internet via anonymous FTP on sequoyah.nist.gov or viathe World Wide Web at http: //www.nist.gov/itl/
div894/894.03. To request a paper copy of any of these NISTIRs, please contact:

ITL Publications

National Institute of Standards and Technology
Building 225, Room B216

Gaithersburg, MD 20899

voice: (301) 975-2832

This report documents the second release of the NIST standard reference recognition software test-bed in
terms of itsinstallation, organization, and functionality. The software has been successfully compiled and tested on a
number of different vendors UNIX workstations. If necessary, it is the responsibility of the distribution recipient to
port the software to their specific computer architecture. The source code iswritten entirely in C and is organized into
15 libraries. In al, there are approximately 39,000 lines of code supporting more than 725 subroutines. Source codeis
provided for awide variety of utilities that have application to many other types of problems.

Approximately 25 person-years have been invested by NIST in the devel opment of this software test-bed, and
it can be obtained free of charge on CD-ROM by sending aletter of request via postal mail or FAX to the primary
author. Requestsfor distribution made by electronic mail will not be accepted; however, electronic mail is encouraged
for technical questions once the distribution has been received. Any portion of this test-bed may be used without
restrictions because it was created with U.S. government funding. Redistribution of this standard reference softwareis
strongly discouraged as any subsequent corrections or updateswill be sent to registered recipients only. This software
was produced by NIST, an agency of the U.S. government, and by statute is not subject to copyright in the United
States. Recipients of this software test-bed assume all responsibilities associated with its operation, modification, and
maintenance.

45

8. REFERENCES

[1] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, “NIST
Form-Based Handprint Recognition System,” NIST Internal Report 5469 and CD-ROM, July 1994.

[2] C. L. Wilson, J. Geist, M. D. Garris, and R. Chellappa, “Design, Integration, and Evaluation of Form-Based Hand-
print and OCR Systems,” NIST Internal Report 5932, December 1996.

[3] P. J. Grother, “Handprinted Forms and Characters Database, NIST Special Database 19,” NIST Technical Report
and CD-ROM, March 1995.

[4] M. D. Garrisand P. J. Grother, “ Generalized Form Registration Using Structure-Based Techniques,” NIST Internal
Report 5726 and in Proceedings of the Fifth Annual Symposiumon Document Analysisand | nformation Retrieval,
pp. 321-334, UNLV, April 1996.

[5] M. D. Garris, “Method and Evaluation of Character Stroke Preservation of Handprint Recognition,” NIST Internal
Report 5687, July 1995, and in Proceedings of Document Recognition 111, Vol. 2660, pp. 321-332, SPIE, San Jose,
February 1996.

[6] M. D. Garris, “ Teaching Computers to Read Handprinted Paragraphs,” NIST Internal Report 5894, September
1996.

[7] M. D. Garris, “Component-Based Handprint Segmentation Using Adaptive Writing Style Model,” NIST Internal
Report 5843, June 1996.

[8] C. L. Wilson, J. L. Blug, O. M. Omidvar, “ The Effect of Training Dynamics on Neural Network Performance,”
NIST Internal Report 5696, August 1995.

[9] M. D. Garris, “Unconstrained Handprint Recognition Using a Limited Lexicon,” NIST Internal Report 5310,
December 1993, and in Proceedings of Document Recognition, Vol. 2181, pp. 36-46, SPIE, San Jose, February
1994.

[10] Department of Defense, “ Military Specification - Raster Graphi cs Representation in Binary Format, Requirements
for, MIL-R-28002,” 20 Dec 1988.

[11] CCITT, “Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile Apparatus, Fascicle
VII1.3- Rec. T.6,” 1984.

[12] C. R. Wyle, Advanced Engineering Mathematics, Second Edition, pp. 175-179, McGraw-Hill, New York, 1960.

[13] A. K. Jain, Fundamentals of Digital Image Processing, pp. 384-389, Prentice-Hall, New Jersey, 1989.

[14] P. J. Grother, “ Karhunen L oéve Feature Extraction for Neural Handwritten Character Recognition,” NIST Internal
Report 4824, April 1992, and in Proceedings of Applications of Artificial Neural Networks 11, Vol. 1709, pp. 155-
166. SPIE, Orlando, April 1992.

[15] D. F. Specht, “Probabilistic Neural Networks.” Neural Networks, Vol. 3(1), pp 109-119, 1990.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing, Volume 1: Foundations,
edited by D. E. Rumelhart, J. L. McClelland, et. a., MIT Press, Cambridge, pp. 318-362, 1986.

[17] H. G. Zwakenberg, “Inexact Alphanumeric Comparison,” The C Users Journal, pp. 127-131, May 1991.

[18] 1SO-9660, “ Information Processing - Volume and File Structure of CD-ROM for Information Interchange,” Stan-
dard by the International Organization for Standardization, 1998.

[19] J. Geigt, R. A. Wilkinson, S. Janet, P. J. Grother, B. Hammond, N. W. Larsen, R. M. Klear, M. J. Matsko, C. J. C.
Burges, R. Creecy, J. J. Hull, T. P. Vogl, C. L. Wilson, “The Second Census Optical Character Recognition Sys-
tems Conference,” NIST Internal Report 5452, May 1994.

[20] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the
ACM, Vol. 18, pp. 509-517, 1975.

[21] W. Postl, “Method for Automatic Correction of Character Skew in the Acquisition of aText Original in the Form
of Digital Scan Results,” United States Patent Number 4,723,297, February 1988.

[22] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson, “Evaluation of Pattern Classifiersfor Fin-
gerprint and OCR Applications,” Pattern Recognition, Vol. 27, No. 4, pp. 485-501, 1994.

[23] C. L. Wilson, P. J. Grother, and C. S. Barnes, “Binary Decision Clustering for Neural Network Based Optical
Character Recognition,” NIST Internal Report 5542, December 1994, and in Pattern Recognition, Vol. 29, No. 3,
pp. 425-437, 1996.

46

[24] O. M. Omidvar and C. L. Wilson, “Information Content in Neural Net Optimization,” NIST Internal Report 4766,
February 1992, and in Journal of Connection Science, 6:91-103, 1993.

[25] J. L. Blueand P. J. Grother, “ Training Feed Forward Networks Using Conjugate Gradients,” NIST Internal Report
4776, February 1992, and in Conference on Character Recognition and Digitizer Technologies, Vol. 1661, pp.
179-190, SPIE, San Jose, February 1992.

[26] M. J. Ganzberger, R. Rovner, A. M. Gillies, D. J. Hepp, and P. D. Gader, “Matching Database Records to Hand-
written Text,” in Proceedings on Document Recognition, Vol. 2181, pp. 66-75, SPIE, San Jose, February 1994.

[27] G.L. Martinand J. A. Pittman, “ Recognizing Hand-Printed L etters and Digits,” Neural Networks, Vol. 3, pp. 258-
267, 1991.

[28] S. A. Janet, “NIST Scoring Package User’s Guide, Release 2.0,” NIST Technical Report and Software, to be pub-
lished.

[29] P. J. Grother, “Cross Validation Comparison of NIST OCR Databases,” NIST Internal Report 5123, January 1993,
and in Proceedings of Character Recognition Technologies, Vol. 1906, pp. 296-307, SPIE, San Jose, February
1993.

[30] D. Liuand J. Nocedal, “On the Limited Memory BFGS Method for Large Scale Optimization,” Mathematical
Programming B, Vol. 45, 503-528, 19809.

47

Appendix A. TRAINING THE MULTI-LAYER PERCEPTRON (MLP) CLASSIFIER OFF-LINE

The program mlp trains a 3-layer feed-forward linear perceptron [16] using novel methods of machine learn-
ing that help control the learning dynamics of the network. As aresult, the derived minima are superior, the decision
surfaces of the trained network are well-formed, the information content of confidence valuesisincreased, and gener-
aization isenhanced. Trained MLP networks are used in the new recognition system, hsfsys2. Asaclassifier, thisnew
MLP is superior to the PNN classifier used in hsfsysl in terms of its memory requirements, classification speed, and
superior confidence values for rejecting confusions. The theory behind the machine learning techniques used in this
programisdiscussed in Reference[8]. The main routinefor thisprogram isfound in src/bin/mlp/mlp.c and the majority
of its supporting subroutines islocated in the library src/lib/mip.

Machine learning is controlled through a batch-oriented iterative process of training the MLP on a set of pro-
totype feature vectors, and then evaluating the progress made by running the MLP (in its current state) on a separate
set of feature vectors. Training on thefirst set of patterns then resumes for a predetermined number of passes through
the training data, and then the ML P is tested again on the evaluation set. This process of training and then testing con-
tinues until the MLP has been determined to have satisfactorily converged. The command lineinvocation of mlpisas
follows:

% mlp [-c] [specfil€]

* Thefirst optional argument -c performs checking of the specfile only: scan it; write any applicable warnings
or error messages to the standard error output; then exit.

* The second optional argument specfile is the name of the specification file to be processed by mip. If this
argument is omitted, the specfile is assumed to be the file spec in the current working directory. The format
of the specfile is documented in the routine scanspec() found in src/lib/mlp/scanspec.c.

This command trains or tests an MLP neural network suitable for use as a classifier or as a function-approx-
imator. The network has an input layer, a hidden layer, and an output layer, each layer comprising a set of nodes. The
input nodes are feed-forwardly connected to the hidden nodes, and the hidden nodes to the output nodes, by connec-
tions whose weights (strengths) are trainable. The activation function used for the hidden nodes can be chosen to be
sinusoid, sigmoid (logistic), or linear, as can the activation function for the output nodes. Training (optimization) of
the weights is done using either a Scaled Conjugate Gradient (SCG) algorithm [25], or by starting out with SCG and
then switching to aLimited Memory Broyden Fletcher Goldfarb Shanno (LBFGS) agorithm [30]. Boltzmann pruning
[24], i.e. dynamic removal of connections, can be performed during training if desired. Prior weights can be attached
to the patterns (feature vectors) in various ways.

A.1Training and Testing Runs

When mip isinvoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patternsis used to train (optimize) the weights of the network. Each pattern consists
of afeature vector, along with either aclass or atarget vector. A feature vector is a tuple of floating-point numbers,
which typically has been extracted from some natural object such asahandwritten character. A class denotesthe actual
class to which the object belongs, for example the character which a handwritten mark is an instance of. The network
can be trained to become a classifier: it trains using a set of feature vectors extracted from objects of known classes.
Or, moregenerally, the network can betrained to learn, again from exampl e input-output pairs, afunction whose output
isavector of floating-point numbers, rather than aclass; if thisis done, the network isasort of interpolator or function-
fitter. A training run finishes by writing the final values of the network weights as afile. It also produces a summary
file showing various information about the run, and optionally produces a longer file that shows the results the final
(trained) network produced for each individua pattern.

testing run: A set of patternsis sent through a network, after the network weights are read from afile. The
output values, i.e. the hypothetical classes (for a classifier network) or the produced output vectors (for afitter net-
work), are compared with target classes or vectors, and the resulting error rate is computed. The program can produce
atable showing the correct classification rate as a function of the rejection rate.

48

A.2 Specification (Spec) File

Thisisafile produced by the user, which sets the parameters (henceforth “ parms”) of the run(s) that mip isto
perform. It consists of one or more blocks, each of which setsthe parmsfor one run. Each block is separated from the
next one by the word “newrun” or “NEWRUN”. Parms are set using name-value pairs, with the name and value sep-
arated by non-newline white space characters (blanks or tabs). Each name-value pair is separated from the next pair
by newline(s) or semicolon(s). Since each parm value islabeled by its parm name, the name-value pairs can occur in
any order. Comments are allowed; they are delimited the same way asin C language programs, with /* and */. Extra-
neous white space characters are ignored. The specfiles used to train the MLP in hsfsys2 are provided in the weights/
mlp subdirectories and end with the extension spc.

When mip isrun, it first scans the entire specfile, to find and report any (fatal) errors (e.g. omitting to set a
necessary parm, or using an illegal parm name or value) and also any conditions in the specfile which, although not
fatally erroneous, are worthy of warnings (e.g. setting a superfluous parm). Mlp writes any applicable warning or error
messages, then, if there are no errorsin the specfile, it startsto perform the first run. Warnings do not prevent mlp from
starting to run. (The motivation for having mip check the entire specfile before it startsto perform even thefirst run, is
that thiswill prevent an mlp instance that runs a multi-run specfile from failing, perhaps many hours, or days, after it
was started, because of an error in ablock far into the specfile: such errors will be detected up front and presumably
fixed by the user, because that isthe only way to cause mip to get past its checking phase.) To cause mip only to check
the specfile without running it, use the -c option.

Thefollowing listing describes all the parmsthat can be set in aspecfile. There arefour types of parms: string
(valueisafilename), integer, floating-point, and switch (value must be one of a set of defined names, or may be spec-
ified as a code number). A block of the specfile, which sets the parms for one run, often can omit to set the values of
several of the parms, either because the parm is unneeded (e.g., atraining “ stopping condition” when the run is a test
run; or, temperature when boltzmann isno_prune), or becauseit is an architecture parm (pur pose, ninps, nhids,
nouts, acfunc_hids, or acfunc_outs), whose value will be read from wts_infile. The descriptions below indicate
which of the parms are needed only for training runs (in particular, those described as stopping conditions). Architec-
ture parms should be set in a specfile block only if its run isto be atraining run that generates random initial network
weights: atraining run that reads initial weights from afile (typically, final weights produced by a previous training
session), or atest run (must read the network weights from afile), does not need to set any of the architecture parms
in its specfile block, because their values are stored in the weightsfile that it will read. (Architecture parms are ones
whose values it would not make sense to change between training runs of a single network that together comprise a
training “meta-run”, nor between atraining run for anetwork and atest run of the finished network.) Setting unneeded
parmsin a specfile block will result in warning messages when mip isrun, but not fatal errors; the unneeded values
will be ignored.

If aparm-name/parm-value pair occurring in aspecfilehasjust itsvalue deleted, i.e. leaving just aparm name,
then the nameisignored by mip; thisis away to temporarily unset a parm while leaving its name visible for possible
future use.

A.2.1 String (Filename) Parms

short_outfile: Thisfilewill contain summary information about the run, including a history of the training process if
atraining run. The set of information to be written is controlled, to some extent, by the switch parmsdo_con-
fuseand do_cvr. See Section A 4.

long_outfile: This optionally produced file will have two lines of header information followed by aline for each pat-
tern. The line will show: the sequence number of the pattern; the correct class of the pattern (asanumber in
therange 1 through nouts); whether the hypothetical classthe network produced for this pattern wasright (R)
or wrong (W); the hypothetical class (number); and the nouts output-node activations the network produced
for the pattern. (See the switch parm show_acs times_1000 below, which controls the formatting of the acti-
vations.) In atesting run, mip produces thisfile for the result of running the patterns through the network

49

whose weights are read from wts_infile; in atraining run, mip produces this file only for the final network
weights resulting from the training session. Thisis often alarge file; to save disk space by not producing it,
just leave the parm unset.

patterns_infile: Thisfile contains patterns upon which mip isto train or test a network. A patternis either a feature-
vector and an associated class, or afeature-vector and an associated target-vector. The file must be in one of
the two supported patterns-file formats, i.e. ASCII and (FORTRAN-style) binary; the switch parm pats-
file_ascii_or_binary must be set to tell mlp which of these formatsis being used.

wts _infile: This optional file contains a set of network weights. MIp can read such afile at the start of atraining run -
- e.g., final weights from a preceding training run, if oneistraining a network using a sequence of runs with
different parameter settings (e.g., decreasing values of regfac) - or, in atesting run, it can read the final
weights resulting from atraining run. This parm should be left unset if random initial weights are to be gen-
erated for atraining run (see the integer parm seed).

wts_outfile: Thisfile is produced only for atraining run; it contains the final network weights resulting from the run.

Ien_scn_infile: Each line of this optional file should consist of along class-name (as shown at the top of patterns in-
file) and a corresponding short class-name (1 or 2 characters), with the two names separated by white space;
the lines can bein any order. Thisfileisrequired only for arun that requires short class-names, i.e. only if
purposeisclassifier and (1) priorsisclassor both (these settings of prior srequire class-weightsto be read
from class wts_infile, and that type of file can be read only if the short class-names are known) or (2)
do_confuseistrue (proper output of confusion matrices requires the short class-names, which are used as
labels).

class wts infile: Thisoptional file contains class-weights, i.e. a“ prior weight” for each class. (See switch parmpriors
to find out how mlp can use these weights.) Each line should consist of a short class-name (asshowninlcn_-
scn_infile) and the weight for the class, separated by white space; the order of the lines does not matter.

pattern_wts infile: Thisoptional file contains pattern-weights, i.e. a“prior weight” for each pattern. (See switch parm
priorstofind out how mlp can usetheseweights.) Thefile should bejust asequence of floating-point numbers
(ascii) separated from each other by white space, with the numbersin the same order asthe patternsthey are
to be associated with.

A.2.2 Integer Parms
npats: Number of (first) patterns from patterns infileto use.

ninps, nhids, nouts: Specify the number of input, hidden, and output nodesin the network. If ninpsissmaller than the
number of components in the feature-vectors of the patterns, then the first ninps components of each feature-
vector are used. If the network is aclassifier (see purpose), then nouts is the number of classes, since there
is one output node for each class. If the network is afitter, then ninps and nouts are the dimensionalities of
the input and output real vector spaces. These are architecture parms, so they should be left unset for arun
that isto read a network weightsfile.

seed: For the UNI random number generator, if initial weights for atraining run are to be randomly generated. Itsval-
ues must be positive. Random weights are generated only if wts_infileis not set. (Of course, the seed value
can be reused to generate identical initial weightsin different training runs; or, it can be varied in order to do
several training runs using the same values for the other parameters. It is often advisable to try several seeds,
since any particular seed may produce atypically bad results (training may fail). However, the effect of vary-
ing the seed isminimal if Boltzmann pruning is used.)

niter_max: A stopping condition: maximum number of iterations a training run will be allowed to use.

50

nfreq: At every nfreq’th iteration during atraining run, the err del and nokdel stopping conditions are checked and a
pair of status lines iswritten to the standard error output and to short_outfile.

nokdel: A stopping condition: stop if the number of iterations used so far is at least kmin and, for each of the most
recent NNOT (defined in src/lib/mlp/optchk.c) sequences of nfreq iterations, the number right and the num-
ber right minus number wrong have both failed to increase by at least nokdel during the sequence.

Ibfgs_mem: Thisvalueisused for the m argument of the LBFGS optimizer (if that optimizer isused, i.e. only if there
is no Boltzmann pruning). Thisis the number of corrections used in the bfgs update. Values less than 3 are
not recommended; large values will result in excessive computing time, as well asincreased memory usage.
Valuesin the range 3 through 7 are recommended; value must be positive.

A.2.3 Floating-Point Parms

regfac: Regularization factor. The error value that a training run attempts to minimize, contains a term consisting of
regfac times half the average of the squares of the network weights. (The use of aregularization factor often
improves the generalization performance of aneural network, by keeping the size of the weights under con-
trol.) This parm must always be set, even for test runs (since they also compute the error value, which always
uses regfac); however, its effect can be nullified by just setting it to O.

alpha: A parm required by thetype 1 error function: see Section A.4.2.2.2.

temperature: For Boltzmann pruning: see the switch parm boltzmann. A higher temperature causes more severe
pruning.

egoal: A stopping condition: stop when error becomes | ess than or equal to egoal.

gwgoal: A stopping condition: stop when | g |/ | w | becomes less than or equal to gwgoal, where w is the vector of
network weights and g is the gradient vector of the error with respect to w.

errdel: A stopping condition: stopif the number of iterations used so far isat |east kmin and the error has not decreased
by at least afactor of errdel over the most recent block of nfreq iterations.

oklvl: The value of the highest network output activation produced when the network isrun on a pattern (the position
of this highest activation among the output nodes is the hypothetical class) can be thought of as a measure of
confidence. This confidence valueis compared with the threshold oklvl, in order to decide whether to classify
the pattern as belonging to the hypothetical class, or to reject it, i.e. to consider its class to be unknown
because of insufficient confidence that the hypothetical classis the correct class. The numbers and percent-
ages of the patterns that mlp reports as correct, wrong, and unknown, are affected by oklvl: ahigh value of
oklvl generally increases the number of unknowns (a bad thing) but also increases the percentage of the
accepted patternsthat are classified correctly (agood thing). If norejectionisdesired, set oklvl to 0. (MIp uses
the single oklvl value specified for arun; but if the switch parm do_cvr isset to true, then mip also makesa
full correct vs. rejected table for the network (for the finished network if atraining run). Thistable showsthe
(number correct) / (number accepted) and (number unknown) / (total number) percentagesfor each of severa
standard oklvl values.)

trgoff: This number sets how mildly the target values for network output activations vary between their “low” and
“high” values. If trgoff is O (least mild, i.e. most extreme, effect), then the low target valueis 0 and the high,
1; if trgoff is 1 (most mild effect), then low and high targets are both (1 / nouts); if trgoff has an intermediate
value between 0 and 1, then the low and high targets have intermediately mild values accordingly.

scg_earlystop_pct: Thisis a percentage that controls how soon a hybrid SCG/LBFGS training run (hybrid training
can be used only if there is to be no Boltzmann pruning) switches from SCG to LBFGS. The switch is done

51

the first time a check (checking every nfreq'th iteration) of the network results finds that every class-subset
of the patterns has at |east scg_earlystop_pct percent of its patterns classified correctly. A suggested valuefor
this parm is 60.0.

Ibfgs_gtol: Thisvalueisused for the gtol argument of the LBFGS optimizer. It controlsthe accuracy of the line search
routine mesrch. If the function and gradient eval uations are inexpensive with respect to the cost of the itera-
tion (which is sometimesthe case when solving very large problems) it may be advantageousto set Ibfgs_gtol
to asmall value. A typical small valueis0.1. Lbfgs gtol must be greater than 1.e-04.

A.2.4 Switch Parms

Each of these parms has a small set of allowed values; the value is specified as a string, or less verbosely, as
a code number (shown in parentheses after string form):

train_or_test:
train (0): Train anetwork, i.e. optimize itsweightsin the sense of minimizing an error function, using atrain-
ing set of patterns.

test (1): Test anetwork, i.e. read in itsweights and other parms from afile, run it on atest set of patterns, and
measure the quality of the resulting performance.

purpose:
Which of two possible kinds of engine the network isto be. Thisis an architecture parm, so it should be left
unset for arun that isto read a network weights file. The allowed values are:

classifier (0): The network isto be trained to map any feature vector to one of a small number of classes. It
isto be trained using a set of feature vectors and their associated correct classes.

fitter (1): The network isto be trained to approximate an unknown function that maps any input real vector
to an output real vector. It isto be trained using a set of input-vector/output-vector pairs of the function.
NOTE: thisis not currently supported.

errfunc:
Type of error function to use (always with the addition of aregularization term, consisting of regfac times
half the average of the squares of the network weights). See the formulas under “Err, Ep, Ew” in Section
A.4.2.2.2 for the definitions of these error functions.

mse (0): Mean-squared-error between output activations and target values, or its equivalent computed using
classes instead of target vectors. Thisis the recommended error function.

type_1 (1): Type 1 error function; requires floating-point parm alpha be set. (Not recommended.)
pos_sum (2): Positive sum error function. (Not recommended.)

boltzmann:
Controls whether Boltzmann pruning of network weightsisto be done and, if so, the type of threshold to use:

no_prune (0): Do no Boltzmann pruning.

abs _prune(2): Do Boltzmann pruning using threshold exp(- |w|/ T), wherew isanetwork weight being con-
sidered for possible pruning and T is the Boltzmann temper ature.

square_prune (3): Do Boltzmann pruning using threshold exp(- w2/ T), wherew and T are as above.

52

acfunc_hids, acfunc_outs:
The types of activation functionsto be used on the hidden nodes and on the output nodes (separately settable
for each layer). These are architecture parms, so they should be left unset for arun that is to read a network
weightsfile. The allowed values are:

sinusoid (0): f(x) =.5* (1 +sin(.5* x))
sigmoid (1): f(x) =1/ (1 + exp(-x)) (Also called logistic function.)
linear (2): f(x) =.25* x

priors:
What kind of prior weighting to use to set the final pattern-weights, which control the relative amounts of
impact the various patterns have when doing the computations. These final pattern-weights remain fixed for
the duration of atraining run, but of course they can be changed between training runs.

allsame (0): Set each final pattern-weight to (1 / npats). (The simplest thing to do; appropriate if the set of
patterns has a natural distribution.)

class (1): Set each final pattern-weight to the class-weight of the class of the pattern concerned divided by
npats; read the class-weightsfrom class_wts infile. (Appropriateif the frequencies of the several classes, in
the set of patterns, are not approximately equal to the natural frequencies (prior probabilities), so asto com-
pensate for that situation.)

pattern (2): Set the final pattern-weights to values read from pattern_wts infile divided by npats. (Appro-
priateif none of the other settings of priors does satisfactory calculations (one can do whatever calculations
one desires), or if one wants to dynamically change these weights between sessions of training.)

both (3): Set each final pattern-weight to the class-weight of the class of the pattern concerned, times the pro-
vided pattern-weight, and divided by npats; read the class-weights and pattern-weights from files class -
wts_infile and pattern_wts_infile. (Appropriate if one wants to both adjust for unnatural frequencies, and
dynamically change the pattern weights.)

patsfile_ascii_or_binary:
Tells mip which of two supported formats to expect for the patterns file that it will read at the start of arun.
(If much compute time is being spent reading ascii patsfiles, it may be worthwhile to convert them to binary
format: that causes faster reading, and the binary-format files are considerably smaller.)
ascii (0): patterns_infileisin ascii format.
binary (1): patterns_infileisin binary (FORTRAN-style binary) format.

do_confuse:
true(1): Compute the confusion matrices and miscellaneousinformation as described in Section A.4.2.3, and
include them in short_outfile.

false (0): Do not compute the confusion matrices and miscellaneous information.

show_acs times_1000:
This parm need be set only if the run is to produce along_outfile.

true (1): Before recording the network output activationsin long_outfile, multiply them by 1000 and round
to integers.

53

false (0): Record the activations as their original floating-point values.

do_cvr: (Seethe notes on oklvl.)
true (1): Produce a correct-vs.-rejected table and includeit in short_outfile.

false (0): Do not produce a correct-vs.-rejected table.

A.3 Trainingthe MLP in hsfsys2

Output files generated from mip are provided in 4 subdirectories under weights/mlp: digit (containing output
filesfrom training on segmented numeric character images), lower (output filesfrom training on lowercase characters),
upper (output files from training on uppercase characters), and const (output files from training on both lower and
uppercase characters). For example, thedigit directory containstheinput file (h6_d.ml) and output file (h6_d.evt) from
running mis2evt, the input files (d.set, h6_d.evt, h6_d.cl, and h6_d.ml) and the output file (h6_d.pat) from mis2pat2, a
second set of input files (d.set, h6_d.evt, h7_d.cl, and h7_d.ml) and the output file (h7_d.pat) from mis2pat2, and input
and output files from running the program mlp.

The specfile used by mip to train the classifier on digit imagesis d.spc. This specfile requires the input files
d.scn, the training set h6_d.pat, and the testing set h7_d.pat, and it invokes 7 sequential pairs of mip training/testing
sessions. Three files are generated from each training/testing session. The following files are created from thefirst ses-
sion: trn_O.err (areport of the progressive error rates achieved on the training set), trn_0.wts (the resulting weights
trained in the session), and tst_0.err (areport of the error rate achieved on the testing set using the most recent set of
weights from training). For the next training/testing session, training resumes with the ML P network initialized to the
weights contained in trn_0.wts. The output files from this session aretrn_1.err, trn_1.wts, and tst_1.err. The weights
filetrn_l.wtsisthen used asinput to the next session and so on until the final session is complete. Thefilestrn_6.err
and trn_6.wts contain the final results of training and tst_6.err containsthe error rate achieved by using thefinal set of
weights to classify the testing set contained in h7_d.pat.

As can be seen from the lists above, there are numerous parameters to be specified in the specfile for running
the program mip. A good strategy for training the MLP on a new classification problem isto first work with asingle
training/testing session, surveying different combinations of parameter settings until a reasonable amount of training
is achieved within thefirst 50 iterations, for example. Thistypically involves using arelatively high value for regular-
ization (such as 2.0 with handprint character recognition); varying the number of hidden nodesin the network; and
trying different level s of temperature, typically incrementing or decrementing by powersof 10. For handprint character
classification, the number of hidden neurodes should be set to equal or greater than the number of input KL features,
and atemperature of 1.0e-4 works well.

Once reasonable training is achieved, these parameters should remain fixed, and successive sessions of train-
ing/testing are performed according to a schedule of decreasing regularization. For handprint character classification
it workswell to specify about 50 iterationsfor each training session, and to use aregularization factor schedule starting
at 2.0 and decreasing to 1.0, 0.5, 0.2, 0.1, 0.01, and 0.001 for each successive training session. This process of multiple
training/testing sessionsinitiates ML P trai ning within areasonabl e sol ution space, and then enablesthe machine learn-
ing to refineits solution so that convergenceis achieved while maintaining ahigh level of generalization by controlling
the dynamics of constructing well behaved decision surfaces. The intermediate testing sessions allow one to evaluate
the progress made on an independent testing set, so that ajudgment can be made as to whether incremental gainsin
training have reached diminishing returns. The theory behind the control of dynamical changes withinthe MLP learn-
ing process is discussed in Reference [8].

Training the MLP in this fashion generates superior decision surfaces thus providing more robust activations
for use as confidence values when rejecting confusing classification. Thisimprovement in accuracy does however
come with a cost. The program mlp is computationally intense. For example, the training of the weightsin weights/
mlp/digits required approximately 5.5 days of continuous CPU time on a Sun SPARCstation 2 with a Weitek CPU
upgrade. This processis of course done once off-line, and then the resulting weight files are reused over and over by
the actual recognition system.

55

A.4 Explanation of the output produced during MLP training

When the program mlp does atraining run, it writes output to the standard error and writes the same output
to the short_outfile specified in the specfile. The purpose of this section isto explain the meaning of this output. (Mlp
produces similar output for atesting run except that the “training progress’ part is missing.)

A.4.1 Pattern-Weights

Asapreliminary, it will be helpful to discussthe * pattern-weights’ which mip uses, sincethey are used in the
calculations of many of the values shown in the output. The pattern-weightsare* prior” weights, onefor each pattern;2
they remain constant during atraining (or testing) run, although it is possible to do atraining “ meta-run” that isa
seguence of training runs and to change the pattern-weights between the runs. The setting of the pattern-weightsis
controlled by the priors value set in the specfile and may be affected by provided datafiles, asfollows (in all cases,
the division by N is merely anormalization that slightly reduces the amount of calculation needed later):

allsame: if priorsis allsame then each pattern-weight is set to (1/N), where N is the number of patterns.

class: if thisisthe priorsvalue, then afile of class-weights must be supplied; each pattern-weight is set to the class-
weight of the class of the corresponding pattern, divided by N.

pattern: afile of (original) pattern-weights must be supplied; each of them isdivided by N to produce the correspond-
ing pattern-weight.

both: files of class-weightsand (original) pattern-weights must both be supplied; each pattern-weight isthen set to the
class-weight of the class of the corresponding pattern, times the corresponding (original) pattern-weight,
divided by N.

The pattern-weights are used in the calculation of the error value that mlp attempts to minimize during train-
ing: when the training patterns are sent through the network, each pattern produces an error contribution, which gets
multiplied by the pattern-weight for that pattern before being added to an error accumulator (Section A.4.2.2.2). The
pattern-weights are also involved in the calcul ations of several other quantities besides the error value; al these uses
are described below. Reference [8] discusses the use of class-based prior weights (Section 5.4, pages 10-11), which
correspond to the class setting of priors.

A.4.2 Explanation of Output

A.4.2.1 Header

Thefirst part of the output isa*header” showing the specfile parameter values. Hereisthe header of the short
outfile weights/mlp/digit/trn_0.err produced by thefirst training run of a sequence of runs used to train the digits clas-
sifier:

2. A pattern is afeature-vector/class or feature-vector/target-vector pair.

56

Classifier MLP
Training run
Patterns file: hé6_d.pat; using all 61094 patterns
Final pattern-wts: set all equal,
no files read
Error function: sum of squares
Reg. factor: 2.000e+00
Activation fns. on hidden, output nodes: sinusoid, sinusoid
Nos. of input, hidden, output nodes: 128, 128, 10
Boltzmann pruning, thresh. exp(-w*2/T), T 1.000e-04
Will use SCG
Initial network weights: random, seed 12347
Final network weights will be written as file trn.wts.O
Stopping criteria (max. no. of iterations 50):
(RMS err) <= 0.000e+00 OR
(RMS g) <= 0.000e+00 * (RMS w) OR
(RMS err) > 9.900e-01 * (RMS err 10 iters ago) OR
(OK - NG count) < (count 10 iters ago) + 1. (OK level: 0.000)
Long outfile not made

SCG: doing <= 50 iterations; 17802 variables.

A.4.2.2 Training Progress

The next part of the output lists a running update on the training progress. The first few lines of training
progress reported are:

pruned 282 28 310 C 1.46372e+05 H 2.33407e+04 R 84.05 M 0.00 T 0.0851
Iter Err (Ep Ew) OK UNK NG OK UNK NG
0 0.691 (0.557 0.289) 5999 0 55095 = 9.8 0.0 90.2 %
0.0 0 519 0 066 11 0 0 1
pruned 363 25 388 C 1.51345e+05 H 2.63755e+04 R 82.57 M -0.01 T 0.0853
pruned 419 27 446 C 1.46145e+05 H 2.63513e+04 R 81.97 M -0.01 T 0.0853
pruned 449 28 4717 C 1.64731e+05 H 2.68884e+04 R 83.68 M -0.01 T 0.0849
pruned 472 32 504 C 1.72004e+05 H 2.71783e+04 R 84.20 M -0.01 T 0.0846
pruned 490 32 522 C 1.39698e+05 H 2.70099e+04 R 80.67 M -0.01 T 0.0845
pruned 514 37 551 C 1.88008e+05 H 2.73029e+04 R 85.48 M -0.01 T 0.0844
pruned 534 38 572 C 1.49777e+05 H 2.7040le+04 R 81.95 M -0.01 T 0.0838
pruned 540 40 580 C 1.93717e+05 H 2.72770e+04 R 85.92 M -0.01 T 0.0814
pruned 539 38 577 C 1.66433e+05 H 2.56886e+04 R 84.57 M -0.01 T 0.0774
pruned 548 37 585 C 2.07274e+05 H 2.71835e+04 R 86.89 M -0.01 T 0.0741
10 0.488 (0.307 0.268) 10906 0 50188 = 17.9 0.0 82.1 %
5.2 1593 5 6 5 6 8 9 6 16
Theline
Iter Err (Ep Ew) OK UNK NG OK UNK NG

comprises column headersthat pertain to those subsequent linesthat begin with aninteger (“first progresslines’); each
first progresslineisfollowed by a*“second progressline”, and there are “ pruning lines” if Boltzmann pruning is used.
These three types of lines are discussed below, second progress lines first because some of the calculations used to
produce them are later used to make the first progress lines.

57

A.4.2.2.1 Second progresslines
These are the lines that begin with fractional numbers; the first of them in the above exampleis
0.0 0 519 0 066 11 0 0 1

Ignoring for amoment the first value in such aline, the remaining values are the “ percentages’ right by class, which
mlp calculates as follows. It maintains three pattern-wei ght-accumulators for each class:

a'” = right pattern-weight-accumulator for correct classi
ai("” = wrong pattern-weight-accumulator for correct classi

ai(Y = unknown (rejected) pattern-weight-accumulator for correct classi

When mip sends atraining pattern through the network the result is an output activation for each class; the
hypothetical classis, of course, whichever class receives the highest activation. If the highest activation equals or
exceeds the rgjection threshold oklvl set in the specfile, then mip acceptsitsresult for this pattern, and addsiits pattern-
weight (Section A.4.1) either to a” ortoa™ - wherei is the correct class of the pattern - according to whether the
network classified the pattern rightly or wrongly. Otherwise, i.e. if the highest activation is less then oklvl, mip adds
the pattern-weight to ai(“) . These accumulators reach their final values as aresult of the sending of all the training pat-
terns through the network. Mlp then defines the right “ percentage” of correct classi to be

100xa'"”

ai(r) + ai(W) +a

(u)

It shows these values, rounded to integers, in the second progress lines, as the values after the first one. For example,
the second progress line above shows that the right “percentages’ of correct classes 0 and 1 are 0 and 5.3

If priorsisallsamethen the pattern-weights are al equal and so ai“) , €tc. arethe numbers classified rightly,
etc. times this single pattern-weight; the pattern-weight cancels out between the numerator and denominator of the
above formula, so that the resulting value really is the percentage of the patterns of classi that the network classified
rightly. If prior shasavalue other than allsame- i.e. class, pattern, or both - then theright “ percentages” of the classes
are not the simple percentages but rather are weighted quantities, which may make more sense than the simple per-
centages if some patterns should have more impact than others, as indicated by their larger weights.*

Asfor thefirst value of a second progress line, thisis merely the minimum of the right “ percentages’ of the
classes, but shown rounded to the nearest tenth rather than to the nearest integer. This minimum value shows how the
network is doing on its “worst” class.”

3. In this case the classes whose “index numbers’ are 0 through 9 happen to be the digits 0 through 9, but that is entirely coincidental.
The classes could beletters, fingerprint classes, phonemes, or who knowswhat. Inthisdiscussion, “classi” merely meansthe classwhose
index number, numbering starting at 0, isi. Note also that although the software uses class index numbers that start at O, the class index
numbersit writes to long_outfile start at 1.

4. In particular, if the training patterns set is such that the proportions of the patterns belonging to the various classes are not approxi-
mately equal to the natural frequencies of the classes, then it may be a good idea to use class-weights (priors set to class, and class-
weights provided in afile) to compensate for the erroneous distribution. See [8].

5. When mip uses hybrid SCG/LBFGS training rather than only SCG - it doesthisonly if pruning is not specified - it switchesfrom SCG
to LBFGS when the minimum reaches or exceeds a specified threshold, scg_earlystop_pct.

58

A.4.2.2.2 First progresslines

These are the lines that begin with an integer. The column headings -- which pertain to these lines -- and the
first of these linesin the example, are:

Iter Err (Ep Ew) OK UNK NG OK UNK NG
0 0.691 (0.557 0.289) 5999 0 55095 = 9.8 0.0 90.2 %

Thevaluesin afirst progress line have the following meanings:

Iter: Training iteration number, numbering starting at 0. A first progress line (and second progress line) are produced
every nfreq’th iteration (set in the specfile).

Err, Ep, Ew: The calculations leading to these values are as follows.

N = number of patterns
n = number of classes
a; = activation produced by patterni at output nodej (i.e. classj)
t; = targetvaluefor g

wP® = pattern-weight of patterni (Section A.4.1)

n-1
(pat, mse) _
B, = 2 (ay—ty?
j=0
= error contribution for patterni if errfuncismse
1 N-1
(mse) _ (pat) — (pat, mse)
By = S XW
i=0
(pat, typel) _ 1 : :
E = 1- , Wherek is correct class of patterni
1+ Zj Lk EXP(—0(ay —)
= error contribution for patterni if errfuncistype 1 (o isalpha)

1 N-1

(typel) _ (pat) - (pat, typel)

By = LXWE

i=0

n-1

(pat, possum) _
B PO =% (10fay; — 4| + D[y
=0

= error contribution for patterni if errfuncispos_sum

N-1
(possum) _ 1 (pat) — (pat, possum)
By = XYW E

i=0

E, = E™?, EMPY or EPO™ according to errfunc

Ep = Eiferrfuncispos sum, ,/2E, otherwise

sWsd) = half of mean squared network weight
sq
Ew = 4259
E = E +regfacxs"*
Err = J2E

59

Mlp printsthe Err, Ep and Ew values as defined above. Note that the value mlp attempts to minimize isE,
but presumably the same effect would be had by attempting to minimize Err, sinceitisanincreasing function
of E.

OK, UNK, NG, OK, UNK, NG: “Numbers’ of patterns OK (classified correctly), UNKnown (rejected), and wroNG
or No Good (classified incorrectly), then the corresponding “ percentages’. Mip calcul ates these values asfol -
lows. It adds up the by-classaccumulators a'” , a™ , and a" defined earlier to make overall accumulators,
where n is the number of classes:

n-1
a® = Y a4
i=0

n-1
aW = 2 ai(W)
i=0

It computes “numbers’ right, wrong, and unknown -- the first OK, NG, and UNK values of afirst progress
line -- as follows, where N is the number of patterns and square brackets denote rounding to an integer:

BN N G A (B ()
n® = [Na"/a™P] = “number right
n™ = Na™/a™"] = “number” wrong

(w

n N-n(_nW “number” unknown

From these “numbers’, mlp computes corresponding “percentages’ -- the second OK, NG, and UNK values

-- asfollows;
p” = [100xn"/N]
p™ = [100xn™/N]
p™ = [100xn"“/N]

If priorsis allsame then since the pattern-weights are all equal, cancellation of the single pattern-weight
occurs between the numerators and denominators of the formulas abovefor n” and n™” | so that they really
arethe numbers of patterns classified rightly and wrongly, and then it isobviousthat n W real ly isthe number
unknown and that p'"”, etc. really are the percentages classified rightly, etc.

A.4.2.2.3 Pruning lines (optional)

These lines, which begin with “pruned”, appear if Boltzmann pruning is specified (boltzmann set to abs -
pruneor square_prunein specfile, and atemperature set). The first pruning line of the exampleis

pruned 282 28 310 C 1.46372e+05 H 2.33407e+04 R 84.05 M 0.00 T 0.0851

Regardless of nfreq, mlp writes apruning line every time it performs pruning. Thefirst three values of apruning line
are the numbers of network weights that mlp pruned (temporarily set to zero) in the first weights layer, in the second

60

layer, and in both layers together. The remaining values announced by the letters C, H, R, and M, are calculated as
follows (the value announced by T actually is not calculated correctly, and should be ignored):

n(wts)
n(pruned)

n(unpruned)

Vv(max)\N(mim

s

C
SUogabQ

S(W12)
H

R
M

number of network weights (both layers)

number of weights pruned
I,](wts:) _ n(pruned)

maximum & minimum absolute values of unpruned weights

n(unpruned) (max)

((logw —Iogw(min))/(logZ) +1) = capacity

sum of logarithms of absolute values of unpruned weights

(199809 (16g2) + n UMD (1 (1ogw ™) / (log2))
(w12)

C-s = entropy

100x s /c = redundancy

mean of unpruned weights

A.4.2.3 Confusion M atrices and Miscellaneous I nfor mation (Optional)

If do_confuseis set to true in the specfile, the next part of the output consists of two “confusion matrices”
and some miscellaneous information:

oklvl 0.00
Highest two outpu
key name

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
key: 0 1
row: correct, co
0: 5754 43
1 0 6547
2 28 26
3 9 10
4: 14 14
5 34 15
6 18 23
7 3 12
8: 17 129
9: 10 11
unknown
* 0 0 0

percent of true IDs

97 98 96
percent of predicted
98 96 96

ts (mean) 0.856 0.126; mean diff 0.730
2 3 4 5 6 7 8 9
lumn: actual
6 11 65 6 33 3 10 8
36 20 14 31 31 12 17 2
5826 66 23 7 26 29 47 8
76 5827 8 50 1 44 39 21
22 2 5828 0 23 4 35 68
5 125 21 5502 55 4 52 25
14 0 7 18 5970 0 1 0
11 6 30 1 0 6186 18 67
56 136 65 81 14 17 5393 58
1 16 58 7 0 79 37 5856
0 0 0 0 0 0 0
correctly identified (rows)
96 97 94 99 98 90 96
IDs correctly identified (cols)
94 95 96 97 97 95 096

61

mean highest activation level
row: correct, column: actual

0 1 2 3 4 5 6 7 8 9
91 51 39 44 45 35 43 30 36 33

0O 90 40 43 48 42 37 41 47 29
44 41 86 46 37 42 47 46 43 25
53 45 45 88 32 52 27 50 48 43
35 45 52 41 82 0 44 38 44 56
46 37 47 53 38 85 49 32 44 51
35 50 35 0 42 48 91 0 14 0
39 39 47 32 45 22 0 89 36 49
40 56 36 44 41 47 38 35 81 40

9: 40 36 16 50 50 46 0 66 50 87
unknown
* 0 0 0 0 0 0 0 0 0 0

3+
~
)

>

W J o0 Ul W PR O

H o H H H O HHHHE

Histogram of errors, from 2*(-10) to 1
82893 33517 46509 62676 80193 94688 90535 64963 34608 14910 5448
13.6 5.5 7.6 10.3 13.1 15.5 14.8 10.6 5.7 2.4 0.9%

Thefirst line of this optional section of the output shows the value of the rejection threshold oklvl set in the
specfile (thiswas already shown in the header). The next line shows the mean values, over the training patterns as sent
through the network at the end of training, of the highest and second-highest output node values, and the mean differ-
ence of these values. Next is atable showing the short classname (“key”) and long classname (“name”) of each class.
In this example the keys and names are the same, but in general the names can be quite long whereas the keys must be
no longer than two charactersin length: the short keys are used to label the confusion matrices.

Next are the confusion matrices of “numbers’ and of “mean highest activation level”. MIp has the following
accumulators:

aP™"'® = pattern-weight accumulator for correct classi and hypothetical class
ai(jhighac) = high-activation accumulator for correct classi and hypothetical classj
(MW = high-activation unknown accumulator for correct classi

If apattern sent through the network produces a highest activation that meets or exceeds oklvl -- so that mlp accepts
its result for this pattern -- then mip adds its pattern-weight to a(P**® and adds the highest activation to a™9"%
wherei and j are the correct class and hypothetical class of the pattern. Otherwise, i.e. if mip finds the pattern to be
unknown (rejects the result), it adds its pattern-weight to a"’ (Section A.4.2.2.1) and adds the highest activation to
(M"Y \wherei isthe correct class of the pattern. After it has processed all the patterns, mip calculates the confu-
sion matrix of “numbers’ and its “unknown” line; some additional information concerning the rows and columns of
that matrix; and the confusion matrix of “mean highest activation level” and its “unknown” line, as follows.

First define some notation:

NP = number of patterns of correct classi
(confuse)
ij

(confuse, u)

n;

= vaueinrow i and columnj of first confusion matrix (of “numbers”)

= i value of “unknown” line at bottom of first confusion matrix

(row) = jth gl ue of “percent of true IDs correctly identified (rows)” line

Pi
p("® = j™value of “percent of predicted IDs correctly identified (cols)” line
hi"%¥ = valuein row i and columnj of second confusion matrix (of “mean highest activation level”)

h(comuse) =it yalue of “unknown” line at bottom of second confusion matrix

62

Mlp calculatesthe valuesasfollows, where 3 o, ,and a) areasdefinedin Section A.4.2.2.1 and square brackets

again denote rounding to an mteger

- N(pats) (patwts)
(confuse) - |] J
: n-1, (patwts)
i +2J =0 Ij
[(pats) _ (u)
n(confuse, U _ Ni a
[S e
a” +a™ +a"
[(confuse)
p(r,mw) _ ;Looxnii
i =
7NA(pats) _ ni(confuse, u)
(confuse)
(r,col) _ %
! n—1_(confuse)
LZi=01]
R o
! (confuse)
L |]
[(highac, u)
h(confuse, woo—]'OOL
i n_(confuse u)
.

If priorsisallsame, then since the pattern weights are all equal, cancellation of the single pattern-weight
between numerator and denominator causes n; (JCO” U above to be really the number of patterns of correct classi and
hypothetical classj; similarly, n®*""*®" reglly is the number of patterns of correct classi that were unknown;

p,(r ") and p{" j really arethe percentages that the on-diagonal - correctly classified -- numbersin the matrix com-
prise of their rows and columns respectively; h(conf“se) really isthe mean highest activation level (multiplied by 100
and rounded to an integer) of the patterns of correct classi and hypothetical classj; and h(®*""*®" really isthe mean
highest activation level of the patterns of correct classi that were unknown. If priors has one of its other values, the

printed values are weighted versions of these quantities.

Thefinal part of thisoptional section of the output isahistogram of errors. This pertainsto the absolute errors
between output activations and target activations, across all output nodes (10 nodes in this example) and al training
patterns (61,094 patterns in this example), when the patterns are sent through the trained network. Of the resulting set
of absolute error values (610,940 valuesin this example), this histogram shows the number (first line) and percentage
(second line) of these values that fall into each of the 11 intervals (-, 219, (2720, 29, ..., (2%, 1].

A.4.2.4Final ProgressLines

The next part of the output consists of arepeat of the column-headersline, final first-progress-line, and final
second-progress-line of the training progress part of the output, but with an F prepended to the final first-progress-line:

Iter Err (Ep Ew) OK UNK NG OK UNK NG
F 50 0.156 (0.101 0.084) 58689 0 2405 = 96.1 0.0 3.9 %
90.4 97 98 96 96 97 94 99 98 90 96

6. The denominators of the expressions shown here for nl(confuse) and n are equal, but these expressions show what the

software actually calculates, rather than what it would have calculated if it had been more efficient.

(confuse, u)

63

A.4.2.5 Correct-vs.-Rejected Table (Optional)

If do_cvr isset to truein the specfile, the next part of the output is a correct-vs.-rejected table; the first and
last few lines of this table, from the example output, are:

thresh right unknown wrong correct rejected

ltr 0.000000 58690 0 2404 96.07 0.00

2tr 0.050000 58690 0 2404 96.07 0.00

3tr 0.100000 58690 2 2402 96.07 0.00

4tr 0.150000 58689 12 2393 96.08 0.02

5tr 0.200000 58672 73 2349 96.15 0.12

48tr 0.975000 15760 45333 1 99.99 74 .20
49tr 0.980000 13687 47406 1 99.99 77.60
50tr 0.985000 11519 49574 1 99.99 81.14
51tr 0.990000 8969 52124 1 99.99 85.32
52tr 0.995000 5971 55122 1 99.98 90.22

Mlp produces thistable values as follows. It has afixed array of rejection-threshold values, which have been set in an
unequally-spaced pattern that works well, and it uses three pattern-weight-accumulators for each threshold:

t. = Kthreshold

al™"" = right pattern-weight-accumulator for k™ threshold
al®"" = wrong pattern-weight-accumulator for K" threshold
al®™"¥ = unknown pattern-weight-accumulator for K" threshold

As mip sends each pattern through the finished network,” it loops over the thresholds t,: for each k, it com-
pares the highest network activation produced for the pattern with t, to decide whether the pattern would be accepted
or rejected if t, were used. If accepted, it adds the pattern-weight of that pattern either to a{’"" or to aéc‘”’ ") accord-
ing to whether it classified the pattern rightly or wrongly; if rejected, it adds the pattern-weight to a,*" " . After all
the patterns have been through the network, mip finishes the table as follows. For each threshold t, it calculates the

following values:

a(cvr, rwu) - aIicvr, r +a|icvr,w) +a|icvr, u)
n@rD = N7 /a ™ = “number right”
nW = [Na(E™ /2™y = “number wrong”
n®eY = Nop@nn _plevew = “number unknown” (rejected)
evreom = 100xn®""/ (n" " 4 n(V"W) = “percentage correct”
pl@rre) = 100xn "YW /N = “percentage rejected”

Mlp then writes aline of the table. The values of the line are the threshold index k plus 1 with “tr” 8 appended,
t, (“thresh”), n®"" (“right”), n"" (“unknown”), n‘**" (“wrong”), p‘®" "™ (“correct”), and p‘*" "
(“rejected”). If priorsisallsamethen, since al pattern-weights are the same, cancellation of the single pattern-weight
occurs between numerator and denominator in the above expressions for n‘®""” and n®""") | so they really are the
number of patterns classified rightly and wrongly if threshold t, is used; and then it is obviousthat n'" " really is
the number of patterns unknown for this threshold, p‘®" ™ really is the percentage of the patterns accepted at this
7.1f do_cvr istruethen mlp calculatesacorrect-vs.-rejected table, but only for thefinal state of the network in thetraining run, of course:

if it produced such atable for each training iteration, its output would be extremely verbose.
8. for “training”’; the correct-vs.rejected table for atest run uses “ts’

threshold that were classified correctly, and p‘®" " really is the percentage of the N patterns that were rejected at
thisthreshold. If priorshas one of its other values, then the tabulated val ues are weighted versions of these quantities.

A.4.2.6 Final Information

Thefinal part of the output shows miscellaneous information:

Iter 50; ierr 1 : iteration limit
Used 51 iterations; 155 function calls; Err 0.156; |g|/|w| 2.444e-04
Rms change in weights 0.241

User+system time used: 71087.7 (s) 19:44:47.7 (h:m:s)
Wrote weights as file trn.wts.O

Thefirst line here shows what iteration the training run ended on, and the value and meaning of the return
codeierr, which indicates why mip stopped itstraining run: in the example, the specified maximum number of itera-
tions (niter_max), 50, had been used. (This training run was actually the first run of a sequence that were used; its
initial network weights were random, but each subsequent run used the final weights of the preceding run asitsinitial
weights. The only parameter varied from one run to the next wasthe regul arization factor regfac, which was decreased
at each step: successive regularization. Each run was limited to 50 iterations, and it was assumed that this small itera-
tion limit would be reached before any of the other stopping conditions were satisfied. When sinusoid activation func-
tions are used, asin this case, best training requires that successive regularization be used. If sigmoid functions are
used, it isjust aswell to do only one training run, and in that case one should probably set the iteration limit to alarge
number so that training will be stopped by one of the other conditions, such as an error goal (egoal).)

The next line shows. how many iterations mlp used (counting the O'th iteration; yes, thisis stupid after it
already said what iteration it stopped on); how many calls of the error function it made; the final error value; and the
final size of the error gradient vector (square root of sum of squares), normalized by dividing it by thefinal size of the
weights. The next line shows the root-mean-square of the change in weights, between their initial valuesand their final
values. The next line shows the combined user and system time used by thetraining run.? Thefinal line merely reports
the name of the file to which mlp wrote the final weights.

9. Setting the initial network weights, reading the patterns file, and other (minor) setup work, are not timed.

65

