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Abstract

In this paper. analysis of a simple model of recurrent network dynamics is used to gain
qualitative insights into the training dynamics of multilaver perceptrons (MLDPs). These
insights allow the training methods used for MLPs to be modified to significantly improve
network performance. In previous work [Blue et al.. 1994]. the Probabilistic Neural Network
(PNXN) [Specht. 1990]. was shown to provide better zero-reject error performance on character
and fingerpriut classification problems than Radial Basis Funetion and MLP-hased neural net-

work wethods. We will show that performance equal to or better than PNN can be achieved



with a single three-laver MLP by making fundamental changes in the network optimization
strategy. Thoese changes are; 1) Neuron activation functions are used wlich reduce the proba-
bility of singular Jacobiaus: 2) Successive regularization is used to constrain the volume of the
minimized weight space: 3) Boltzmanu pruning [Omidvar and Wilson. 1993] is used to con-
strain the dimension of the weight space: and 4) Prior class probabilities are used to normalize
all error calculations so that statistically significant samples of rare but important classes cau
be jncluded without distorting the error surface. All four of these chaunges are made in the
inner loop of a conjugate gradient optimization iteration [Blue and Grother. 1992] and are
intendod to simplify the training dynamics of the optimization. On handprinted digits and
fingerprint classification problems these modifications improve error- reject performance by
factors between 2 and 4 and reduce network size by 0% to 60%.

Keywords: Neurodynamics. Sucessive regularization. Structural stability. Optical char-

acter recognition. Fingerprints. Optimization. Boltzmaun pruning. Sine activation.

1 Introduction

One of the basic difficulties in recognizing images using pattern recoguition methods is that
the set of patterns of interest is a small subset of all the possible patterus that can be repre-
sented in the image space. As an example, if characters in au OCR system are represented
by 32 by 32 pixel binary hmages only a small fraction of the 21921 possible images are char-
acters. If the features used to represent tliese cliaracters form a complete representation of
the image down to some specified resolution. such as a discrete cosine transforim. the feature
set is a dense compact vector space representation of the image. The image training set is

a fractal object in this feature space. This statement of the recognition problem poses it as



the inverse of the fractal image compression problem [Barnsley and Hurd. 1993] and shows

that the neural network recoguition problemn for images retains the “geomretry of nature”
[AMandelbrot. 1982] seen in these images. This paper explores methods which allow neural
networks to acenrately classify immage based objects which are sampled from fractal objects
in the compact feature space wsed for recognition.

In previons work on character and fingerprint classification [Blue et al.. 1994]. PNXN net-
works were sliown to be superior to MLP networks in classification accuracy. In later work.
[Wilson et al.. 1994]. combinations of PNN and MLP networks were shown to be equal to
PNN in aceuracy and to have superior reject-accuracy performaunce. These results were
achieved by using 45 PNN networks to make binary decisions between digit pairs and com-
bining, the 45 outputs with a single MLP. This procedure is much more expensive than
conventional MLD training of a single network and uses much more wmemory space.

When the results of the binary decision network [Wilson et al.. 1994] were analyzed for
digit recognition it was found that the feature space used in the recoguition process had a
topological structure which locally had an intrinsic dimension [Fukunaga. 1990] of 10.5 but
global Karhunen-Loeve (IK-Lj transformn dimeusion of approximately 100. The anmber of
features needed to make binary decisions machines discriminate between digits was larger
than the intrinsic dimensionality. For binary decision machines. tvpical feature set sizes
were 20 to 28 hut never approaclhed the number of features required by the global problem
for MLPs. 48 to 52, Similar tests showed a comparable structure in the fingerprint feature
data. This explains the difficulty of these problems: the MLDP is heing used to approximate
a complex fractal object. the set of decision surfaces. which has a typical local dimeusion of
10 embedded in a space of dimension 100. Since the domain of each prototype in the PNN

network is local. PNXN can more casily approximate surfaces with this topology. Figure 1



shows a typical PNN decision surface and figure 2 shows a tyvpical AILP decision surface.
See figure 8 of [Blue et al.. 1994] for additional examples of this tyvpe of local structure in
PXXN-based recognition.

The local nature of PNXN decision surfaces also explains why MLPs have hetter error-
reject performance. In [Hansen ot al., 1995]. it was shown that the error-reject curve is most
rapidly decreasing when binary cloices are made between classes. The decision surfaces in
figure 1 are such that. as the radius of a test region expands. multiple class regions are
intersected. This will decrease the slope of the rejoct-accuracy curve. Simpler class decision
surfaces result in better reject-accuracy performnance. so that the shape of the reject curve
can be used to assess the complexity of decision surfaces,

Neural networks have been proven to be a general nonlinear function approximator
[Hartman et al.. 1990] so. in theory, they should be capable of approximating complex deci-
siom surfaces. An interesting. if somewhat simplified. conjecture is that since we are tryving
to learn a complex surface the complexity of the training process might provide some in-
sight into the learning problem. To obtain these insights we study the dynamics of a simple
weakly nonlinear recurrent network model. The model contains hoth linear and second-order
rate-dependent terms which couple all of the nodal voltages. This model is solved in closed
form but still shows several iuteresting ways in which the dynamics of feedback signals will
influence network behavior.

The MLYT networks used in practical recognition problems are too complex to he subject
to direct analysis but the guantitative insights provided by the simple model can be used to
develop better training methods.

In this paper we will show that four modifications to the conjugate gradient method dis-

cussed in [Blue and Grother. 1992] will allow a three-layer MLP to approximate the required



decision surface with zero-reject error similar to PNXN and k-nearest-neighbor (KNX) meth-
ods. and error-reject performance boetter than the best binary decision method discussed in
[Wilson et al.. 1994]. indicating that the resulting decision surfaces are both the most accu-
rate and simplest approximations to the character and fingerprint classification problem vet
found.

In section 2 a simple dynamical neural network model is presented wlich is complex
enough to show many interesting dynawmic effects but simple enongh to be solved in closed
form. In seetion 3 the Boltzmann pruning method is discussed. In section 4 the relationship
bhetween structural stability and optimization is used to develop qualitative insights into
network training. In section 5 we will discuss wmethiods which the network dynaties suggest
for changes in training. In section 6 we will discuss the changes in training method wsed to
improve network accuracy while simplifving network structure. In section 7 we will discuss

the results of these changes on classification of handprinted digits and fingerprints.

2 A Simple Dynamical Network Model

To understand the dynamics behind training. it is helpful to analyze a neural network model
that has feedback between the nodes. as the AILP has during training. hut is simple enough
to he solved in closed form.

Cousider a unmber of neuron nodes with nodal voltages. U. which can be written either

in matrix form:
wj (1) -+ 0

0 O  u,(f)



in detail in the Appendix. See [Hirsch and Smale. 1974] page 99 or [Perko. 1991] page 60
for similar lncar problems which were used as clues to the proposed solution. The solution

derived and cliecked in this way is:

U = (I - [F exp( [Gdt)dt)™! exp( [Gdt}) U(0). (7)

Why can't we jiust integrate equation (5) and use the answer for our model? First. for »
nodes there are 252 functions which must be evaluated and integrated to fully expand the
solution. Second. equation (7) is a generalization of the dynamic system which generates the
Lorentz attractor [Guckenheimer and Holmes. 1983]. which is the source of the “butterfly
wing effect™ iu weather forecasting. This system has no attainable stable state and has very
high sensitivity to initial conditions. The theory of the solution to systems of this kinds is
treated in [Hirscl et al.. 1977, Guekenheimer and Holmes. 1983. Perko. 1991]. The simplified
answer is that small changes in the values of the initial conditions or in the integration of the
coofficient matrices will result in large changes in the functional forin of equation {6) when
the matrix exponential and inverse are expanded.

For valnes F and G that are locally statiowarv. as during a training iteration. and
[Guckenheimer and Holmes. 1983] p. 127, states that the flow of solution to nonlinear sys-
temw can be divided into three parts hased on the ecigenvalue spectrum of the Jacobian of the
right hand side of the equation. These three parts arve the stable manifold associated with
eigenvalues with negative real part. the unstable manifold associated with eigenvalues with
positive real part. and the center mauifold associated with eigenvalues with zero real part.
The stable and unstable manifolds are unique but the center manifold need not he. The

center manifold is tangent to the stable and unstable manifolds. If any of the eigeuvalues
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in equation (15) has zero real part. the center manifold theorem must be used to transform
equation (H) into stable. center. and unstable manifold parts. and the solution expansion of
equation (7) must be revised accordingly [Carr. 1981]. In nuwerical calenlations. rounding
error and lack of precision in the input data can cause some solution components of the
stable and wustable solutions to approach the center manifold within the rounding error of
the caleulation.

The complexity of even small models. » = 3 with 9 rerms in the primary matrix. each of
which has 729 terns similar in form to equation (A-11) (see Appendix). exceeds the level of
complexity which can he locally analvzed by direct linearization about equilibrimn poiuts to
study weight stability during training. We could return to equation (5) and build a numerical
model bur this would canse all of the noise present in the training data to be present in a
system of equations which would couple this noise directly to the sensitive initial conditions
and result in various numerical significance problems. The resulting terms are multiplied
to form »® terms which are summed to form the solution. The noise seen in the resulting
solution is not a numerical artifact hut an inherent part of the system.

The situation we face in analyzing even this over-simplified model is one in which the
mechanics of the process are clear and are soluble in the closed form given by equation (A-
7} {A-10). but no direct comparison with real training data is feasible because the expanded

nonlinearsolution is too complex to allow the components to be individually analyzed.

3 Boltzmann Pruning

Boltzinann methods have been used as a statistical method for combinatorial optimization

and for the design of learning algorithms [Ackley et al.. 1985. Alt. 1962]. This method can



be used in conjunction with a supervised learning method ro dynamically reduce network
size. The strategy used in this research is to remove the weights using Boltzinann criteria
during the training process. Information content is used as a weasure of network complexity
for evaluation of the resulting network.

The four competing mechanisms are involved when the Boltzinann method is used in
conjunction with SCG optimization. First. the Boltzmaun method is self-organizing while
the SCG method is a supervised learning method. Secound. the Boltzinann method seeks
to minimize the the nnmber of weights while maiutalning the information content of the
network. The SCG method seeks to winimize an error fuuction over the training set. Third.
the important controlling parameter for the Boltzinann metlhod is the information in the
network as the annealing process approaches equilibrimm, Tle controlling informational
parameter for the SCG method is the information provided in the initial weights. Fourth.
the algorithmic control in the Boltzmann method is the temperature during the iteration,
Tlhe equivalent controlling parameter for the SCG method is the stopping criteria.

The SCG method is used as a starting network for the Boltzinann weight pruning al-
gorithm. The initial network is a fullv connected network. The pruning was carried out
by selecting a normalized temperature. T, and removing weights based on a probability of

removal:

P, = exp(—u?/T) (8)

The values of P; are compared to a set of uniformly distributed random numbers on the
interval [(0. 1]. If the probability P, is greater than the random number then the weight is set

to zero. Tle process is carried out for each iteration of the SCG optimization process and is



dynamic. If a weight is removed it may subsequently be restored by the SCG algoritlhun: the
restored weight may survive if it has sufficient magnitude in subsequent iterations.

The dynamie effect of this is shown in figure 3 for five temperatures hetween (0.1 and
0.5 at 0.1 intervals, starting from a small fully converged and fully connected network (32-
23-10). As the size of the temperature change increases the number of weights removed
initially increases, but the effect of laver iterations of optimization and pruning is to decrease
the rate at which weights are removed. The number of weights in the initial network was
1336. including hias weights, At all temperatures the initial iterations are very effective in
redncing the weights. The decrease in the rate of pruning is the result of a critical phenomena
characterized by a critical temperature. T, at which the new information added by the SCG
training balances the information removed by pruning. At this critical point networks trained
on small training sets will achieve identical testing and training accuracy even when tested

on large test sets,

4 Dynamics of Optimization and Structural Sta-
» L

bility

The dyuamics of nenral network training effects the network on two time scales. The time
scales are associated with the calculation of feedback signals within an iteration aud a longer
time scale associated with the sequence of optimization iterations. The dynamics can be
used to analvze the sequence of dynamie svstems generated as the optimization iteration
proceeds. In any given iteration the structure of the network is fixed and the dyvnamics

involves the application of the feature vectors as driving inputs. Since the feature vectors

provide a forcing function this is uot an equilibrium but a problem where the training data
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drives the network. with error correcting feedback. to a steady state. This is the short time
scale.

The second time scale is the time scale of the optimization iteration process. At each
time step of the ireration the structure of the network is changed by weight updates and
Boltzmann pruning. On this time scale structural stability is dominant. The goal of the
iteration process is to approach a steady stare where the effect of network changes minimizes
the feedback error over the training set and thus a steady state Is acldeved.

The link between the study of time dependent network performance and nonlinear net-
work optimization is provided by the analysis of structural stability. The mathematical
correspondence between the structural stability analysis and the linearization used in opti-
mization is a result of hoth methods being based on a Taylor series expansion of the nonlinear
system about the point of interest, This expansion vields a local linear approximation to the

nonlincar system. The usual analysis of structural stability [Perko. 1991] for:

U
'd—f = f(U.W) (9)

is performed by a local analyvsis of the eigenspectrum of D f(Ug. Wy) at the point Uy, Wy,
The optimization by gradient-based methods of the noulinear network is performed by lin-

earization of the nonlinear systein:

d(U — Uy)

— = fIU W)~ fiU,. W) (10)
where the Uy are a set of training exawmples. The expansion of terms in the right hand
side of (9) is used to compute the dvnamic change in the error over the training set. The

optimization is performed over the sum of all training examples nsing the second order term in
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the expansion. the Hessian matrix. because near the desired minimuin point the first order.
Jacobian. term approaches zero. Similar additional terms are also required for nonlinear
stability analysis when the Jacobian is too small. Botl the analysis of local dynamic stability
and the analysis of structural stability are based on the expansion of the svstem of equations
in a Taylor series. When dynamic stability is involved the series is used to provide linear
approximations to the right hand side of equations such as (5). When structural stability is
involved the solution is expaunded in terms of the eritical parameters. For equation (7) this
requires expansion of (7) in terms of the F and G matrix elements. Details of this type of
analysis are given in [Guckenheimer and Holmes, 1983]. chapter 5. This vields insights wlich
can be applied to the structural stability of the learning process.

We have found that three of the changes in training dyvunamics are directly related to in-
sights obtained from dynamics. Regularization has heen shown to act as a stnoother when the
nenral network training process is treated as au approximation problem [Girosi et al.. 1995].
We can qualitatively evaluate tle effect of a quadratic regularization term on the dynamics
since such a term acts to counstrain the optimization to a reglon near the origin, In our
highly fractal feature spaces [Wilson et al.. 1994]. the smaller the dyuamic volume the more
effective the features will be in spauning the training space. as is demounstrated from the ap-
proximation point of view in [Giresi et al.. 1993]. The local feature dimension of features is
about 11, The large networks nsed here have 96 K-L features. The undersampling increases
roughly as the power of the difference in the global and the local dimension. For the OCR
problem this is 96 — 11 so that the undersampling increases as the 85th power of feature
space radius. This indicates that additional training examples which expand the dynamic
volume hut do not alter the local or global dimensionality of the feature set will not produce

any significant improvement in network performance.
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The second insight we can obtain from dyuamics is that as we expand the Jacobian of
{10}). any nonlinear terms which are very small will vanisl when compared to the noise in
real training data. The caleulation of the K-L trausform involves. for the OCR problem.
calculation of a mean image value for every location in the image. Siuce the values used to
calculate the mean are binary. the mean for an X example training set can ouly take on NV
values aund is only kuown to log, N bits. Even with perfect training data the K-L features
have this finite precision. Immperfect or ambiguous characters add additional uncertainty that
results in uncertainty throughout the dynamic calculation. Small signal changes in network
dynamics caused by training data noise are indistinguishable from small changes caused by
real but small dyvuamic terms. For AMLDPs with sigmoidal activation functions. these small
teris occur for both large positive and large negative values of the sum of the weighted
inputs. For the data used here the IK-L trausform normalizes the input signals to a uniform
dynamic range: the newral network is not needed to perform tlis task., This means that very
large or very small signals to the nodes are usually the result of very large or very small
weight values, Using an alternative form of the activation fuuction, a sine function as in
(12). solves this problewr by providing hidden nodal signals which have significant even or
odd order derivatives for all signals.

The third insight provided by dyunamic stability considerations involves the dynamics of
those small weights near tle origin in weight space. In weight space. the stability analysis
of these variables will involve small real eigenvalues which will be dominated hy weight
oscillations. The dvnamics of these weights are associated with dynawmic processes that have
small real parts and are therefore near the ceuter manifold. Since the training data las a
siguificant noise component for characters that are nearly well formed. these characters are

readable but have numerouns obscuring edge pixels. For example. the dvuamics near the
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center manifold is in part the result of an attempt by the optimization process to make fine
character distinctions on large signals well above the noise level and in part the result of
small weights interacting with the noise. Since these two effects are ndistingnishable and
create very complex dyuamics. it is hetter to set the weights involved to zero aud force these
dyunainic processes out of the network.

The three ideas combine to vield a training method which is smoothed on the exterior.
large weight. region by regularization. At the same time the weights are smoothed in the
interior. small weight. region by Boltzinann pruning. The combination of these two methods
greatly restricts the active region of weight space. Weight removal simplifies the problem
by reducing the number of degrees of freedom. Restricting the range of weight values to
a spherical shell near hut exeluding the origin matches the significance of the wetwork to
the significance of the training data. In the region hetween constraints, dyiamic stability is
enhanced by choosing activation functions with nonzero even or odd derivatives through out
the space.

After this extended discussion. one may wouder if this type of recoguition problem is
unique to OCR aud fingerprint problems. The authors would argue that it is not. The
characters use in this work are normalized to 32 by 32 binary images with 1024 pixels each.
Cliaracters form a very small subset of all 21U the possible 32 by 32 images. The point
of regularization is to confiue the traiing dyvnamics to a region of weight space where the
images are near the subset of images which are meaningful characters. At the otlier extreme.
we argue that the subset of character images is not deuse in feature space and that many
noisy images (that are near character images but are not easily recognizable characters) are
found in large training sets. The complex but inconclusive dynawmics associated with the

noisy images are pruncd away by the Boltzmann process. These properties are not unigue
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to character recognition. They are even more pronouunced for fingerprints hecause the set of
wmeaningful images is a much smaller fraction of all 512 by 480 8-hit gray images. This should
not be surprising since patterns generated or identified by an image algebra [Grenander. 1993]
are a small subset of the patterns which could be generated with arbitrary geunerators and

links in any image algebra.

5 Neurodynamics of Learning

The desigu aund implementation of most neural network architectures is based on an analysis
of the size and content of the network training data. The direct form of analysis is suitable
when the size of the training data is small. the class distribution is uniform. and the local
and global dimension of the feature set are approximately equal. In fingerprint and character
classification applications. the training sets are large aud the local and global ranks of the
feature data are very different. The complex structure of the traiuing data requires that large
networks. 107 weiglits and 10? nodes. be used. If the training process is treated as a dynamical
system with the weights as the independent variables this would result in a Jacobian with
10% terms. Previous pruning studies have shown that these networks contain at least 30%
redundant weights [Owmidvar and Wilson. 1993] and have coufirmed that no more than 12
bits of these weights are significant. This makes direct analysis of the Jacobian numerically
intractahle.

To avoid the difficalties in analvzing this type of complex low acenracy system we looked
directly at the qualitative properties expected in systems of this kind [Carr. 1981, Hirsch and Smale. 1974,
Guckenheimer and Holmes. 1983] and altered the training procedure to take the expected

dynamic hehavior into acconnt. This analysis used the dyvnamical systems approach to pro-



vide us with (ualitative information about the plase portrait of the syvstem during train-
ing rather than a statistical representation of the weight space of the ALP network. For
this approach we considered the training process as an n-dimensional dynamical system
[Colien and Grossberg. 1983] where for a given neuron:

du, i,

+f3(”_j)+L (11)

dr, R

where 7; is the decay time for the unit and f, is the input-output transfer fuuction, a sinusoidal

function driven through the w,, interconnection weights.

f_j(“_}) =

Il | =t

+ %sin(Zu*.JuJ). (12)
- J

and I, is the initial input. We effectively reduce the dimension of the problem using the con-
ter mauifold approach [Sijhrand. 1985]. This approach is similar to the Lyapunov-Schinidt
techuique [Chow and Hale. 1982] which reduces the dimension of the system from » to the
dimension of the center mauifold. which in numerical caleulations is equal ro the nuber of
calculable eigenvalues. Since the number of weights in the typical network is approxmately
107 and the number of bits jn the feature data is approximately 12, direct nnumerical methods
for caleulation of the eigenvalues fromn the linearized dynamics are very poorly couditioned.
The center manifold method has the advantage over the Lyapuiov method in that the re-
duced problem still is a dynamical svstem with the same dynamic properties as the original
system.  This reduction in dimension is implemented using the Boltzmann machine for a
scaled conjugate gradient (SCG) learning algorithin.

The reduced problem after application of the center manifold method is still an SCG

system. The SCG requires that at any given point. the performance of the dynamical system
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be assessable through a certain error function. E. Then the system parammeters are itera-
tively adjusted in the opposite direction of error. The reduction on the size of error can be

approximated as follows:

dwy; : JF
dr ]Du'”‘

(13)

where 3 is the learning rate or time constant for parameter dynamics. uy, arce the weights.
aud £ is the error.

This approach. unlike most training methods. can reduce the error independent of the
coutent of the particular sample distribution and the size of training data. This results in a
saving in rraining time and improvement in performance without analysis of those network

components which make minimal contributions to the learuing process,

6 Optimization Constraints

The level of improvement i network performance which is achieved here requires four imod-
ifications in the optimization. each of which must be incorporated in the weight and error
calculations of the scaled conjugate iteration [Blue and Grother. 1992]. Each of these con-
straints alters the dvnamics of the training process in a way that simplifies the form of the
decision surfaces. which globally have a dimension of about 100 with a local dimensionality
of 10.5. TUnderstanding the topology of this space is useful for developing improved training
uethods based on dynamics.

Tle four modifications all modify the error surface being optimized by changing the shape
or dimension of the error function. All of the modifications take place in the inner loop of

thie optimization.
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6.1 Regularization

Regularization decreases the volnme of weight space used in the optimization process. This
is achieved by adding an error term which is proportional to the sun of the squares of the
welghts, The effect s to create a parabolic term in the error function that is centered on
the origin. This reduces the average magnitude of the weights, A sclieduled sequence of
regularization values is nsed which starts with high regularization and decreases nutil no
further change in the form of the error-reject curve is detected. Counstraining the network
weights causes a simplification in network strcture by reducing the nmuber of hits in the

weights and therefore the amount of information contained in the network.

6.2 Sine Activation

The usual form for the activation function for neural networks is a sigmoidal or logistic
function. This function has small changes in all derivatives for large or small value of the
inpnt signal. This results in conditious where the Jacobian of the dyvuamical system being
optimized is effectively singular [Saarinen et al.. 1993]. This results in large numbers of near
zoro eigenvalues for the optimization process and forces the optimization to be dowinated by
center manifold dynamics [Carr. 1981. Sijbrand. 19851, Changing the activation function to a
sinusoidal funetion creates a significant change in the dynamics of the training since even and
odd lhigher derivatives of the dyvnamical system are never both small. This improves network
training dyuamics and results in better reject-accuracy performaunce and simpler networks

[Blue. |.
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6.3 Boltzmann Pruning

Boltzmann pruning has rwo effects on the training process. First. iv takes small dynamic
compounents which have small real eigenvalues. and are therefore near the ceuter manifold.
and places them ou the center manifold. This simplifies training dvnamics by reducing weight
space dimension. Second. Boltzmaun pruning keeps the information content of the weights
bounded at values which are equal to or less than the information content of the feature
set. For example. when K-L features are derived from binary images. the siguificance of the
feature is no greater than the nmmber of siguificant bits in the mean image value used in the
calculation. log, N bits for N training examples. Boltzmanu pruning forces this constraint
on the weights [Omidvar and Wilson, 1993].

In [Omidvar and Wilson. 1993]. when Boltzinann pruning was used. detailed annealing
schedules were used to insure couvergence of the training process. When regularization is
combined with pruning. the need for annealing schedules is removed and pruning can proceed
concurrently with the regularization process. This reduces the cost of prining to a small

computational cost associated with the weight removal,

6.4 Class Based Error Weights

In problems with widely variant prior class probabilities, such as fingerprint classification. it
may be necessary to provide large samples of rare classes so that class statistics are accurately
represented. but it is inportant ro train the classifier with the correct prior class probabhilities.
This is discussed in chapter 7 of [Kohonen. 1988]. In the conjugate gradient method used
Liere. hoth the network errors and error signals used in the control of the iteration must he

caleulated using class weights thus:
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S Class Weights x Raw Error

¥ Class Weights (14)

Error=

This insures that the optimization is performed in a way that produces the best solution to
the glohal problem but allows reasonable sawnpling of less comimon classes. In the digit classi-
fication used liere, uniformly distributed classes were available hut in a sample of alphabetic

text the classes are not uniformly distributed and class based error weights shonld be used.

7 Results

The training method was nsed on samples of handprinted digits and fiugerprints. The digit
sample contained 7480 training and 23140 testing exawmples equally distributed for classes =0
to 9", The fingerprint data contained 2000 training and 2000 testing samples from NIST
database SD4 [Watson and Wilson. 1992]. These training and test samples are identical to
those used in [Blue et al.. 1994]. The MLPs used here were three-layer networks with 96-96-
10 structure and 10282 weights for the OCR problem. and 112-112-5 structure and 13221
weights for fingerprints.

Training was carried out by selecting a Boltzinaun temperature and successively training
the network at decreasing values of the regularization factor. Ry, Typically the first trajuing
sequence used By = 2.0. After each training pass Ry was reduced in a 2. 1. 0.5 sequence
until the regularization had no significant effect on the reject-error performance of the tost
sample. As the regularization is decreased the number of weights in the network increases,
as does the size of the average weight, The smallest net will occur at Ligh temperature and
regularization and the largest at low temperature and regularization. The goal of the study

is to find the smallest network that gives the steepest fall in error for a given reject Jevel.
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7.1 Distribution of Weights

We have developed varions methods for evaluation of network dynamies based ou the statisti-
cal properties of the weights., This is necessary botll becanse the nmnber of computationally
identically fully connected nets is very large. 96! and 112! and hecause there are potentially
more than 10.000 interconnecting weights. To simplify the discussion we will show the weight

analysis for the OCR problem only. Identical arguments would apply to the fingerprint case.

7.1.1 Network Topology

Figure 3 and 4 show the distribution of interconnecting weiglts for a OCR network trained
at a temperature of T = 0.001 at high and low regularization. Ry = 2.0 and Ry = 0.1.
The original nerwork had 10282 weights, the Ry = 2.0 network has 2365 weights (23%). and
the Ry = 0.1 network has 3139 weights (31%). The vertical axis in figures 3 and 4 is the
inpnt node number, Since K-L features are used. the input nodes with the smallest numbers
Lhave the greatest statistical significance. These nodes are highly connected: the degree of
connectively decreases with increasing node number and decreasing statistical significance.
The hidden layer nodes are always fully conuneered to the output nodes in these experiments.
This connectivity is not forced hut the pruning process does not select these weights for
removal.

The siguificant topalogical process seen in the interconnection pattern in going from high
to low regularization is the increase in counectivity of Ligh number IC-L features. The 9Gth
input node (top line of figure 3) is not connected at Ry = 2.0 and has two conuections at
Ry = 0.1 (top line of figure 4). The number of counections to input node 30is 23 at By = 2.0
and increases to 37 at Ry = 0.1. The number of non-zero of weights increases by 35% and

the number of connections to input node 30 increases by 61%. Nodes higher than number 30
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get a disproportionate part of the increased conuectivity.

7.1.2 Weight Distribution

In addition to altering the topology of the network. the training process changes the distribn-
tion of the weights., The distribution of weight on intervals of 0.05 is showu in figures 5 aud
G for temperatures of 10=* and 10~°. The change in the magnitude of the weights is more
sensitive to regularization than to temperature. While the number of weights changes by a
factor of 2.76. 8653 to 3134. the distribution peak changes by a factor of 6.0 from 3369 to
565. Reducing the regularization doubles the mean weight size at both tewperatures. At the
lower tewnperature. regularization created large nmnbers of small weights on low order K-L
features, Tlese weights are no more effective in the classification process than the reduced

numbers of larger weights produced at higher tempoerature.

7.1.3 Reject Error Performance

Figures 7 and 8 show the reject error performance of ten different networks at two tem-
peratures. T = 107% and and T = 107" and at five values of Ry. This study involved eight
temperatures and an average of six regularization values. 48 networks. for QCR. These values
are sufficient to illustrate the process. The significant factor here is that the best error-reject
performances for the two temperatures are very similar. Both Ry = 0.1 networks reach 0.1%
orror after rejecting about 17% of the characters despite having different topology. mean
weight sizes different hy a factor of 2.17. and weight counts different by a factor of 2.76.
Since the total information content of the network is proportional to the log hase 2 of the
product of the weight size and the number of weights. the information content decreases by

ouly 23%. which is fully compensated for by improved network topology.
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7.2 Digit Recognition

Figure 9 compares the results of digit recognition using MLP networks witlh sinusoidal and
sigmoidal activation functions and a PNN network. Both MLPs were trained using successive
regularization and Boltzmann pruning. The zero reject error rates are 3.34% for the sigmoidal
AMLP. 2.54% for the PNX. and 2.45% for the sinusoidal MLP. The sinusoidal result is the hest
vet achieved on this data and is comparable to human performance [Geist et al.. 1994]. The
slope of the curves is initially proportional to their accuracy. but at higher reject rates the

sinusoidal MLDP has substantially better performance. indicating simpler decision surfaces.

7.3 Fingerprint Classification

Figure 10 compares the results of fingerprint classification nsing ML networks with sinu-
soidal and sigmoidal activation functions and a PNN network. Both MLPs were trained
using successive regularization and Boltzmann pruning. Tle zero reject error rates are 9.2%
for the sigmoidal ALP. 7.2% for the PNN. and 7.8% for the sinusoidal MLP. The sinusoidal
result is not as Jow as PNN at zero rejection. indicating that the decision surfaces required
for this problem are more complex than the less difficule digit recoguition problem. The slope
of thie reject-error curves is not proportional to the accuracy initially nor at any otlier point.,
However. at higher reject rates the sinusoidal AILP has substantially hetter performance, in-
dicating simpler decision surfaces are providing hetter confidence estimates nsed to generate
the error-reject curve. At 10% reject the error rates have changed to 5.45% for the sigmoidal
MLP. 4.96% for the PNN. and 3.43% for the sinusoidal MLP. This again demounstrates that
the decision surfaces generated by the dyvnamically optimized MLP are simpler thau those of

the other networks.



8 Conclusions

In this paper we have shown that some relatively low cost modifications to the MLP training
process hased on training dynamics can result in lower error and better error-reject perfor-
wance on difficult classification problems. The changes in training straregy are motivated
by an analysis of a simplified recurrent model which illustrates the complexity of a network
witll feedback signals. These improvements vield less complex decision surfaces. The digit
recognition problem was solved with consistently hetter performance at all reject rates, The
wore difficult fingerprint classification problem was solved in a way which still showed some
advantage for complex PNN decision surfaces at zero reject. but which yvielded better poerfor-
mance than PXXN after a simall percentage of the low confidence classifications were rejected.
In all cases the sigmodial AMLPs had more error at all levels of rejection than MLPs with

sinusoidal hidde-nodes.

Appendix

Given a network coutaining n neurons with nodal voltages U,

@:(UdFJrG)U (4-1)
dt
with equilibria U, given by:
U,=-F!@G (A—2)
the svstem has solutions of the form:
U = (I - [Fexp([Gdt) dt)™! exp( fG U{0)dt). (4-3)
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wlere the matrix exponential is defined by:

exp(A) =T+ A+ A%/2 4 A3/31 ... (A —4)

and where A can he expanded in terins of its eigenvalues and eigenvectors as:

A=8S"y,8 (4-3)

with § unitary so that 8! = §71, with .\ the matrix of eigenvalues of A taking the form:

AL () x *
-\Al'—' ¥ (-"1—6)
] 0 As(D)

In general G will have complex eigenvalues: only in the symmetric case are all eigenvalnes
real and the upper triangle of A 4 zero. This syminetry requirement makes the construction of
stable associative memories with syinetric weights very difficult, These issues are discussed
in [Cohen. 1992] along with many other aspects of the general aetwork stability problem.
Any iteration carried out with finite precision on G will result in loss of symnetry and create
oscillations in the dynamic system. These oscillations may decay in a stable system but
intermediate oscillatory components will still exist,

The inclusion of driving factors whicli are assumed to be independent of time is relatively
straightforward. The G matrix is augmented from a dimension of n to n + ¢ where ¢ is the
nuuber of system independent driving factors. The solution to the correspouding augmented
part of Uy matrix is just the augmented U(0) vector. This results in a stable driving tern

from equation (3) and a solution to this part of the equation of the form: Uyz = U(0)4.



For valnes F and G that are locally stationary. as during a training iteration. change in

these terws can be neglected and we write the solution as:

Ut) = A{t)U(0) (A-7)

where for G symmetric:

- |HUI’ ZE:] '“k,f'\’-"r.‘-'k‘)

di; = H] (4A-38)

where

H;,|” is the matrix of ijth cofactors of H. |H| is the determinant of H. &,; are the
elements of the similarity transformn of G and A; arve its eigenvalues as given by equation

(A-1) assuming that G is Hermitian. and the elements of H are given by
H=I_(ht.))=(“'i3—hu) (A-9)

where:

n n I ‘(,\”'
hy=S fa 3 B i:l (A — 10)
k=1

=1
For the case of n = 3 appropriate terms are given below in (A-13) -(A-32).

These equations are much less complex than the approach used in our training method
but show that complex dynamics will evolve even in a network that has only a quadratic
noulinearity. Even for a syvinmetric network. obtaining the local linear solution involves
calculating matrices with O(»4) terms for an nth order system. Eguations (A-T) (A-10)
involve caleulation of O(n®) terms for an nth order systew. In addition. each term in (A-3)

is a product of the form s, e s, where each term in the non-linear solution is a product
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at least as complex as:

At

.‘i]‘].‘i”l. { Aot
fit '\—l Spg€ P Epy (4A—-11)

Each term involves one non-linear factor. compounents of four eigenvectors {which in general
are complex aninbers) and the product of two expounential terms. This inerease in complexity
15 a direct cousequence of the F term in equation (A-2) heing nou-zero.

If we write the solution in the form:
U =AU(0) (A—12)

then for a general 3 neuron network with no driving signal. time independoent internal intoer-
connections and G with real eigenvalnes, a symmetric nerwork. a similarity transform S and

cigenvalues A;:

a5 a1z g3
A= a1 flan a3 (.—1 - 13)
3 3y (33

(Bya gy — s hyy + 1yy) (-“31 83308 0 sy sy (M 4 s sy ’)
|H]|

i =

, , { , , At A
(Dol — has hsy — D) (-*:11-'*3.!"‘“ T T LA S TR T ")

|H|
(a2 = 1) by = Dz gy — Trgy + 1) (aﬁl At posd Mt sd ok ‘)
n - (A 14)
(hiahpa — g hyy + hs) (-‘*‘32 s33 €M b sy spz et 4 ospg sy e !)
1y =

[H]

2 Agt At 5 2 ALl
(I hgs — Dy hgy — Nyy) (-‘*:‘iz B S TR e Y )
|H|
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((’71227—71)7 has — ",23 h"f'2 B fh'l'z +1) (-“'31 s32 (M 4 sy sy el 4 sy spp oM t)

= E = ****IHI (4-15)
i = (hiahas — s has 4+ Iys) (-“:‘i:;f'\“‘ T AR T A t)
|H|
~ (lyg gy = Tz gy — Ioy) (-‘*32 sy €2 sy sy M4 s sp e !)
|H| N o
+({hzz — 1) hgs = haghisa — hop + 1) (-‘-‘31 P L T P e L S TP T Y 2 ') 1
(A —16)

H]|

((Irin = 1) haz — hyg D) (-“31 833 000 4 s sy M sy spg e ')
|H|

Uy = -

((hy = 1) Tesy — has hsy — I + 1) (“'31 sg 4 sy syt 4oy -"12"\1!)

| H |
(hoy Iag — haghay — Ny ) (“"zu i R RS Y R l)
] (4 -17})
tyy = _((hu = 1) hyz = g lyy) ('“-'u sp N b sy sy A sy spg e ’)
|H]|
+((f!11 = 1) I3 = Inz hgy — hyy + 1) ("zzz N PL A A P "\”)
|H|
_(hzl figg — Tryy I3y — D) (-“31 S 0 sy sy €M d sy s cM ’)
(A—18)

[H]|

((hiy = 1) has — T hon) (-“:531“\"' + sfgetzl 4 udg oM ')

iy = — =]

({lyg = 1) hag — Dy hgy — g 4 1) (532 sy el o spy e 4y sy et ')

+
H|
(h'Zl h:iif - hz:; hf}] - h'Z] ) (""31 S35 (’\3r + s91 S23 (z\'zl + 13 r,\l g)
IH] (4 19)
sy = (= 1) hoy =Dy hyy = hyy + 1) (,531 333(4\3# + sy _5.23(4\21 + sq1 313(,\”)

|H]
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({hyy = 1) hga — hya ) (-*31 spp M sy s M2 os sy e ')

H]| -

(hor Pgp + (1 = Ty ) Iy ('*%1 cdat 4 ogd cdet 32 oM f)
H]

(A-20)

(e = 1) hop = lp s =l +1) (532 sa3 (M 4 sg gt 4 sy sy et ')
|H]

a3y =

((h“ — 1) ]132 — hlg h;g]) (S.?H f'\ar -}- .‘652(&5‘ + 5%2 fA' ‘)

[H|
(g gy + (1= Iy ) hay) (-'*:n s32 00 b gy sap M 4 sp spa et ')
(A—-21)
|H]|
((hiy =1y Ipp = hip oy = b + 1) (-"'.:2;3 (At dyet eyt t)
3y =
|H]|
(I = 1) by = hyg b)) (632 sy3 e sy spy M 4 sy sz oM ’)
|HL|
(hapligg + (1 — N pp) Nag) (-‘*‘31 s33 €M b osapsaa el sy sy et l) e @5
A=32)
|H]|
where:
. 3 Mgt g . Aol : EY ]
31 S33 € g N3 € S N
i = fi:
1 = fis ( N + iy + 5 )
. . A i . . Aot . M
S31 &3¢ &1 N2 € Sy S f
+f12 ( " + X, + ¥ )
2 Azl 2 Ast 2 Mt
s3)f s 1 S e :
4-23
+fii ( " -+ " -+ N ) { )
. . Aat g . Aot . . i
32 S35 ¢ APPSR RIPEI RS
fiw = f1.
ti2 = fis ( s + iy + N )
2 Mg f 2 Aol 2 Apt
Sy € 3t STz ¢
+ fi2 ( " + " + N )



S31 &3 078 sy s Mt s et
EALE s Ve W
3 2 1
2 Aat 2 Azt 2 A
i sy €3 TR STyt
3 = fis o + \ + \
3 4V 1
. At
+f D R L ey L L PRSP
12
f\:s /\2 )\1
o el Aal e AL
+f s31 s M sy sgy e Sy st
11
A3 A2 Ay
, A . , Ao . ALt
lay = fos sgp 83070 IS L S11 813
21 = fu
As Al Al
N o ot , ¢
+f sgp 832 (Mg e S11 512 €7
22
,\3 /\2 /\l
TR TR (L
th | TN TR N
A3 2 1
. . Agt ) , Aot ) EYR
B — S 8330700 Sgp g™ s ag e
122 = fas \ ) N
3 2 1
FRPEYY, 2 At 2 At
e 537 833 Spa €7
’ Az A Al
) , Aat . . Azt . . At
+fay S3p dg2 7 Sy s TR PR
; An Az Al
2 Aal 2 Aot 2 ALt
hys = oy | 2380 ST - AR A
' ' As A2 A
+f Syp a3 €M sy gy eted + S12 813 M
22
Az Ay Al
, Aat . . Az i . . M
-{-f“ S31 S3af 3 Sy Ean 2 S1.1 %13 M
Aa Az A
. . Aat . . Aot . . PR
fer = S31833 (700 sy sy e P sy spp 0t
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3 2 Al
+f s31 832 €00 sy sy et spp s !
32
A Az A1
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(A—24)
(A= 25)
(A - 26)
(4—27)
(A - 28)



+a (fﬁ‘il_‘_'\_“' e Ge e ’) (4 - 29)
g 1

Xl Aol oo AL
S32 833077 Sgp epp et Sp2 syt )

h:;l = f.’i:i ( /\3 ,\2 Al

L shyetal +.~s%2(’\?’ +.sf2(’\1‘
a2
)\3 /\2 )\1

i : At . . 2 . " PV
S s3f S st S0 I PR
+ JL A =30
Far ( Ag Ay A ) ( )

.2 Mgt
oamy

, sfz et
t33 = fa3 " + Ao + i

; ! Aa , " Agt , ) M
s Saf Spasay € w12
+ faz ( + + R
1

A3 Az
. ) Aal , ) Aot . At
S3) S33 &1 S ¢ S SE3 e
+ ( A + s + ¥ ) (4 -31)

and

[H| = (1= Dp) ({1 = D) (1 = Dz 3} = haslrgs)
Al (=l (1= Tegg) = Do esy) = Iy (g b + (0 = Dag) D) (4 -32)

To add driving terms the G matrix wust be augmented with n additional terms. Us,.
which are coupled to the system through n uew terms. G. where ecach torw is a n by n

matrix.;

o Gm
G = (A -33)

0 UH’I

For an nncoupled n = 3 case. such as a conventional isolated neuron MLDP. this takes the

form:
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oxp(\t) =
1 0
0 1
0 0
oxp(Gt) = 8, explAt)S; =
0 0
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{A-39)

(A —40)

For general G the cigenvalues will be complex so that the full inverse of a complex S will

be required and the system will be still more complex,

Acknowledgement

The authors wonld like to acknowledge Patrick Grother and Jerry Candela for helpful

discussions of the digit and fingerprint classification data and for providing the PXN calcu-

lations in figures 3 and 4. The authors would also like to acknowledge the referces of this

journal who provided very valnable assistance in helping ns clarify this paper.

33



References

[Ackley et al.. 1985] Ackley. D. H.. Hinton. G. E.. and Sejunowski. T. J. (1985). A learning
algorithm for Botlzmann machines. Cognitive Science. 9:147 - 169.

[Alt. 1962] Alt. F. L. (1962). Digital Pattern Recognition by Moments. In et al.. G. L. F..
editor. Optical Character Recognition. pages 159-179. AMcGreger & Werner.

[Barnsley and Hurd. 1993] Barusley. M. F. and Hurd. L. P. (1993). Fractal Image Compres-
ston. A Peters. Wellesley MA.

[Blue. | Blue. J. L. Sine activation in neural networks. NIST IR.

[Blue et al.. 1994] Blue. J. L.. Candela. G. T.. Grother. P. J.. Chellappa. R.. and Wilson.
C. L. (1994). Evaluation of Pattern Classifiers for Fingerprint aud OCR Applications.

Puattern Recognition. 27(4):485- 501,

[Blue and Grother. 1992] Blue. J. L. and Grother. P. J. (1992). Training Feed Forward Net-
works Using Conjugate Gradients. In Conference on Character Recognition and Digitizer
Technologies, volume 1661, pages 179 190. San Jose California. SPIE.

[Carr. 1981] Carr. J. (1981). Applications of Centre Manifold Theory. Springer-Verlag. New
York. NY.

[Chow and Hale. 1982] Chow. S. N. and Hale. J. K. (1982). Methods of Bifurcation Theory.
Springer-Verlag. New York. Heildberg. Berlin.

[Colien. 1992] Colen. M. A. (1992). The construction of arbitrary stable dynamics in non-
linear neural networks., Newral Networks, 5(1):83 103,

[Cohen and Grossherg. 1983] Cohen. M. A. and Grossherg. S. (1983). Stability of global

pattern formation and parallel memory storage by cowmpetitive neural networks. TEEE

34



Trans. on Systems, Man and Cybernetics. 13:215-826.

[Fukunaga. 1990] Fukunaga. K. (1990). Introduction to Statistical Pattern Recognition. New
York: Academic Press. second edition.

[Geist et al.. 1994] Geist. J.. Wilkinson. R. A.. Janet. S.. Grother. I'. J.. Hammoud. B..
Larsen. N. W.. Klear. R. M.. Matsko. M. J.. Burges. C. J. C.. Creecy. R.. Hull. J. J..
Vogl. T. P.. and Wilson. C. L. (1994). The Second Census Optical Clharacter Recognition
Systews Conference, Technical Report NISTIR 5452, National Institute of Standards and
Technology.

[Girosi et al.. 1993] Givosi. F.. Joues. M.. and Poggio. T. (1993). Regularization theory and
nenral networks architectures, Newral Computation. 7(2):219 269,

[Grenander. 1993] Grenander. U. (1993). General Pattern Theory. Oxford University Press.
Oxdord.

[Guckenheimer and Holes. 1983] Gucekenheimer. J. and Holmes. P. (1983). Nonlincar Qs-
cillations. Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New
York. NY.

(Hansen ot al.. 1995) Hausen, L. K.. Liisberg, C.. and Salamon. P. {1993). Tle error-reject
tradeoff. coputer reprint.

[Hartman et al.. 1990] Hartman. E. J.. Keeler. J. D.. and Kowalski. J. AL (1990). Layered
neural networks with Gaussian hidden units as universal approximations. Newral Compu-
tation. 2:210-215.

[Hirsch et al.. 1977] Hirsch. M. W.. Pugh. C.. aud Shub. M. (1977). Invarient Manifolds.

volumne 583 of Lecture Notes in Mathematics., Springer-Verlag. New York. NY.



[Hirsch and Smale. 1974] Hirsch. M. W. and Smale. S. (1974). Differential Equations. Dy-

namical Systems. and Linear Algebra. Academic Press. New York, NY.

[Kolonen. 1988] Kolhouen. T. (1988). Self-Organization and Associative Memory. Springer-
Verlag. BDerlin. second edition.

[(Mandelbrot. 1982] Maudelbrot. B. (1982). The Fractal Geometery of Nature. W. H. Freeman

and Co.. San Francisco.

[Omidvar and Wilson. 1993] Owmidvar. 0. AL and Wilson. C. L. (1993). Information Content

in Neural Net Optimization. Jouwrnal of Connection Science. 6:91-103.

[Perko. 1991] Perko. L. (1991). Differential Egiations and Dynamical Systems. Springer-
Verlag., New York. NY.

[Saarinen et al.. 1993] Saarinen. S.. Bramley. R.. and Cybenko. G. (1993). Il-conditioning

in neural network training problems. SIAM J. Sei. Comput.. 14(3):693 7T14.

[Sijbrand. 1983] Sijbrand. J. (1983). Properties of center manifolds. Transactions of the

American Mathematical Society. 289(2):431 4069.

[Specht. 1990] Specht. D. F. (1990). Probabilistic neural networks. Newral Networks,

3(1):109- 118.

[Watson and Wilson. 1992] Watson. C. I. and Wilson. C. L. (April 18. 1992). Fingerprint

database. Nafional Fnstitute of Standards and Technology. Special Database 4. FPDB.

[Wilson et al.. 1994] Wilson. C. L.. Grother. P. J.. and Barnes. C. S. (1994). Binary Decision
Clustering, for Neural Network Based Optical Character Recoguition. Technical Report

NISTIR 5542, Natioual Institute of Standards and Technology.

36



Figure 1: The diagrain shows digit classifications gencrated by a PNN classifier using the first two
IK-L components in a region centered on (0.0) with an extent large enough to contain the feature
vectors.

Figure 2: The diagrain shows digit classifications generated by a NLP classifier using the first two
K-L compenents in a region centered on (0.0} with an extent large enough to contain the feature
vectors.,
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