NISTIR 5843
Component-Based Handprint Segmentation Using Adaptive Writing Style M odel
Michael D. Garris (mdg@magi.ncsl.nist.gov)

National Institute of Standards and Technology
Building 225, Room A216
Gaithersburg, MD 20899

ABSTRACT

Building upon the utility of connected components, NIST has designed a new character segmentor based on
statistically modeling the style of a person’s handwriting. Simple spatial features (the thickness of the pen stroke and
the height of the handwriting) capture the characteristics of a particular writer’s style of handprint, enabling the new
method to maintain atraditional character-level segmentation philosophy without the integration of recognition or the
use of oversegmentation and linguistic postprocessing. Estimates for stroke width and character height are used to
compute aspect ratio and standard stroke count features that adapt to the writer’s style at the field level. The new
method has been devel oped with a predetermined set of fuzzy rules making the segmentor much less fragile and much
more adaptive, and the new method successfully reconstructs fragmented characters aswell as splits touching charac-
ters. The new segmentor was integrated into the NIST public domain Form-Based Handprint Recognition System and
then tested on aset of 490 Handwriting Sample Formsfound in NIST Special Database 19. When compared to asimple
component-based segmentor, the new adaptable method improved the overall recognition of handprinted digits by
3.4% and field level recognition by 6.9%, while effectively reducing deletion errors by 82%. The same program code
and set of parameters successfully segments sequences of uppercase and lowercase characters without any context-
based tuning. While not asdramatic as digits, the recognition of uppercase and |owercase charactersimproved by 1.7%
and 1.3% respectively. The segmentor maintains arelatively straight-forward and logical process flow avoiding con-
volutions of encoded exceptions as is common in expert systems. As aresult, the new segmentor operates very effi-
ciently, and throughput as high as 362 characters per second can be achieved. L ettersand numbersare constructed from
a predetermined configuration of arelatively small number of strokes. Results in this paper show that capitalizing on
this knowledge through the use of simple adaptable features can significantly improve segmentation, whereas recog-
nition-based and oversegmentation methodsfail to take advantage of theseintrinsic qualities of handprinted characters.

Keywords: connected components, handprint, handwriting, optical character recognition, OCR, public domain,
segmentation, style modeling, writer adaptation

1. INTRODUCTION

It is easy to forget that character recognition technology has been commercially available since the mid-
1950s. What started out to be hardware-based systems for reading machine printed text has now evolved into a host of
different software-based recognition applications including the recognition of handwriting. In hislook back over the
history of optical character recognition (OCR), Prof. George Nagy points out that the study of isolated character clas-
sification is an “overgrazed paddock”, nonetheless he looks to the future stating, “ OCR research offers many greener
pastures’ [1]. The National Institute of Standards and Technology (NIST) conducted an experiment in 1993 in the run-
ning of the First Census Optical Character Recognition Systems Conference that draws the same conclusions for the
recognition of isolated and well-segmented handprinted characters [2]. Analyses on the results from this conference
conclude that existing automated off-line handwriting recognition technology performs comparably to humansin
terms of accuracy, but in regards to sustained throughput and economy, the machines win hands-down. Since the con-
ference, NIST has continued to research and develop classifier technology [3][4][5], but it has focussed much of its
effort on developing entire recognition systems and studying how they can be best evaluated using automated tech-

niques [6][7].

While the performance of character classification has significantly improved, character segmentation still
remains a problematic source of errorsin handwriting recognition systems [8]. Segmentation technology in general is
gtill rather fragile, particularly when decisions are required for splitting touching characters and putting fragmented
characters back together when image quality is poor. In these cases, ambiguities are very common making decisions

(at least for the machine) very difficult. One approach to overcoming these ambiguitiesisto oversegment the sequence
of characters and then recognize permutations of the resulting pieces. The results of recognizing the different combi-
nations are stored in atable, and given alexicon, atranscription from the segmentsis generated by finding a minimal
cost path through the table. Techniques for oversegmentation have been presented by Gillies[9], Gader [10], and Shri-
dar [11]. In the Second Census Optical Character Recognition Systems Conference, this approach to character segmen-
tation was shown to perform very well [7]. In this conference, real handprinted responses were processed from 1990
Census Long Forms, and dictionariesranging from 20k to 60k words were provided from the previous 1980 Decennial
Census. It isgenerally accepted that the benefits of using this brute-force method of oversegmentation are significantly
compromised when no dictionary is applicable or available. Thisis frequently the case when recognizing numeric
information.

Other recognition-based segmentation schemes have been proposed and tested that closely integrate segmen-
tation and recognition together in a single unified approach. Examples of this have been published by Martin [12],
Keeler & Rumelhart [13], and LeCun [14]. Typically a single network architecture is trained to identify one or more
character objectswithin aspecified field of view. The network scans sequences of characters|eft to right possibly with
some higher-level control (also encoded in the network) such asin Martin’swork. Thisintegrated approach to segmen-
tation was also applied in the Second Census Conference, but it never performed as well as the oversegmentation
method. Also, these unified network architecturestend to be connection-wise very largein dimension. Asaresult they
have proven to be difficult (but not impossible) to train.

Another approach to character segmentation was proposed by Rocha, Pavlidis, et. a., where sequences of
characters are analyzed in grayscale and saddle features between strokes of touching and broken characters are iden-
tified and processed [15]. While these saddl e features contain robust gradient information, they are expensive to com-
pute and the entire approach requires grayscale data. Much of what is being scanned in terms of documentstoday is
not grayscale, but binary (black and white), for purposes of lower bit-rate transmissions and greater data compression,
reducing storage requirements.

Other researcher’s have taken a completely different point of view. Their rationaleis that if the traditional
methods of segmenting words or numbersinto individual charactersis plagued with ambiguitiesthat cause errors, then
avoid segmentation all together and apply a more holistic word-based approach to recognition. Researchers such as
Govindaraju have developed and evaluated holistic word recognizers only to find out that “word separation is the
weakest link in the chain and continuesto be achallenging research area” [16]. Certainly part of the segmentation pro-
cess can be viewed as bottom-up where inter-character statistics give at least partial clues to where word gaps occur.
This being true, critical information is overlooked by avoiding character segmentation. In addition, holistic word rec-
ognizers used in isolation have yet to perform aswell astraditional character-level classifiers. However, one could use
them in multiple classifier voting schemes and they have been successfully applied to dictionary pruning applications

[17].

Prior to the study reported in this paper, NIST has used asimple method of segmentation based on connected
components. The NIST public domain Form-Based Handprint Recognition System was released in 1994 [18], and to
date, more than 575 copies of the system have been distributed across 40 different countries. The technology distribu-
tion contains several contributionsto the state-of-the-art for system devel opers, including aretrainabl e optimized Prob-
abilistic Neural Network (PNN) [19] for character classification and arobust training set of |1abeled characters. Theold
segmentor simply finds all the connected componentsin afield on aform, throws away any components that are “too
small” or “too large”, and if the field is designated as numeric, disconnected top-strokes on 5's are identified and
merged with their proper neighbor. If characters are fragmented due to poor image quality or form removal errors, then
insertion errors are inflated. If characters touch one another, then deletion and substitution errors in the system are
inflated. Despite all these limitations, the NIST system reads numeric fields up to 6 charactersin length completely
correct about 79% of the time.

Building upon the utility of connected components, NIST has designed a new character segmentor that main-
tains atraditional character-level segmentation philosophy without the integration of recognition or the use of over-
segmentation and a dictionary. While recognition-based segmentation and oversegmentation techniques basically
concede to not explicitly knowing how characters should be separated, letters and numbers (by their very definition)

are constructed from a predetermined configuration of arelatively small number of strokes. The new method’s merit
isin exploiting this knowledge through the use of several simple statistical features that capture the characteristics of
aparticular writer's style. Rather than rely on linguistic postprocessing as with oversegmentation schemes, this new
method build of model of the style of aparticul ar writer’s handprint by measuring spatial information such asthethick-
ness of the pen stroke and the height of the handwriting. These statistics are measured from each separate response
provided by awriter on aform, allowing adaptation to takes place not just at the writer level, but at thefield level. As
will be seen, the same piece of program code using the same set of parameters successfully segments numbers as well
as sequences of lowercase and uppercase characters without any context-based tuning.

On the other hand, the new method avoids tedious and laborious stroke decomposition and symbolic process-
ing by using these simple statistical featuresto identify and compare anumber of more abstract and adaptabl e objects.
Asrule-based systems using symbolic processing (popular from the inception of artificial intelligence (Al)) are devel-
oped, they quickly become cumbersome and brittle. The new method presented here has been developed with a pre-
determined set of rules, but the features are statistically derived (rather than topologically for example). Asaresult the
segmentor is much less fragile and much more adaptive. Although not formally afuzzy system, the new segmentor
can be viewed as being composed of fuzzy rules and objects. Asaresult, the segmentor maintains arelatively straight-
forward and logical process flow avoiding convolutions of encoded exceptions (asis common in expert systems), and
the segmentor operates very efficiently. On a Sun Microsystems SPARCStation 2 with an 80Mhz Weitek Chi pl, the
segmentor sustains an average throughput of 362 characters per second.

New
Segmentation Process

<Extract Connected Componen@

< Model Writing Style >

< Compose Characters >

< Split Characters >

< Final Clean-Up >
!

Figure 1. Simple process flow for the new segmentation method.

The new segmentation method is divided into four general stepswith afinal clean-up step as shown in Figure
1. Thefirst step extracts all the connected components in the isolated image of handprint. A brief discussion of con-
nected componentsis provided in Section 2. A writing style model is then constructed by measuring simple statistics
from the connected components. These statistical features are defined in Section 3. The next step usesthewriting style
model to compose characters from multiple piecesin theimage. Thisisfrequently required when scan quality is poor

1. Specific hardware and software products identified in this paper were used in order to adequately support the development of the
technology described in this document. In no case does such identification imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor doesit imply that the equipment identified is necessarily the best available for the purpose.

causing characters to break up. Putting components together is also needed to join dots and detached strokes to their
character bodies. Section 4 describes the steps required to put characters back together. Next, the writing style model
is used to identify components containing multiple touching characters, and the characters within the image are sepa-
rated. Section 5 presents the details of how this can be done both effectively and efficiently without the use of recog-
nition or dictionaries. Finally, a couple of simple follow-up tests are described in Section 6 that look for non-
overlapping character strokes (frequently they are the tops of 5's) and small punctuation-sized components. Thereis
no punctuation in our application, so any component that appears to be a small punctuation mark islikely to be noise
or acharacter fragment and should be discarded. Section 7 presents both accuracy and timing results, and Section 8
draws conclusions. It should be noted that for the purposes of organization, thisreport has been written so that themain
sectionsdiscussthe general processflow of the segmentor. Theimplementation details (as much as possibl€) have been
deferred to Appendix A where rules and their parameters are presented in a pseudocode fashion.

2. EXTRACT CONNECTED COMPONENTSAND COMPUTE STATISTICS

A connected component is defined as a set of black pixelswhere each pixel isadirect neighbor of at |east one
other black pixel inthe component. In other words, al the black pixelsin the component are connected forming ablob.
In this application, a neighbor is defined to be either directly adjacent or directly diagonal to a pixel. This provides 8-
way connectivity. An alternative would be 4-way connectivity inwhich case aneighbor must be directly adjacent. The
choice was made simply because it provides more connectivity without significantly increasing computation require-
ments.

Tolocate ablob, the connected component utility systematically scanstheinput imagefor ablack pixel. When
ablack pixel isfound, it is grown into arun (a maximally horizontal segment of contiguous black pixels). Therunis
then grown into amaximal set of connected runs, which constitutes an entire blob. When all the runsfor ablob are
found, the utility reconstructs and returns the blob in an output image. The routineis efficient because it localizes pro-
cessing to only the black pixelsin theimage, and it does so one blob at atime. The algorithm’s implementation gen-
erally requires an amount of working memory that is small compared to the memory occupied by the input image. In
addition, all the horizontal runs are stored, so by extracting connected components, we get the runs for free.

Connected components are extracted one at atime until the whole image has been scanned. To manipulate
components as objects, the data structure definition listed in Figure 2 was developed. A blob is represented by the
bounding box that tightly encompassesall its black pixels. The data structure holds the component’s rectangular raster
image, width and height, cut position, along with other statistics such as the component’s geometric center and black
pixel count. The original image of handprinted characters can now be represented by alist of component structures.
For segmentation purposes, thelist of original connected componentsis areasonably good approximation to character
segments, however further processing is required so that when finished we are confident that each component in the
list representsasingleisolated character from the original image. To support this, asuite of utilitieswas devel oped that
allocate, duplicate, append, merge, sort, and search avariable length list of components.

typedef struct blobstruct{
unsigned char *data; [* raster image data*/

intw, h; [* pixel dimensions*/
int x1, y1; [* cut origin */
int x2, y2; * bottom-right coordinate */
int cx, cy; [* center coordinates */
inta [* pixel area*/
int p; I* black pixel count */

} BLOB;

Figure 2. Structure definition for a component object.

3. MODEL WRITING SYLE

To adapt to variations in handwriting style, one needs to be able to statistically capture how much black ink
(or pixels) inanimageislikely to constitute asingle character. To do this, two simple statistical features are measured
from each isolated image of handwriting. The estimated stroke width approximates the width of the lines comprising
the characters. Variationsin stroke width arise from the use of different kinds of writing implements along with differ-
ent amount of pressure being applied. A good stroke width estimate is the median horizontal run length in the image.
Remember that our connected component utility returnsthe runs. Once the width of each strokeis estimated, one needs
to know how tall the strokesareintheimage. A simpleway to estimate character height isto find the maximum height
of all the connected componentsin theimage. Other (potentially more robust) methods for estimating character height
were studied, but none worked any better for our application.

Given an estimated stroke width, the black pixelsin an image can be thought to be part of larger meta-pixels
that are basically one stroke width square. This larger pixel is referred to as a standard stroke pixel. Extending this
notion one step further, standard stroke area can be defined as the estimated stroke width times the estimated character
height. The scan resolution of an image conveys almost nothing in terms of the expected size of the handwriting in the
image. By their very definition, characters are configurations of afinite and relatively small number of strokes. Mea-
suring the image in terms of standard pixels and standard strokes provides a relative measure of density that adaptsto
the handwriting style itself, thus allowing for writer-normalized units of measure at the field level. Aswill be seen,
these ssimple statistical features are sufficient to characterize or model the style of handprint for the purposes of seg-
mentation.

4. COMPOSE CHARACTERS

At times a connected component may only represent a piece of a character. Characters may be broken into
pieces due to poor print or scan quality, or strokes of characters may be written in such away that they are detached.
Thisisnaturally the case with dotted characters, and it isfrequently the case of characterswith broad horizontal strokes
suchas‘T’ and‘E’. Ambiguities arise from the presence of other spurious marks such as bleed through, smudges, era-
sures, and residual form information. These types of components should be discarded as noise, whereas other small
components should be merged together in order to construct complete characters. The task of composing characters
and discarding noise is outlined in Figure 3.

Thelist of connected components extracted from the original image is carefully processed. Components are
processed from shortest to tallest, keying off the observation that smaller components tend to be good candidates for
being noise or pieces of characters. If acomponent is small and qualifies as noise (A.1), then it is removed from the
original component list and added to anoise list. If acomponent isalittle larger and qualifiesasadot (A.2), thenitis
removed from the original list and added to adot list.

If the component is neither the size of noise nor a dot, then possibly it isapiece of acharacter that should be
merged with another component in the original list. Horizontal overlap is used to determine if two components are
merge candidates (A.3). In general the overlapping pieces are to be merge, but as the components becomeincreasingly
large, there isless chance that they are pieces of the same character, but they are more likely to be distinct characters.
Therefore, tests are performed to ensure the components are not too big to be merged (A.4). If the overlapping com-
ponents are determined compatible, they are merged and replaced by the composite result.

Upon one pass through the original list, some components remain unchanged, others have been merged
together, while others have been collected together either as noise or dots. Noise components are compared with the
components remaining in the original list (the later referred to as the original components). If a noise component is
found to be inside (A.5) an original component, then the noise component is merged. This allows small fragments to
be rejoined to their character bodies. Those noise components not merged are discarded.

Dots are al so processed with respect to the componentsremaining in the original list. If adot isinside an orig-
inal component, then it is merged. If the dot is qualified to be the top of an ‘i’ or ‘j’ for a single neighbor from the

original list, then it ismerged (A.6). If adot is qualified to be the top of both its left and right neighbors, then the dot
is merged with the closer neighbor. Finaly, if the dot is qualified to be atop of a5 (A.7) for itsleft neighbor, then it is
merged. Any remaining dots not merged are considered noise and are discarded. Several segmentation results of char-
acters that required the merging of connected components are shown in Figure 4.

Compose Characters

/ 1. Sort & Merge \

/ Is Noise?
Merge Candidate?
VA)

2. Process Noise

3. Process Dots

IsInside?
Istop of i or j?
Istop of 5?

Figure 3. Stepsto composing characters.

5.SPLIT CHARACTERS

Not only may a connected component represent a piece of acharacter, but it may problematically contain two
or moretouching characters. In this case the component must be subdivided so that each resulting image contains only
one character. Most often, characters touch two in arow, so thefirst attempt at spliting tries to divide the component
as asingle character pair. If this doesn’t work, then characters are cut from the component left-to-right, dividing the
less frequent sequences of 3 or more touching characters. The task of splitting charactersisillustrated in Figure 5.

5.1 Multiple Character Detection

Before one can split touching characters, one must be able to detect that multiple characters exist in acom-
ponent image. This detection must be simple to compute, relatively reliable, and adaptable to the characteristics spe-
cific to agiven writer. At first, a simple aspect ratio was tested which is defined as

_w 1)
ar = ech

where w is the width of the component, and ech is the estimated character height for the field.

V3L
/N
3 X

HYQULMENWXDFRLPUDTPVILISAZ
E F P

Dotted Characters

2vmgticeyaskhouwd pn bxglFyr

|/

/ J

Figure 4. Segmentation results of characters composed of multiple connected components.

7

Split Characters

Store
/ Multiple Characters? /&>

yes

/ Split as Pair \
/ Veticdcu? /

yes Store
/ Contoured Cut Path? / Left & Right

No Fragments?
\ /)

no
Y
Split from Left
/EstimateCharacter Pair/ yes
Left
/ Split as Pair /
no

Store
Component

Figure 5. Steps to splitting characters.

The larger the width is to the height, the more likely the component contains multiple characters. A training
set of single and touching character components was used to compute a range of aspect ratio samples, and athreshold
was empirically derived. Many of the samples were correctly separated by this simple feature, but there were also a
significant number of confusions. It was determined that while the overall dimensions of the component were impor-
tant, it was going to be necessary to analyze the density of the black pixels within the image, and it was recognized
that these densities should be measured according to some set of writer-adaptive units. It was at this point that the
notion of a standard stroke was introduced and its area defined to be

ssa = esw x ech %))

where esw is the estimated stroke width.

Using this definition, a second feature was computed called the standard stroke count or ssc. The standard
stroke count is defined as

SSC = P (©)
ssa

where pisthe black pixel count of the component. This measures how many standard strokes can be constructed from
thetotal density of black pixelsin the component, and its value automatically adapts to the characteristics of the hand-
writing. Thetraining set of single and touching character components was used again to compute this new feature, and

Figure 6 shows the resulting scatter plots using the two features (ar, ssc) as data points. The x-axis plots aspect ratio
and the y-axis plots standard stroke count. The top plot shows the feature points derived from images of single char-
acters, while the bottom plot shows features points from images containing multiple touching characters.

Single Character Images

g

71
-
5 6}
Q
O
£ st
[=)
S
n
T 4
o]
5

3t
n

2}

n

0

0 0.5 1 1.5 2 2.5 3 3.5

Aspect Ratio
Multiple Character Images
g
L
? L
L
— L
c
> BT
S .
L
q) & L
S 5
= T e B
L L
m :i ‘:% ¢ e
© 4 * @ﬁz F 2
R * @‘9@@@ L
=] @ * @
% * @‘1@ i ¢
Eﬁ 3 @‘9@‘9@%@@; ‘9@3 ®
£ z* ve
2 e e .
s @ ® £

n

0

0 0.5 1 1.5 2 2.5 3 3.5

Aspect Ratio

Figure 6. Top: scatter plot of single character images. Bottom: scatter plot of multiple character images.

The line drawn in both plotsisalinear discrimination that spans the points (0.0, 4.75) and (2.25, 0.0). The
equation for thelineis

ssc = (—-2.11)ar +4.75 (4)

and it was empirically derived to maximize the number of correctly labelled single character images. Given a compo-
nent image, its aspect ratio and standard stroke count are computed. If the point falls below the detector line, the com-
ponent is determined to contain a single character. If the point lies above the detector line, then the component is
determined to contain multiple touching characters. As can be seen, this ssmple 2D detector quite accurately distin-
guishes between images of single and multiple characters. Much of the new segmentor’s splitting capabilities hinges
on the existence of thisinexpensive but adaptable detector. The feature point (ar, ssc) and the multiple character detec-
tor are also considered part of the writing style model.

5.2 Vertically Straight Cut

A component determined to contain multipletouching characters must befurther analyzed to derive astrategy
for spliting the characters. Thefirst step splits the touching characters along a vertically straight line that optimally
divides the component into two pieces. The multiple character detector is used to determine the optimal position of the
vertical cut.

Successive splits are conducted | eft-to-right across the component and the left and right pieces resulting from
each cut are evaluated. The aspect ratio and standard stroke count (referred to as afeature point) are computed for each
piece and the position of these feature points are analyzed with respect to the line used in the multiple character detec-
tor. Only those vertical cuts where both left and right feature points remain below the detector line are considered.
Among this set of possible cuts, perpendicular distances are computed from the left and right feature pointsto the
detector line and the larger of the two distancesis stored along with the x-position of the vertical cut. The optimal ver-
tical cut is selected as the x-position corresponding to the minimum of the stored distances.

Figure 7 documents the selection of an optimal vertical cut for the original image of two touching characters
displayed inimage (A). The connected component has pixel dimension 80x56, the estimated stroke width is 6, and the
estimated character height is 56. Using these statistics, the feature point (ar, ssc) is computed to be (1.4, 4.0) and is
plotted in graph (C). The point is above the detector line, so the image is determined to contain multiple characters.
Successive vertical cuts are evaluated across the x-range [26..55] according to graph (D). Each vertical cut dividesthe
original image into aleft and right piece. Feature points (ar, ssc) are computed for the |eft and right pieces, and their
perpendicular distancesto the detector line are measured. The points plotted in graph (D) represents the maximum per-
pendicular distance from each left and right pair. By minimizing the maximum perpendicular distances across the
range of cuts, the vertical cut is selected whose left and right pieces both contain maximal pixel data and both pieces
qualify assingle characters. The vertical cut position selected for thisexampleis (x = 39), and the vertical cut isdrawn
inimage (B).

5.3 Contoured Cut Path

The optimal vertical cut is sufficient for dividing many touching characters, but for other cases (such as that
shown in Figure 8(A)) asingle straight cut does not satisfactorily divide the component. In these cases, amore sophis-
ticated non-straight path is required. A technique for deriving this path was developed that builds upon having first
selected the vertically straight cut.

In general, the vertical cut represents a good first approximation for where the touching characters should be
split. Thisstraight path requires acertain amount of bending and shaping so that it follows slanted and curved character
contours in order to minimize excessive cutting of character strokes. Starting at the x-position of the optimal vertical
cut, asearch (or trace) isinitiated from the top of the component downwards and from the bottom of the component
upwards. The trace downwards (the top-trace) performs much like sand being dribbled down the side of a complex

10

(A) Original Image (B) Vertical Cut

(C) Multiple Character Detection

g
? 3
=
3 °f
O
o
S 5
A
T X
L
5 |
2 3
1 3
0
0 0.5 1 1.5 2 2.5 3 ER
Aspect Ratio
(D) Vertical Cut Evaluation
1.1 T T T
1 3
8
&
B
'5 09r
B
=}
(&}
5 s}
©
p
[
8
=
0.6

0.5

25 30 38 40 45 50 55

Cut X-Position

Figure 7. Example of locating an optimal vertical cut: (A) the original image, (B) the selected vertical cut, (C) the
detection of multiple characters, and (D) the evaluation across the set of possible vertical cuts.

11

surface. Thetraceisfreeto fall vertically until it hits the edged of a character at which point it flows along the contour
falling progressively downwards until either the bottom of the image is reached or it gets stuck in alocal minimaor
concavity. The trace upwards (the bottom-trace) performs similarly.

At this point we have two pathsthat started from the top and bottom of the component at the vertical cut posi-
tion and were permitted to trace along the complex contours of the characters. Figure 8(B) plots the top and bottom
traces on the exampleimage. A good strategy for splitting charactersisto minimizethe number of cutsacross character
strokes (transitions from white to black to white pixels). Frequently there is only one such cut transition required and
thisistypically located at the minimum distance between the two trace paths. The cut path is constructed by locating
the two closest points between the traces and then merging the segments of the top and bottom traces |eading up these
points. The contoured cut path and the resulting split are shown in images (C) and (D).

(A) Vertical Cut

7,
-

(B) Top and Bottom Trace
(C) Contoured Path

(D) Resulting Segments

dAq

Figure 8. Example of splitting two touching characters. (A) the selected vertical cut, (B) the results from the top and
bottom trace, (C) the contoured cut path, and (D) the segmentation results.

A few exceptions must be handled. If both traces pass through the entire image, then the path that splitsthe
component nearest the middle of theimageis chosen. At times, the resulting left or right side of the split will be empty
or it may contain only noise. When this happens, the starting position of the top and bottom traces are stepped away
from that side and recomputed.

12

5.4 Split Caused Fragments?

The detection of multiple characters and the splitting of components do not utilize any recognition feedback.
Instead, simple statistical features that model the style of the handprint are used, and inevitably some instances of sin-
gle character components are going to represent statistical outliers. These cause unnecessary splits and therefore seg-
mentation errors. Thisis particularly true of capital letters which tend to be larger in term of size and structure than
digitsand lowercase characters. Asaresult, the segmentor can be abit greedy and unnecessarily split single characters
causing fragments. In order to compensate and to help ensure satisfactory results, a simple but important test was
designed to detect if fragments are introduced by the split (A.8). If they are, then the component is not divided.

5.5 Split from the L eft

Occasionaly, noinitial vertical cut or satisfactory contour cut path can befound for acomponent that is deter-
mined to contain multiple characters. The entire scheme for finding an optimal vertical cut operates on the assumption
that two and only two characters are in the component. While thisis usually the case, at times more than two consec-
utive characters may touch one another forming a single connected component. As consecutive vertical cuts are eval-
uated | eft-to-right through the component, not asingle cut will produce left and right feature points that both lie below
the detector line. In other words, one side or the other will always contain sufficient pixel datato qualify as having
multiple charactersin itself.

When more than two characters touch in a single component, successive characters are split from theleft end
of the component image by estimating a subimage the width of two characters (A.9) again using the writing style
model. The subimage is analyzed (as the entire component image was earlier) for an optimal vertically straight cut,
and once found, the contoured cut path istraced. Given the cut path, the left character in the component is carved off
and appended to the component list. The processis repeated until the remaining component image containsonly asin-
gle character.

Several segmentation results of connected components that required splitting are shown in Figure 9. The top
set of imagesin the figure show results of splitting touching character pairs. The middle set of images show the results
of successively splitting characters from the left side of the component image. The bottom set of images demonstrate
how the method is capable of splitting al phabetic characters aswell. Notice that the first component split in the upper-
case example is ambiguous. Evidently, the writer accidently wrote an ‘X’ and later realized that the correct character
should have been a*W’. The writer than extended the strokes to form the correct character. The segmentor analyzes
the component image, correctly determines that it is statistically too large to be a single character, and it proceedsto
divide the component. The resulting segments (interestingly enough) form reasonable characters. There appearsto be
an'X’ followedby a‘V’ or *N’. Thisisan example of how ambiguities can still creep in and cause segmentation errors.
Recognition feedback could resolve the ambiguities in some cases, but probably not in this example.

6. FINAL STEPS

One class of character strokes that must be handled differently are the top strokes on 5's. Frequently these
strokes are detached and do not horizontally overlap with their character bodies. These strokes are often quite long, so
they are not treated as noise or dots. A pass through the remaining list of componentsis required to detect and merge
these non-overlapping horizontal top strokes. Each component in the list istested to be atop of a5 (A.7) with respect
to its left component neighbor. If it is, then the components are merged and replaced by the composite result.

For this application, one last pass through the componentsis required. The fields used in this study do not
contain any punctuation. Therefore, componentsremaining in thelist that appear to be small punctuation marks (A.10)
most likely represent some type of noise or fragmentation of charactersthat the previous processes could not deal with.
For example, they may be characters fragments that were unsuccessfully joined, residual form information, or other
spurious marks caused by the writer. Regardless of their source, they are not single and complete characters, so they
should be discarded as noise.

13

Two Characters Touching

37 o B B0
37 6519 QU

More Than Two Characters Touching

4od 23400
40\ 234506

Uppercase Characters Touching

HY kL HLMWXDr?—bﬁUD'TPVULZLSHZ

Xd DT 1S

Figure 9. Segmentation results of connected components containing multiple touching characters.

14

7.RESULTS

While several examplesof successfully segmented images have already been shown, this section analyzesthe
impact the new segmentor has on both the accuracy and the efficiency of a handprint recognition system. The NIST
Form-Based Handprint Recognition System [18] was used to test the new statistically adaptable segmentation method.
Once modified, the recognition system was run across alarge collection of forms, and the recognition performances
before and after applying the new segmentor were measured and compared.

HANDWRITING SAMPLE FORM .

DATE CITY STATE _ ZIP

87-39 | [Bendate mz Hodos |
‘This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the baxes that appear below.

0123456789 0123456789 0123456789

[orasvsersr | [crasvseres | [oiasvsersg
3309 54308

14 542 467077

|6»‘a| 3309 l IJ‘/.?D&’ | |4e7o77 |

857238 12

/69 | 13293 I G 2346 l I 8s57238]
9588 71711 034264 74 274
3588 | [zi9s | [o3vaey | 274
29279 286106 85 505 3597

29279 [Casesoc |
185969 30 063 0589 18160
svmgticeyaskhouwdpnbxqlfjr

I 2vmgticeyaskhouwdpn bxg/Fyr j
XZQURPCAEFBTVDOKILIYSHGWMN

[XZQURPCAEFBTVDOKI14L3ySHGmN]

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
‘Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America.

w«., The ’Pea',)e_ of The United STafes‘ in order To form & more
pPerfect _Uh[m\, establish Justiee, jhsure domestic
Tranquility, Provide For The common Defense promole the
seheral Welfare and Secure ‘flhe Blessings oF Liberty teo
ourselves Qnd cur pEos P"Sre"""/, do oOroain and estabhsh
this CONSTITUTION §For the UniTed States oF America

Figure 10. Completed Handwriting Sample Form from SD19.

The comparison was conducted using 490 Handwriting Sample Forms (HSF) from the beginning of NIST
Special Database 19 (SD19) [20]. These forms were scanned as binary images at 300 pixels per inch (ppi). A copy of
an HSF formis shown in Figure 10. The systems used in this study recognized the digit fields a ong with the randomly
ordered lower and uppercase a phabets and stored the results to afile. The NIST OCR scoring package [6] was then

used to reconcile the output from the system with what the writer’s were instructed to enter in each field and perfor-
mance stati stics were automatically compiled.

The results are broken out and analyzed according to digits, uppercase, and lowercase fields. The results for
digits are summarized in the three tables listed in Figure 11. Thefirst table shows character and field level accuracies
achieved on the 490 HSF forms. Thefirst column of the table lists the accuracies using the old segmentation method,
the second column lists the accuracies using the new method, and the third column lists the difference in recognition

performance between the two methods. The accuracies are computed as the number correctly recognized divided by
the total potential. The values used to compute the percentages are displayed in parentheses. Remember that the old
segmentation method simply treated each connected component as a plausible character image (except for discon-
nected topson 5's), and blobs that were too small or too big. A resolution dependent scalar threshold of 100 black pix-
elswas used to determine if acomponent was too small, whereas 1750 was used for too big. As can be seen from the
first table, using the new statistically adaptive segmentor improves character recognition by 3.4% and field recognition
by 6.9%. As aresult, the recognition system is now able to read 86% of the numeric fields on HSF forms entirely cor-
rect.

The second table listed in Figure 11 shows the accumulated number of errors broken out by substitutions,
insertions, and deletions. The first column in the table lists the totals compiled across the set of 490 HSF forms using
the old segmentor, the second column lists the total errors using the new segmentor, and the third column lists the rel-
ative amount of improvement achieved using the new adaptive segmentation method (1.0 - (new error / old error)).
The table shows a dramatic decrease of 82% in the number of deletions when using the new segmentor in the recog-
nition system. Thisis due to the fact that the old method has no way of separating touching characters, and if two char-
acters touch, they are extracted and classified as a single connected component. Using dynamic string alignment to
score the results, the merged characters are typically tallied as a single substitution followed by a character deletion.
The large reduction in deletion errors testifies to the new segmentor’s ability to identify and split multiple touching
characters. Notice that the mgjority of digit recognition errors remaining are substitution errors. This suggests that
much of the burden for improved recognition now lies on the character classifier. It should be noted that the classifier,
an optimized PNN [19], was not retrained when the new segmentor was added. Perhaps retraining the classifier on
characters that the new segmentor has split will improve recognition and reduce substitution errors. Thisis|eft for a
future study.

The third table of results shown in Figure 11 lists confusion pairs whose error distributions significantly
changed between using the old and new segmentation methods. These changes are listed for both significant improve-
ments and degradations. The testing set was divided up into 10 equal partitions and the errors on each partition were
compiled into separate confusion matrices. Means and standard deviations were computed for each confusion pair
across the partitions resulting in one set of error distributions for the recognition system using the old segmentation
method and another set of error distributionsfor the new segmentation method. Given the distribution statistics of each
corresponding confusion pair between the two systems, a Student’st test was used to determine statistically significant
differences[21]. The difference between two distributions is measured as

S (5)
62+ 03

n

where nis the number of partitions, (i;, c;) are the distribution statistics from system i for a specific confusion pair,
and theresult t isin units of root mean square standard error.

Given the normalized distancet, a probability p is derived either numerically or viatable look-up for each
cell in the confusion matrix [22]. Thisisthe probability that [t| could be at least thislarge by chance, so the smaller the
valueof p, thelesslikely the two distributions are the same. The confusion pairslisted in the table have p less than 2%
(in which case we are 98% sure the difference is significant), and they are sorted on their corresponding value of t.
Confusion pairs with positive t represent significant improvements using the new statistically adaptive segmentor,
whereas those with negativet represent degradations. Thefirst columnin the tableliststhe confusion pairs, (r)ight con-
fused as (w)rong; the next two columns list the error distributions for the system using the old segmentation method,
and the next two columns ist those for the new segmentation method; the third column from the right lists the absolute
error differences between the two systems' mean values; and thelast two columnslist the results of the Student’st test.

Examining the bottom table, it is difficult to postulate why the particular confusion pairslisted as significant
improvements exist. Thisis probably due to the fact that the most significant contribution (as seen in table 2) made by

16

the new segmentation method on digitsisthat of splitting touching characters. Merged characters are somewhat ambig-
uously scored as a substitution followed by a deletion. Therefore, the old segmentor incurred a high number substitu-
tionswherethefirst character in the touching pair was aligned with whatever character the classifier decided thejoined
pair most closely resembled. Take the confusion pair (6, 0) for example. One interpretation isthat a‘6’ frequently
touches other characters on itsright, and when this occurs, the classifier often identifiesthe pair asa‘0’'. The new seg-
mentation method is able to split the pair, so what was originally substituted for the ‘6’ no longer occurs, and the num-
ber of 6'slabeled as ‘0’ significantly decreases.

Digit Recognition
Old Seg. New Seg. Improv.
Char acter 59208 61317
0, " 0, _ 0,
Accuracy 92.9% (53700 96.3% (53700 3.4%
Field 10863 11814
0, — 0, . 0,
Accuracy 79.2% (13720) 86.1% (13720) 6.9%
Digit Errors
Old Seg. New Seg. Improv.
Substitutions 2454 2022 17.6%
Insertions 398 343 13.8%
Deletions 2038 361 82.3%
Pair System 1 System 2 Mean A Student’st
rw Ma G, Mo G, Ma-Mo t px10?
6 0 81 17 38 21 43 502 001
6 4 38 16 10 09 2.8 485 0.02
5 2 15 07 04 03 11 467 004
0 4 20 11 04 03 16 458 0.08
7 1 100 51 33 13 6.7 402 023
9 0 46 24 13 12 33 388 0.8
3 0 39 14 18 11 21 383 013
3 4 22 05 09 10 13 372 026
7 0 1.7 08 07 05 1.0 359 0.27
9 1 66 48 22 08 44 287 176
1 7 09 05 15 05 -0.6 285 107
7 2 06 03 14 08 -08 287 142
4 5 04 00 11 07 -0.7 -332 0.89

Figure 11. The impact of the new adaptive segmentor on digit recognition.

The confusion pairs listed as significant degradations are more readily explained. The new segmentor tends
to cut towards the middle of horizontal strokes than towards either of the two ends. When the top stroke of a character
ontheleft touchesa‘l’ ontheright, the split may causethe ‘1’ to look morelikea'7’. According to the bottom table,
theincrease of this type of substitution is significant, and it represents a trade-off with using the new segmentation
method. But keep in mind that with the old segmentor, touching characters were guaranteed to be an error every time.

The results of recognizing uppercase fieldsis shown in Figure 12. The character accuracies are substantially

lower than that for digits, and the overall impact of using the new segmentation method is also diminished. In fact, the
character error istoo high for field level statistics to be interesting, so they are not reported. Nonetheless, the same

17

exact code used to segment digits, did in fact improve the recognition of uppercase characters by 1.7%. Looking at the
second table, it can be seen that both insertions and del etions have been significantly reduced, yet the substitution rate
isrelatively unchanged. These changesin error rates can be explained by analyzing the bottom table. The confusion
pairs contributing to significant improvements are charactersthat contain large horizontal or diagonal strokesthat often
arewritten detached from their character bodies. Noticethe large number of E’sthat are no longer incorrectly classified
as another character. This testifies to the new segmentation method’s ability to compose characters from multiple
pieces. Large detached strokes are no longer treated as separate characters, so the number of insertion errors (as shown
in the middle table) are effectively reduced by 33%.

Upper case Recognition
Old Seg. New Seg. Improv.
Character 10763 10982
A 845% (=) 86.2% (=) 1.7%
ccuracy 12740 12740
UppercaseErrors
Old Seg. New Seg. Improv.
Substitutions 1656 1630 1.6%
Insertions 595 397 33.3%
Deletions 321 128 60.1%

Pair System 1 System 2 Mean A Student’st
r.w L O L O MW t px10?
E A 07 03 01 00 0.6 569 0.03
E P 13 07 01 00 12 569 0.03
T 34 14 07 07 2.7 559 001
F H 09 06 00 00 0.9 493 008
E W 05 03 00 00 0.5 474 011
G T 09 06 02 00 0.7 383 040
I L 05 03 01 00 0.4 379 043
E M 04 03 00 00 0.4 379 043
E H 09 08 01 00 0.8 339 079
Yo 34 17 15 06 19 335 065
Fol 20 13 06 03 14 322 090
E | 45 19 19 17 2.6 316 055
E N 03 03 00 00 0.3 285 1%
zZ W 03 03 00 00 0.3 285 192
Q P 05 03 12 08 07 271 184
IJ 02 03 07 05 -05 274 145
N J 00 00 03 03 -0.3 285 192
Q z 01 00 07 07 -06 285 192
W 08 03 18 09 -1.0 -316 0.88
M T 03 00 20 16 -17 344 074
L 04 00 08 03 -04 379 043
N A 01 00 05 03 -04 -3.79 043
woJ 02 00 12 07 -1.0 474 011
G A 03 00 08 03 -05 474 011
Y 07 07 28 12 2.1 -498 0.02
M A 08 08 33 13 25 506 0.01
W u 04 00 12 03 -0.8 759 0.00

Figure 12. The impact of the new adaptive segmentor on uppercase recognition.

18

On the other hand, there are considerably more confusion pairs contributing to degradationsthan there are for
digits. It isobserved that most of the characters being substituted in the lower portion of the bottom table contain three
or more large strokes such aswith W’s, M’s, and N’s. These characters push the statistical limits of the multiple char-
acter detector, and therefore tend to be unnecessarily split. For example, when alarge ‘W’ is split, the resulting left
piecewill likely be confusablewitha‘U’ or a*V’ and theright piece will be scored as an insertion. Both of these con-
fusion pairs are flagged as significant degradationsin the table. While the greedy splitting of uppercase characters cuts
the deletion errors by 60%, insertion errors are somewhat offset (only 33%) and substitutions remain high. Perhapsthe
greedy splitting of large characters could be compensated for by devel oping a specialized multiple character detector
just for uppercase characters.

L ower case Recognition
Old Seg. New Seg. Improv.
Char acter 9591 9763
75.3% (oo~ 76.6% (- 1.3%
Accuracy (12740) (12740)
Lowercase Errors
Old Seg. New Seg. Improv.

Substitutions 2907 2747 5.5%

Insertions 404 152 62.4%

Deletions 242 230 5.0%

Pair System 1 System 2 Mean A Student’st
row R] L O M-l t px10?
il 283 24 199 27 8.4 7.37 0.00
k1 1.7 08 07 03 1.0 359 038
p | 08 05 03 00 05 335 085
i v 07 05 02 00 05 335 085
i c 06 05 01 00 05 335 085
y | 27 09 16 07 11 315 0.60
g j 06 03 03 00 0.3 285 192
i 03 03 07 03 04 268 152
i g 00 00 03 03 -0.3 285 192
woj 01 00 04 03 -0.3 285 192
e v 01 00 04 03 -03 285 192
iz 00 00 07 06 -0.7 -3.83 0.0

Figure 13. The impact of the new adaptive segmentor on uppercase recognition.

The last set of results shown in Figure 13 are from the lowercase al phabets on the 490 HSF forms. Aswith
uppercase, thereis only amodest improvement in character recognition accuracy of 1.3%. Looking at the second table,
insertion errors are dramatically reduced by 62% while substitutions and del etions show smaller improvements of
about 5%. This reduction in insertions errors can be explained in part by analyzing the confusion pairs in the bottom
table. The pairsthat contribute significantly to theimprovement of the system are substituted characters such as dotted
‘i’ and‘j’ andthe characters‘k’ and 'y’ which at times are written with small disconnected strokes. Thistestifiesto the
new segmentor’s ability to compose charactersfrom small fragmented strokes, such asthe proper locating and merging
of dots to their respective character bodies. The old segmentor did not merge these small pieces and often they were
sufficiently large to be classified as single characters which in turn inflated the number of insertion errors. As can be
seen from the middle table, the new segmentation method is quite effective in minimizing these types of errors.

19

Several observations can be drawn from the lowercase confusion pairs contributing significantly to the deg-
radation of the system when using the new segmentor. Notice that i’s are now confused more frequently with j’s. This
represents natural ambiguity between these two handprinted letters. By preserving the dots on these characters, the
ambiguity has been enhanced. The remaining degradations are harder to explain. For example, it is suspected that the
confusion of i’swith Z's occurs because the classifier has been insufficiently trained on dotted i’s. Remember that the
classifier was not retrained between the old and new systems. When spatially normalized, a dotted ‘i’ will scale more
harshly than one without a dot, especialy if the dot is relatively distant from its body. By retraining the classifier on
more harshly normalized i’s, the frequency of confusing i’s with other charactersis expected to diminish. Looking at
the new segmentation method's errors in the middle table, it again appears that much of the recognition burden lies
with the character classifier.

In regard to efficiency, the new statistically adaptive segmentor was timed on digit and al phabetic fields
extracted from the first 50 HSF formsin SD19. Thirty fields from each form were processed (28 digit fields and 2
alphabetic fields) totaling 184 characters (130 digits, 27 lowercase, and 27 uppercase). In all, 1500 fields accounting
for 9200 characters were segmented and timed on a Sun Microsystems SPARCStation 2 with a80MHz Weitek CPU
upgrade. Ignoring the time to read the images from file and writing out results, and only measuring the time required
to conduct the segmentation, it took 25.4 seconds to segment the 1500 field images, yielding an effective throughput
of 362 chars/sec. Analyzing the execution profile of the segmentor shows at least 50% of the processing time is dedi-
cated to finding connected components. This suggests that the new segmentation method with all of its added capabil-
ities requires not quite twice the time of the old method. These results demonstrate that the new statistically adaptive
segmentor remains reasonably fast.

8. CONCLUSIONS

A new adaptable segmentation method for handprinted characters has been presented that builds upon the
utility of connected components. Results demonstrate that modeling the writing style of handprint with simple statis-
tical features (stroke width and character height) can significantly improve character segmentation. The method capi-
talizes on the knowledge that |etters and numbers are constructed from a predetermined configuration of arelatively
small number of strokes. By adapting to various styles of handprint, fuzzy rules are able to compose characters from
disconnected strokes and fragments, split multiple touching characters, and effectively deal with noise. At the heart of
the segmentor is an efficient, adaptable, and reliable method for detecting multiple touching character that uses aspect
ratio and standard stroke count features that adapt to awriter’s style at the field level. Recognition-based and overseg-
mentation methodsfail to take advantage of these intrinsic qualities of handprinted characters. The impact of the new
adaptable segmentor on character recognition was evaluated by integrating the new method into the NIST public
domain Form-Based Handprint Recognition System and then testing the modified system on a set of 490 Handwriting
Sample Formsfound in NIST Special Database 19. Although no linguistic postprocessing is available for oversegmen-
tation methods when processing numeric fields, modeling the writing style enabled the new segmentor (when com-
pared to a simple component-based segmentor) to improve the overall recognition of handprinted digits by 3.4% and
field level recognition by 6.9%, while effectively reducing deletion errors by 82%. The same program code and set of
parameters improved the recognition of uppercase and lowercase characters by 1.7% and 1.3% respectively. The seg-
mentor maintains arelatively straight-forward and logical process flow avoiding convolutions of encoded exceptions
asiscommon in expert systems. As aresult, the new segmentor operates very efficiently, and arate of 362 characters
per second was achieved. Analyses suggest that much of the burden for improving the performance of the system from
this point relies on improving character classification. The source code for this new adaptable character segmentor is
expected to be included in the next release NIST’s public domain handprint recognition system. This system is avail-
able free of charge on 1SO-9660 CDROM by sending aletter of request to the author.

REFERENCES

[1] G. Nagy, “At the Frontiers of OCR,” Proceedings of the |EEE, vol. 80, no. 7, pp. 1093-1100, July 1992.

[2] R. A. Wilkinson, J. Geist, S. Janet, P. J. Grother, C. J. C. Burges, R. Creecy, B. Hammond, J. J. Hull, N. J. Larsen,
T. P Vogl, and C. L. Wilson, “The First Census Optical Character Recognition System Conference,” Technical
Report NISTIR 4912, National Institute of Standards and Technology, July 1992.

20

[3] J.L.Blue, G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson, “Evaluation of pattern classifiers for fin-
gerprint and OCR applications,” Pattern Recognition, vol. 27, no. 4, pp. 485-501, 1994.

[4] O. M. Omidvar, J. L. Blue, and C. L. Wilson, “Improving Neural Network Performance for Character and Finger-
print Classification by Altering Network Dynamics,” Proceedings of The World Congress on Neural Networks,
July 1995.

[5] C.L.Wilson, J. L. Blue, and O. M. Omidvar, “ The Effect of Training Dynamics on Neural Network Performance,”
Technical Report NISTIR 5696, National Institute of Standards and Technology, August 1995.

[6] M. D. Garrisand S. A. Janet, “ Scoring Package release 1.0,” NIST Special Software 1, vol. SP, National Institute
of Standards and Technology, Oct. 1992.

[7] J. Geigt, R. A. Wilkinson, S. Janet, P. J. Grother, B. Hammond, N. W. Larsen, R. M. Klear, M. J. Matsko, C. J. C.
Burges, R. Creecy, J. J. Hull, T. P. Vogl, C. L. Wilson. The Second Census Optical Character Recognition Systems
Conference. Technical Report NISTIR 5452, Nationa Institute of Standards and Technology, May 1994.

[8] M. D. Garrisand D. L. Dimmick, “Evaluating form designs for optical character recognition,” Technical Report
NISTIR 5364, National Institute of Standards and Technology, Feb. 1994.

[9] A.Gillies, D. Hepp, R. Rovner, M. Whalen, “ Handwritten Text Recognition System for Processing Census Forms,”
Proceedings of the | EEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2335-2340, Octo-
ber 1995.

[10] P. D. Gader, M. Mohamed, and J. H. Chiang, “ Segmentati on-Based Handwritten Work Recognition,” Proceedings
of the USPS Advanced Technology Conference, Washington, DC, 1992.

[11] F. Kimura, M. Shridar, and N. Narasimhamurthi, “Lexicon Directed Segmentation-Recognition Procedure for
Unconstrained Handwritten Words,” Proceedings of the Third International Workshop on Frontiersin Handwriting
Recognition, Buffalo, NY, 1993.

[12] G. Martin, M. Rashid, D. Chapman, and J. Pittman, “Learning to See Where and What: Training a Net to Make
Saccades and Recognize Handwritten Characters,” Advancesin Neural Information Processing Systems5, Morgan
Kaufmann, pp. 441-446, 1993.

[13] J. Keeler and D. E. Rumelhart, “ A Self-Organizing Integrated Segmentation and Recognition Neural Net,”
Advances in Neural Information Processing Systems 4, Morgan Kaufmann, pp. 496-503, 1992.

[14] O. Matan, C. J. C. Burges, Y. LeCun and J. S. Denker, “Multi-Digit Recognition Using a Space Displacement
Neural Network,” Advancesin Neural Information Processing Systems 4, Morgan Kaufmann, pp. 488-495, 1992.

[15] J. Rocha, B. Sakoda, J. Zhou, and T. Pavlidis, “Deferred Interpretation of Grayscale Saddle Features for Recog-
nition of Touching and Broken Characters,” Proceedings of Document Recognition, SPIE, vol. 2181, San Jose, CA,
pp. 342-350, February 1994.

[16] V. Govindargju and S. N. Srihari, “ System for Reading Handwritten Documents,” Proceedings of the |EEE Inter-
national Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2347-2352, October 1995.

[17] S. Madhvanath, “Halistic Lexicon Reduction for Handwritten Work Recognition,” Proceedings of Document
Recognition |11, SPIE, vol. 2660, San Jose, CA, February 1996.

[18] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C. L. Wilson,
“NIST form-based handprint recognition system,” Technical Report NISTIR 5469, Nationa Institute of Standards
and Technology, July 1994.

[19] D. F. Specht, “Probabilistic Neural Networks,” Neural Networks, Vol. 3(1), pp 109-119, 1990.

[20] P. J. Grother, “Handprinted Forms and Character Database, NI ST Special Database 19,” Technical Report and
CD-ROM, National Institute of Standards and Technology, March 1995.

[21] G. W. Snedecor and W. G. Cochran, Satistical Methods, 8th Edition, pp. 53-57, lowa State University Press,
Ames lowa, 1989.

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, The Art of Scientific Com-
puting (FORTRAN Version), pp. 466-467, Cambridge University Press, Cambridge, 1989.

21

APPENDIX A. FUZZY RULESAND ADAPTABLE OBJECTS

A.llsNoise?
If (c.a< (0.5 x ssa) then Noise

where structure member () isthe pixel areaof the component (c) and ssaisthe pixel areaof astandard stroke
width.

A.21sDot?
If (cw < (2% esw)) && (c.h < (3 x esw)) then Dot
where structure member (w) is the pixel width of the component (c) and esw is the estimated stroke width.

Thisalowsasmall diagonal stroke to be considered adot. Handprinted dots are seldom square, but they are typically
asmall tick-mark.

A.3 Horizontally Overlapping M erge Candidates
If (clx1<=c2.x1&& c2.x1<=clx2) | (c2x1l<=clxl&& cl.xl <=c2.x2) then Horizontal Overlap

where structure members (x1) and (x2) are the left and right edges of the component in its parent image. If
exactly one component is found to overlap with the piece being tested, then it is selected as a merge candidate. If
exactly two components overlap, then the component to the left is chosen as the merge candidate with the following
bias

If (right overlap distance > (1.6 x left overlap distance)) then Pick Right else Pick Left

whereleft and right i s determined according to each component’sorigin position inits parentimage. Thisbias
wasimposed because it was observed that, more often than not, a character piece belonged with its overlapping neigh-
bor on theleft than on the right. This probably has to do with the fact that English iswritten left-to-right. If per chance

more than two component are found to overlap the piece, then the component with maximum overlap is selected asthe
merge candidate.

A.4 Merge Candidates Compatible?

If (both very tall & & both very closein height) || (both tall & & both horizontally far apart)
then Not Compatible

where the compatibility tests for components (c1) and (c2) are

very tall : (c.h = (0.6 x ech))
both very closein height : ((min(cl.h, c2.h) / max(cl1.h, c2.h)) > 0.9)
tall : (c.h> (0.3 x ech))

both horizontally far apart : (abs(cl.cx - c2.cx) = (0.3 x ech))

and the structure member (cx) is the x-coordinate for the center of the component and ech is the estimated
character height. These test are performed to see if the candidate components are too big to be merged.

22

A.51sInside?
If (c1.x1>c2.x1) && (cl.x2<c2x2) && (clyl>c2yl) && (cl.y2< c2.y2) then cl Inside c2

where structure members (y1) and (y2) are the top and bottom edges of the component in its parent image.
Thisconditional statement teststo seeif component (c1) isfully inside component (c2). In other words, isthefirst com-
ponent’s bounding box completely contained within the second’s bounding box. As ageneral rule, if one component
is completely inside another, then they should be merged together.

A6lIsTopofiorj?
If (cl.y2 < c2.y1) then c1 Above c2

determinesif component (c1) is above component (c2). Just because a component has been determined to be
dot-sized, does not mean that it is actually adot. It may be a character fragment or noise. To be adot, it must be above
its neighbor. Here, left and right neighbors are determined according to their center x-coordinates.

If (dot to neighbor-line distance < (2 x esw)) then Dot is In-Line

teststo seeif the dot-sized component is sufficiently in-line with its neighbor. A lineis computed connecting
the left-most black pixel in the bottom row of the component’s image to the left-most black pixel in the top row. A
distance is then computed between the center point of the dot to the perpendicular intersection of the line projecting
from it neighbor. Thisfacilitates the matching of dotsto characterssuchas‘i’ and ‘j’ that are written at aslant asillus-
trated in Figure 14. If the component qualifies as adot for both its left and right neighbors, then the neighbor whose
top is closer to the dot is selected. Where the distance from neighbor (n) to dot (d) is computed between the top point
of n(n.cx, n.yl) and the center point of d (d.cx, d.cy).

Figure 14. lllustration of the dot to neighbor-line distance (d).

23

A.71sTop of 5?
If (top is shorter & & not too far right & & not too far left & & not too far down & & dash-like) then Top of 5

where the tests for top component candidate (t) with left neighbor component (n) are

shorter : (th<n.h)

too far right : ((tx1 - t.x2) <min((t.w x 0.5), (n.w x 0.5)))
too far left : ((n.x1 - t.x1) < min((t.w x 0.5), (n.w x 0.5)))
too far down: ((t. y2- nyl) < (nw x 0.5))

dash-like : ((t.p/ esw) < (t.I + esw))

and the structure member (p) is the black pixel count of the component and (1) is the diagonal length of the
component. Thetop horizontal stroke of a5 isfrequently written so that it is detached from its body. This stroke is
dash-like, meaning the component is comprised of asingle horizontal stroke that spans the entire width of the image.
The height of the stroke should be uniformly close to the estimated stroke width, so dividing the black pixel count in
the component by the estimate stroke width should be very close to the diagonal length of the component (at |east
within a stroke width).

A.8 Caused Fragments?

If (original dominant blob count # (left dominant blob count + right dominant blob count - 1))
then Fragments Exist

where dominant implies a connected component (blob) larger than noise or dots. All the dominant blobsin
theoriginal component image are counted, asare all the dominant blobsin theleft and right pieces. These arethe pieces
resulting after asplitting of the original image. If the segmentation is satisfactory, then the split should divide only one
of the dominant blobsin the origina image. Therefore, the number of dominant blobs resulting after the split should
be one greater than those in the original component image.

A.9 Estimated Character Pair

ecp = (1.5 x maximum single character width)

where the maximum single character width is computed by evaluating successive vertical cuts of the compo-
nent left-to-right until the resulting feature point of theleft piece exceeds (goes above) the detector line. Thisrepresents
thelargest single character possible based on the statistics of the handwriting. The resulting x-position is multiplied by

the factor of 1.5 accounting for the likelihood that two charactersin arow will be less than twice the maximum width
for asingle character.

A.10 Small Punctuation

If (c.p<(0.5x% ssa)) && (not one-like) then Small Punctuation

determinesif acomponent isthe size of asmall punctuation mark, and the test for one-like is

If ((ch>(0.4x ech)) && ((c.p/ esw) < c.l) then One-Like

If acomponent isone-like, then it will in general not betoo short, and it will be comprised of asingle vertical
stroke that spans the entire height of the image. The width of the stroke should be uniformly close to the estimated

stroke width, so dividing the black pixel count in the component by the estimated stroke width should be very closeto
the diagonal length of the component.

24

