TOPOLOGICAL SEPARATION VERSUS WEIGHT
SHARING IN NEURAL NET OPTIMIZATION

O. M. Omidvar, University of the District of Columbia
Washington, DC 20008
C L. Wilson, National Institute of Standards and Technology
Gaithersburg, MD 20899

Abstract

Recent advances in neural networks application development for real life problems have
drawn attention to network optimization. Most of the known optimization methods rely
heavily on a weight sharing concept for pattern separation and recognition. The shortcoming
of the weight sharing method is attributed to a large number of extrancous weights which
play a minimal role in pattern separation and recoguition. Qur experiments have shown that
up to 97% of the counections in the network cau be eliminated with little or no change in
the network performance.

Topological separation should be used when the size of the network is large enough to
tackle real life problems such as fingerprint classification. Owur research has forused on the
network topology by changing the number of conuections as secondary method of optimiza-
tion. Our findings indicate that for large networks. topological separation vields smaller
network size that is more suitable for VLSI implementation. Topological separation is hased
on the error surface and information coutent of the network. As such it is an economical
way of size reduction which leads to overall optimization. The differential pruning of the
connections is based on the weight coutents rather than number of connections. The training
error may vary with the topological dynamics but the correlation between the error surface
awd recognition rate decreases to a minimum. Topological separation reduces the size of the
network by changing its architecture withour degrading its performance.

1 Introduction

Neural net optimization research has achieved some success for real life problems. The focus of
this effort has heen on error minimization., A standard method of optimization for real world
problems is weight sharing [1]. The weight sharing method increases the redundaucy of the
network while reducing the Vapnick-Chervonenkis (VC) dimension [2]. Weight sharing lowers
the network capacity and decreases the network entropy. The increase in redundancy and
decrease ju network entropy lead to larger size networks with minimal information capacity.
A very large training set is needed to frain sucl a network. Even after the training the
network will not be stable and the generalization power of the network cau not he estimated.



The optimization strategy used in this research focuses on information content and the
quality of information represented in the network. This results in a smaller network with a
very high information content that allows the use of a reasonably small training set. We have
also done the topological separation to verify that the method is successful for networks with
different number of neurons in the hidden layer. The information coutent for topologically
equivalent networks is basically the same and the change in the nummber of neurons in the
hidden layer has little or no effect in the information content and the generalization power
of the optimized network {3].

We have used the Boltzmann method as a secondary method of optimization to prune the
networks used here. This method has been applied to both supervised and self organizing
networks [4]. The method can be nsed in conjunction with a primary method of optimization
such as Scaled Conjugate Gradient scheme [5]. The resulting optimized network has been
used for both fingerprint and handwritten character recoguition. The recoguition system
is briefly described. The optimization method is explained. the information content and
capacity are discussed and the results are presented.

2 Recognition Systems

Artificial neural network systems are constructed as interacting subsystems that have parallel
data flow between the layers and parallel processing of data in cach subsystem. For example.
all pixels of the image are simultancously applied to the input of the network so that all
parts of the input are filtered in parallel. In fingerprint classification [6] the input is an image
containing a single fingerprint. If the input is filtered. an image of the fingerprint with ridges
enhanced is produced. The input to the system is initially converted to a more compact
representation in terms of ridge direction data: this conversion is called ridge-valley feature
extraction. After the ridge-valley feature extraction is performed. a set of nunbers which
represents the input data in a more compact form. ridge direction data. is produced. In
the next calculation the Karhunen-Loéve (K-L) transform is used to filter the ridge-valley
data by expanding it in fterms of a set of characteristic image components which are the
eigenfunctions of the image covariance. This representation of the data is then used for
classifying the input in each of the learned classes providing an estimate of the probability
of the iuput being in each of the known classes. In the final calenlation the input is assigned
to one or more of the known classes,

The process described above is all that is necessary for classification but needs a mod-
ification to allow learning. This modification is shown in figure 1. The filter and feature
extraction process remain unchanged. as does the idea of caleulating class errors. hut a
switcl is introduced into this calculation whicl decides if the error is low enough to allow
classification.

Figure 2 illustrates a method used to perform self-organized learning. The data input path
contains any required filters or featnure extraction calculations. The switch used to activate
learning compares the pattern to classes which have been learned and makes a decision on the
basis of pattern similarity: it then cither modifies known patterns using the new pattern or
creaftes a new pattern class to accommodate the pattern. Self-organizing methods hased on
decision trees have existed for some time, The unique feature of the neural nerwork methods
is the parallel properties of the algorithms.

Figure 3 illustrates the method used for supervised learning. As in figure 2. data filtering
and feature extraction are done at the input. The learning switch operates on a different
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principle. In the supervised system. the learning switel is driven by the change in the error
of the global system. The latter requires a set of data for which the correct answers are
know.

A more powerful version of this method is illnstrated in figure 4. It shows how replication
of figure 2 and modification of the control process can be used to construct a multi-map
method which can learn to classify patterns based on two or maore distinct types of features.
The multi-map method is of interest because it is known to occur in various kinds of biological
systems. Tle basic building block of the method is the self-organizing structure shown in
figure 2. The basic unit has been modified to allow the isolation of learning control from other
processes. This unit is replicated for each multi-map subsystem but the learning controls are
merged rather than replicated. This results in the structure shown in figure 4.

Previous work by Linsker [7] and by Rubner [8] has shown that simple learning rules that
update a neural network without using feedback are capable of generating layers of neural
processors. These maps have sensitivity profiles similar to sensitivity profiles found in the
visual system of mammals and to the Gabor basis functions [9] nsed in [10]. This leads to
the inquiry: How can these learning processes and the maps that they generate be comhined
directly into a self-organizing system that allows the smoothing of the input data to occur
in parallel with pattern recognition and feature extraction?

The FAUST architecture provides a self-organizing method of feature extraction and
classification [4]. The FATST architecture is one of several neural networks which provide
self-organizing multi-map capabilities. The structure used is a multi-map procedure similar
to those known to exist in the mid-level visnal cortex [11]. As in previous work [12, 13.
14] the method must provide a parallel. multi-map. self-organizing. pattern classification
procedure. This is achieved using a feed-forward architecture which allows multi-map features
stored in weights acting as associative memories to be accessed in parallel and to trigger a
symunetrically controlled parallel learning process. A diagram of the FAUST svstem is shown
in figure . This wethod allows features of different data types, such as binary image patterns
and multi-hit statistical correlations. to be updated in parallel. This capability is provided
by the parallel pattern association and relevance paths shown in figure 4 and by the existence
of separate input modules for cach path.

A pattern comparison method is used to form a centralized learning control which is
contained in the symmetric triggering learning control block. The triggering block gates
data into the learning block on the right of figure 4. This combined architecture is described
by the acronym FAUST (Feed-forward Association Using Symmetrical Triggering). The
three essential features of FAUST showu in this figure are: 1) Different feature classes use
individual association rules in the pattern comparison blocks. 2) Different feature classes
use individual learning rules as illustrated by the partern modification blocks. 3) All feature
classes contribute symmetrically to learning as illustrated by the functional symmetry of the
pattern and relevance paths. The number of feature classes is shown as two in figure 4 for
graphic clarity, but the architecture is not restricted to any number or type of feature classes.

3 Learning is an Optimization Problem

Assume that a set of features has been chosen and the number of hidden nenrons has boeen
selected based on the expected complexity of the regions involved. The number of inputs is
the size of the set of features. and the number of output neurons is the number of classes. To
specify the network completely. values must be specified for all the weights: the choice of the



weights determines how well the network classifies data. The desired criterion for choosing
weights is;
For all possible images. choose the weights so as to make the fewest mistakes in
classifying.
This is both vague and impossible. A more reasonable criterion is:

For a given training set of images. choose the weights so as to make the fewest
mistakes in classifving,

If the the training set is sufficiently representative of the set of all the images to be classified
by the network. the test set. this method can be adequate. However, even this method is too
difficult, and the actual criterion used is usually:

For a given training set of imagess. choose the weights so as to minimize the sum
of squares of the errors in all the output values.

This. at last. is a fairly well-defined mathematical optimization process. It may not. how-
ever, produce the desired network, as will be seen in the next section. Accomplishing this
optimization process can be done in many ways. and is a subject of ongoing research. since
optimizing a fanction of several hundred or thousand variables is not trivial. Finding the
optimum set of weights is usnally impossible. hut several different optimization attempts
may be made. each starting with a different random guess for the weights. Eacli attempt {in
geueral) reaches a different local minimum. and the best set of weights attained is chosen.
However. the best set may not be the set that reduces the suin of squares of the errors to the
lowest vahie.

4 Network Capacity Optimization

The networks, shown in figure 3 for a supervised system and in figure 4 for a self-organizing
network. can be modified fo concurrently optimize information countent hy including a self-
organizing network that is used exclusively for information capacity wininzation. A network
of this type is shown in figure 5. This network is placed in the learning loop of the network
shown in figure 3 and this results in the network shown in figure 6. A similar network cau
be added to the self-organizing system as a modification of the learning coutrol block. This
modification results in the network shown in figure 7.

In both cases the additional optimization changes the objective of the optimization from;

For a given fraining set of images. choose the weights so as to minimize the sum
of squares of the errors in all the output values.

To:

For a given training set of images. choose tlie weiglits so as to minimize the network
information capacity and concurrently the sum of squares of the errors in all the
output values.
The minimum information capacity determination is made by cowmparing the generalization
capacity of the network with a specified entropy with the information needed to classify a
testing set of comparable entropy.



5 Pruning and Information Capacity Reduction

A fully connected network is optimized using the Scaled Conjugate Gradient method (SCG)
developed by [15] and modified by Blue and Grother [5]. The SCG method is used as a
starting network for the Boltzinaun weight pruning algorithm. The network has au input
laver with 128 input nodes. a hidden layer with 128 nodes and an output laver with five nodes.
The initial network is a fully connected network. The pruning was carried out by selecting a
normalized temperature. I', and removing weights based on a probability of removal:

P, = exp(=|w,]/T)

The values of P, are compared to a set of uniformly distributed random numbers. R;. on the
interval [0.1]. If the probability P; is greater than R; then the weight is set to zero. The
process is carried out for each iteration of the SCG optimization process and is dynamic.
If a weight is removed it may subsequently be restored by the SCG algorithm: the restored
weight may survive if it has sufficient magnitude in subsequent iterations.

During this optimization process three important measures of information content are
caleulated [16]. The information capacity of the network. C. is given by:

C= -'\.u'ls( (]ng( | ”’ma.rl - ]-ng( I “'min' 4+ 1)

where N, is the number of non-zero weights. 1,4, is the weight with the largest magnitude.
and 4, 1s the weight with the smallest magnitude. The entropy is given by:

Nute
H=0C~{ Z log, [ 4 Nutsl1 — log,(w0min)))

i=1
and the Shannon redundancy is given hy:
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The dvuamic effects of weight removal are shown in figure 8§ for nine temperatures hbetween
0.001 and 0.2 starting from a fully couverged but unpruned network. The dynamic effects
of weight removal are shown in figure 9 for the same nine temperatures between 0.001 and
0.2 starting from a fully converged and fully pruned network. The changes in capacity and
euntropy starting with a fully connected network are shown figure 10. The change in capacity
starting with a fuolly pruned network is shown figure 11. As the size of the temperature
change increases the number of weights removed initially increases. hut the effect of later
iterations of optimization is to decrease the rate at which weights are removed. The number
of weights in the initial network was 17157, including bias weights. At all temperatures the
initial iterations are very effective in reducing the weights. The decrease in the rate of pruning
is the result of a critical phenomena characterized by a critical temnperature. T, at which the
new information added by the SCG training balances the information removed by pruning,.
At this critical point networks trained on small training sets will aclhieve identical testing
and training accuracy even when tested on large test sets. The two curves plotted in figure
8 are the training set and testing set accuracy of the network. The training set accuracy is
initially greater than the testing accuracy. At a critical temperature, T, the testing accuracy
and training accuracy are identical. In figure 8. at the critical temperature of 0,125, read



from figure 8 by oxtropolating the low temperature crossing point. chaotic helavior occures
the vicinity of T, due to critical weight removal.

The effect on the information coutent of the network can be evaluated by examining the
distribution of weights in the network as a function of temperature or by evaluation of the
information capacity of the network. The effect of the number of weights, Ny,. can be seen
in figure 10. which shows the capacity reduction and cuntropy reduction. As the temperature
is increased. the recoguition accuracy of the network decreases slowly for temperatures up
to 0.15 as shown in figure 8. As the temperature approaches 0.2, the rate of weight removal
shown in figure 10 slows, and the rate of accuracy decay accelerates.

The effect of the near-zero weights is more important when viewed as information content.
The VC dimension and the information content are hoth approximately Y (log,(|w;|) + 1).
When large numbers of near-zero weights exist. their contribution to the sum dominates the
network information. Under these conditions the network is dominated by recently created
weiglts that have not been optimized by SCG iterations. This lowers network accuracy
without reducing VC dimension.

6 Conclusions

A method of network optiwmization has been developed which reduces the number of weights
required for moderately accurate fingerprint classification by 97%. The method is based
on achieving equilibrivin between the information in the training set and the information
capacity of the neural network by concurrent weight creation usung SCG optimization and
Boltzmann weight removal. These reductions allow smaller training sets and smaller classifi-
cation networks to be used since the information capacity of the network and the information
capacity of the training and testing sets are matched.
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Figure 9: Network testing and training accuracy as a function of temperature for T =
0.001. 0.01.0.05, 0.073. 0.0875. 0.9375. 0.1, 0.125. 0.15. The capacity initially was reduced
by annealing the network at a termerature of 0.2.
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