Training feed-forward neural networks using conjugate gradients
James L. Blue and Patrick J. Grother

National Institute of Standards and Technology
Gailthersburg, MDD 20899

Abstract

Neural networks for optical character recognition are still being trained using back propagation, even though conjugate
gradient methods have been shown to be much faster. Most multilayer perceptron network training results in the
literature are obtained {or small and unrealistic problemns or from data sets that are proprietary and not available
for comparison testing.

We present results on a large realistic patlern set containing 2000 training and 1434 testing exemplars. Each pattern
is composed of 32 Gabor coefficients obtained from a 32 by 32 pixel binary image of a hand-written digit segmented
from the NIST Handwriting Image Data Base. These sets are believed to have approximately 1% segmentation
errors. {“omparative results for Moller's scaled conjugate gradient method and for standard back propagation are
presented for runs on a serial scientific warkstation and a highly parallel computer.

Typical training on a network with 32 inputs, 32 hidden nodes, and 10 output nodes gives a 98% to 9% recognition
for the training set and 93% for the test set, Training with conjugale gradients requires fewer than 200 iterations:
Limes are about 20 (o 40 minutes on a scientific workstation and 6 minutes on the lighly parallel computer. Testing
(classification) is done at the rate of 600 and 1600 patterns per second on the scientific workstation and on the highly
parallel computer respectively.

These results suggest that commercial hand-written character recognition systems with great economic potential are
feasible.

1. Introduction

The success of neural network technology in pattern recognition is exemplified by its application Lo the specifie field of
optical character recognition. The commercial value of autematic document processing systems has attracted much
research and investment in the relevanl areas of image preprocessing. segmentation, recognition and unders anding.
Identification of machine printed digits is a solved problem but that of unconstrained handwritten characters is less
traclable. The self organizing architectures ofler a neural techmology 1o address this problem. In particular Vogl's!
and Grossherg’s ART? meihods construct distributed representiations of the input patterns. However. arguably
the most common neural network technology, namely the multilayer perceptron architecture, has repeatedly been
applied to this problem using a variety of representalive input features matehied with desired outputs. Notable
performance has heen obtained but. with superior recognition remaining a goal, numerous methods of improving
neural lechnologies are on going. The results detailed in this paper show very significant improvements in the method
of training feed forward networks are readily obtainable. Benefits extend to perceptron applications beyvond character
recognition such as speech synthesis and control.

Backpropagation (BP) has been used for some years® to train feed-forward perceptrons. Mathematically. “(raining”
means minimizing an error function, the sum of the squares of the errors in the outputs, While useful for (raining
networks, BP has the disadvantages that convergence is slow? and that there are, in the usual implementation® {wo
adjustable parameters. 7 and a, that have to he determined. A third disadvantage, thal convergence is ofien to a
local mininum of the error function rather than a global minimun. is inherent in the problem and nol restricted (o
BP.

Since BP corresponds (approximately) to using a steepest-descent method for minimizing the error function, and

steepest-descent methods are known™® 1o converge slowly when near a minimum. slow convergence is not surprising.

Conjugate gradient (C°G) methods have been used for many years™® for minimizing functions. and have receni|y?
heen discovered by the neural network community. The usual CG methods require a line search or its equivalent.
Moller'® has introduced a scaled conjugate gradient (SCG) method: instead of a line search, he uses an estimate of
the second derivative along the search direction to find the approximate minimuni.

Many BP implementations lor feed-forward networks are available. but C'G and SCG implementations have nol been
available. We have produced simiple and easy-10 use SC'G and BP programs that share a connnon driver program.
These programs are available from the authors by electronic mail.!

We also present a large and realistic test set of data for use with the SCG and BP programs. The data are coefficients
fromn a collection of handwritten digits. The data sel will be made available on the neuroprose archives.

1.1. The problem

We assume a standard multilayer pereeptron network, fully-connected. with N9 inputs, N hidden neurons. and
N output neurons. Define ag‘:’
o o 0 o o a o o .

p”‘ pattern of inputs, with CJ}-P] the input value for neuron i. Define the weight matrix interconnecting the elements
]

to be the activation of the % element of the #* layer of the network. due to the

ol neuron layer m — 1 to layer m (o be u',(-;" cand let f be some nonlinear squashing lunction. such as the slandard
sigmoid function. f{x) = 1/[14 exp(—r)]. The input pattern vectors propagate forward through successive layers of
neurons according to

A
(1) _ A1) (0, (1 _ 1Y,
'rhp - Z Wy 01’;: . C"h]n - f ('1 .ftp) -
i=0
AL
(2) _ J2y (1), 12) _ {23y,
T = Z Win Ohpt Oy = (rjr) : (1)
h=0

0 0 1 ; . : . .
where CJ:]I_] =1 and U{).l’] = . so thal u'((,h) and U‘:,j} are biases [or the squashing functions.

Pattern p has a desired oulput activation. or largel value, of U;p al output neuron j. Lor character classification,

each pattern has exactly one v, equal to one and the rest equal to zero, Assume a set of N#) patterns, a set to he
used for “training”™ the network. One measure of the goodness of a set of weights is

NP At

B 1 _ () 2. ,
€= SN N () Z Z [‘JP f’jp} : 2)

p=1 j=1

the root-mean-square (RMS) error. v/€. is a measure of the output activation error averaged over all patlerns and all

output neurons. Minimizing £ provides one way of determining the weight matrices u-f“’ and u*jh': it is a substitute

for what is really desired. to determine u',(,‘:] and u'ﬁ]

large and unknown set of “testing™ input patterns.

s0 as 1o do tle best possible character identification over some

The negative gradients of £ with respect lo the weights are

o 88 0€
G == 2 A g =-

g A2}
dujh b

(3)

e

!Send electronic mail Lo jlb@azure. cam.nist.gov: include your name, Institution. address, and elecironic mail address.
g 3

Define auxiliary variables 6,,,, and (‘s‘:f
Al
{2) . (2) f ,[2) (1 _ {2) {2) lll
o = (L”. - o},) [le))) and &) = Z(SJP win S,) {4
where f/(r) is the derivative of f: for the usual sigmoid function. f/(x) = f(2)[1 = f(2)]. Then the negative gradients
are
N] NP
2y _ (ll (11I , [(1y _ (1) {0 "
Gin = \m N Z bip onp and 9 = v Z] bhp Oip - (2)
,!‘—‘ .P=

To simplify the notation in Iator c;('('lions" let w be a vector of length V) = [N1O 4 [1¥(D 4 [N 4 1]V, formed

I concatenating all the U'," Pand w!?) in some order. Similarly. g is the vector of negative gradients of £ with respect

Jh
te w. formed by concatenating all the g},‘? and _q;f‘) in the same order.

The standard “network training” problem then reduces lo [inding a set of weights. w. to minimize the mean-
square activation error, £ An alternative minimization problem is a regularized version.!! sometimes known as the
Levenberg-Marquardt method: minimize a linear combinalion of the mean-square activation error and the mean-
square weight:

A0 Ay AL A LD :
J — A1) (2] g
E(wi) =&+ _‘H.] Z Z [u,”] + Z z [ujh] . (6)
i=0 h=1 h=0 j=1

There is an additional parameter, g. which must be chosen somehow. Since £ = £(w:). the remainder of this paper
will use E(w:). The negative gradients become

NP
gﬁ’ = m\(m Z fvf»'cii’ _T-l(ruﬁ "'ﬁ,
by
AP
TP 1 I} o
r=1

Minimization of a function of many variables is a mature field:!2 (here are numerous algoritluns and more numerous
variations of them. All are iterative. generating a sequence of sels of weights. For neural network applications in
character recognition, where typical values of N might range from a few hundred to many thousand. computa-
tionally feasible algorithms can use the gradient veetor but not the Hessian matrix (the matrix of second derivatives
of the function). The typical algorithin has the structure

. Clhivose an initial veclor wy and set & = (. In the absence of a better idea, random slarting values are used.
. Caleulate the function, £(wyg;: 1), and its negative gradient. gr.

. Calculate a step, Awy. Let wppy = wi + Awy.

. Calculate the function, £(wpyy:). and its negative gradient. ggy1.

. If the wy4; is unsatisfactory, make some adjustments, discard w4 and go to 3. Otherwise, increase & by 1.
6. If the iteration has converged. or if too many iterations have heen done, or if progress seems hopeless, quil,

7. Goto 3.

Lose o

H}

T

This generalized procedure. with suitable elaborations of steps 3, 5, and 6. always succeeds in finding « local minimum
of the Tunction. There is no practical way to find the abselufe minimum. and £(w:) has many local minima.
Irssentially all (he computer time is speni in step 1.

1.2. Backpropagation minimization of &(w:)

Fora given w. g is the direction of stccpest descent for £(wpi), the direction in which &(w: j1) decreases most rapidly.
Many variations are possible. One possibility is

Awg = gk (8}

with ne determined by a line search. approximately minimizing the function with respect to k. The standard
backpropagation method? uses
Awp = ngr +alwy_; (M

with fixed paranieters 5 and a. not determined by the algorithm. For large problems. (9) works well for a few
iterations, then slows down drastically.1® An example is given in Section 4.

1.3. Conjugate gradient minimization of £(w: ;)

For many years, conjugale gradient algorithms have been used o minimize functions™® and good Fortran programs
have been available.! More recently, the neural network conununity has discovered conjugate gradients.® 1 The step
used is

Awy = ap(gr + Jdwr_g) (1m

where 3 is calculated by the algorithm to make Awy, and Awy_; conjugate, or orthogonal in a generalized meaning
of the word. The lactor ay is often determined by some kind of line search. using about three [unction calls.

Maller™ uses a (temporary) small value for ag, does a [unction evaluation in order to approximate the second
derivative in the search direction, then uses the approximate second derivative to select a final ag: this uses two
function calls. (If the new weights result in an increased error. they are rejected and some parameters are adjusted
until the new weights reduce the error. In this case, a successful iteration takes more than two [lunction calls.) Mgller
calls his method Scaled Conjugate Gradients (SCG). Qur experintents on character recoguition problems showed
SCG to be preferable to the program of Shanno and Phua.!3

2, Programs

Fortran programs to lrain neural networks using BP and SCG have been written: the BP and SCG Prograns
differ only in the subprogram called to minimize £(w: y). The implementations for serial conipulers are reasonably
straightforward: the tmplementation for parallel computers will be discussed in Section 2.1.

Deciding when to stop an iterative procedure is not straightforward. In principle, stopping is simple: stop when
a local minimum has been reached. At a local mininmi, g = 0. (The same is true at at a saddle point or a
local maximum. but checking for these requires computing the Hessian matrix, which is impractical.) However. in
finite-precision arithielic g = 0 is attained only in unusual circumstances. The programs have five st opping criteria
built in:

1. k>=((Too many iterations)
2. Elwpip) <=y {Achieved error goal)
3. igi] <= Calwy| {Achieved gradienl goal)
9. Slwpip) >= (1 =) Ep_g (Error decreasing (oo slowly)
. Ry »>= Hp_g — (Righ! classificalions decreasing too slowly)

where (. (%, (%, (. s, and A are constants supplied by the user. {Criteria 4 and § are checked only every K
iterations.) The results obtained depend significantly on which criterion applies in the particular run, which in (urn
depends on the constants. Some examples are given in Section .

2.1. Parallel implementation

The efficient parallel implementation of neural networks in hardware and soltware is an active area of current
researcli. ‘The motivation is pragmatic: faster training algorithms and their implenmentation allow more complicated
larger networks (o be evalualed. The parallelisi inherent in artifical neural nets is well known. In particular the
multilayer percepirons trained by BI® and SC'G are both readily made parallel. Their implementation is particularly
suiled lo massively parallel fine grained SIMD architectures. Machines of this type. such as the AMT DAP or the
Loral Industries MPPZ, are Lypified by tightly coupled processors connected by high bandwidth bus.

2.1.1. Forward propagation

The multilayer perceplron networks require thal patlern vectors to be propagated {orward through successive layers
of neurons. Define activation matrices @11 and ®12? whose columns are the activation veclors for each pattern. The
parallel equations corresponding to 1 are

@“1=f(w“hrwl) and ﬁ”':f(W”’Q‘”). (1)

The activations of neurons within a layer are independent and their parallel calculation is thus suggested. The
problem is then one of matrix multiplication.

In the serial compuler the choice of the matrix multiplication algorithm used is largely irrelevant, since all operations
are scalar. Although the literature on parallel matrix multiplication is vast the oufer produef!? method on the array
processor’ is found Lo be superior if (he matrices are much larger than the number of processors. The lollowing
pseudocode multiplies two matrices, m1 and m2, obtaining the product m3,

real mi(L, M) # L rows x M columns matrix
real m2{M, N) # M rows x N columns matrix
real m3(L, N) # L rows x N columns product
real acol(L), arow(N) # rows and colummns of ml and m2
real row_replicas(L, N) # arow is broadeast down this mairix
real col_replicas{L, N} # acol is broadeasl across this matrix
m3 = 0.0
do i=1, M
acol = mi(,1i) # col i of ml
arow = m2(i,) # row i of m2
row_replicas = row_broadcast(arow, L) # all rows the same
col_replicas = col_broadcast(acol, N) # all cols the same
m3 = m3 + row_replicas * col_replicas

The expensive operations liere are Lhe parallel multiplication and the subsequent parallel accumulation. The more
naive inner produel algorithm computes dot products thus:

2Certain commercial equipment is identified in order to adequately specily or deseribe the subject matter of this wurk. In no case
does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply
that the equipment identified is necessarily the best available for the purpose.

3 An array processor is considered here (o be a finite (two dimensional rectangular array of SIMI) processing elements. Operations on
malrices larger than this array are looped transparently by the machine.

real mi(L, M) # L rows x M colummns matrix

real m2(M, N) # M rows x N columns matrix

real m2(L, N) # L rows x N columnns result

real arow{N) # rows of ml and m?

real col_replicas(L, N) # acol is broadcasl across this matrix
doi=1, N

arow = mi{i,)
col_replicas = col_broadcast(arow, N) # all cols the same
m3(,i) = sum_over_rows(m2 * col_replicas) # sum all columns

}

The parallel produet is inexpensive: the inefficiency of the method is determined by the speed of interprocessor
communication necessary for the term collection in the “smn over rows.” The outer product algorithim is not
dependent on this bandwidth and is therefore faster.

2.1.2. Weight Modification

I'orward propagation is necessary in training and in classification. During training the weight update is dependent
on Lhe error gradient. The error, E, is given as the difference between the target ontput and the actual output thus:

E=%-&® (12}

The output layer error is weighted by the first deriviative of the squashed output activalion

AD=ZE . [('I"'“) (13)

where denotes parallel component-hy-component multiplication. The hidden layer error is obtained by passing the
output deltas back through the final weight layer.

Al = (W(zlAm) I (,I,m) (14)

The negalive gradients of the error wilh respect to the individual weights are
i g T -
g = #19AUY apd gl = AL (15)

The weights are independent and therelore the updale operations are homogenous and purely parallel. The weight
update time is negligible compared to doing the forward propagation and gradient calculation,

3. The handwritten characters database

The data set used for the examples in Lhis paper is known as FL3: it contains features extracted from handprinted
digits. There are 2000 patterns in the training set and 1434 in the testing set.

The inital character images were obtained by isolating aud segmenting full page images from the NIST Handprinted
Characters Database:1? segmentation is described in Wilkinson.’® The resulting character images were centered in a
32 x 32 array of pixels. Each character image then had a shear transformation a Gabor feature extraction. reducing
cach 1024-pixel binary immage to a 32-feature pattern.

3.1. Shear Transformation

The purpose of the shear transform is to remove the slant from the character images. Pixel histograms are calculated
for the top and bollom few rows of the image. The centers of these (wo distributions determine a virtual line between
them, whicl is used to construct the edges of a parallelogram around the character. Eacli row of the image is shifted
horizontally to bring the edges of the parallelogram into vertical alignment.

3.2. Gabor Feature Extraction

In classifving images, each 32 pixels by 32 pixels in size, to decide which character is represented in each image, A
neural network would need 1021 input values, one for each pixel. if the image pixel values were fed directly to the
network. This network is larger than necessary. To get a smaller network, the essence of cach image must somehow
e distilled into a smaller group of numbers. each describing some feafure, with the value of each feature nsed as one
of the input values.

Various features are possible. Recently the Gabor functions!™ have been proposed as a model of mammalian visual
receptive fields'™ and as such are a biologically based method of extracting salient leatures [rom characters. Such
features have been used with considerable success in machine print OCR'® and handprint OC'R.2¢

3.2.1. Gabor Filtering
Giabor funclions cone in even and odd variants:

(u-r"'[o‘

[l

cos(r’)

=7 sin(wa’) (16)

Oeven(L4 Y)

Codd(r y) = ¢
where r2 = 22 + ¥ and & and « are parameters. The exponential term is a Gaussian envelope that localises the
feature extractor. Coordinates »* and ¢ are transforms of » and y. shifled and rotated by angle 0:

N cosf sinf)l g .: (17)
v) T\ —sind cosd 1} |

Note that ¥ is absent from Equation 16 so (hat the function represents a two-dimensional sinusoid. offset by {ra. yo).
localised in space by the Gaussian, and oriented at angle (#).

Thirty-two such functions were used; the set of the five parameter values was chosen empirically on the grounds of
elficacy and is as follows. Assume the N x N image has its origin at its center {0.0). Use identical Gabor functions
in each of the four quadrants centered at positions (£V/4. £V/4). Within each quadrant. use {our orientations al
angles 0, 7/4. 7/2, and 37/1 radians. Use one spatial frequency, « = 272/ N, and one Gaussian envelope radius,
o = XN/2/8. Use both even (cosine) and odd (sine) Tunctions.

Approximate the image by a linear combination of the 32 Gabor functions: obtain the coefficients by a least-squares
fit. These 32 coeflicients are the exiracted features in the I'L3 data set: they are the inputs to the multilayer
perceptron networks in the next seclion.

4. Results

The initial weights were chosen from a uniform random distribution in the range (=45, +0.3). Since different minima
are found with diflerent starting weights. a statistical sampling of runs is necessary, each run with a different seed to
start the random number generator. Each run finds some local minimum, but the particular one found is a sensitive
function of the initial choice of weights. In fact, two dillerent brands of computers will ordinarily not find the same
local minimum, even given the same initial choice of weights: extremely minor differences in doing arithmetic are
sufficien(. over many iterations. to cause different local minima to he found.

All the runs use the same classification rules o divide the results into three categories: Right. Unknown, and Wrong,
For each pattern. the highest of the 10 output values is found. If the activation level is below a set activalion
threshhold, the result is defined to be Unknown. If the aclivation level at least as large as the threshhold. the resull
is accepted. and the answer is either Right or Wrong. Except for Figure 3. all results reported here use a zero
activation threshhold, eliminating Unknowns.

For both BI? and SCG. by far the most time-consuming part of the calculation is done by the forward subroutine,
whicl feeds the inputs forward to the outputs according lo Equation L, then [eeds outputs backwards according to
LEquation 7 to produce the gradient of the error function (step 4 of the algorithm in Section [.1). BP does this once
per iteration: SC'G usnally does (his twice per iteration. but occasionally more than once. TFor comparing BP and
SCG, we Lherelore compare the number of calls to forward rather than the number of iterations.

Comparisons of algorithms depend strongly on the stoppping criteria deseribed in Section 2. The runs presented
here use one of two sets of stopping criteria. The carfy sel uses criterion 5. stopping when the number of correctly
classified training patterns increases too slowly. Criteria 2, 3, and 4 are disabled by setting (%, (3, and (4 to zero.
{Criterion 4 is not quile disabled by 7y = 0: if a local minimum is found, the error cannot be decreased furiher.)
Good values for SCG are (5 = [and K = 10: €'] = 1000 is safe. siuce at most a few hundred iterations are necessary.
For Bl it is necessary to use a larger A, such as &' = 100, and to allow a larger number of iterations. The ¢arly set
strikes a reasonable balance hetween the level of convergence obtained and the computer time used.,

The faie set emphasizes the level of convergence al the expense of computer times it uses eriterion 1. stopping when
the maximum number of iterations has been used. Criteria 2. 3. and 1 are disabled as in the ¢arly set, with zero
values for €%, ('3, and (4. Criterion 5 is disabled by (%5 = =100, Reasonable values lor SC°G are & = 10 and
'y = 1000, BP needs & = 100 and (7 = 10000 or more.

i both sets, instead of {3 = 0. a value like Cy = 10712 1ay be used lor quicker stopping in case of accidentally
finding a local minimum quickly.

4.1. Training on the training set

Training on the 2000-pattern “lraining set,” lollowed by testing on the 1434-pattern “testing set.” gives a realistic
picture of what can be expected. Note that, for a practical application, only the best set of weights found is important.
since any inferior sels will be discarded,

Table 1 illustrates the effect of changing the number of hidden nodes in the network. Fight hidden nodes are clearly
insufficient, but after 24 hidden nodes the improvement is small. In general, as (he number of hidden neurons
inereases, training aud testing improve somewhat, training is more likely to find an inferior local minimum. and
training takes more calls to forward.

Choosing the Levenberg-Marquardl parameter, g, must be done experimentally: p = 10=? is reasonable: this value
does not minimize the & error, but it gives better classificalion results on both the training and the tesling sets.

Iigures | (early slopping criteria) and 2 (late stopping criteria, (') = 1000) illustraie the variability of results, Each
ligure shows results from computer runs starting from 30 different random seeds for g2 = 0 and for g = 103, The
activation threshhold is zero. so that there are no Unknowns. Note that g = 10=% is slightly better than g = 0 and
thal late slopping gives slightly better results than carly stopping. although at a significant penally in computer
time: the median number of calls to forward is 303 for early stopping and 2002 {or late stopping. Also note that
there is little correlation between the performances on the training set and on the testing set.

‘Typical results for percent correcl on the testing set as a funetion of the number of Unknowns is shown in Figure
3. For each run, the activation threshhold was successively changed to generate the desired percent of Unknowns:
then the remainder of the test pattern results were classified as Right or Wrong. For cach value of A, (en random
slarts were done and the run with the hest number correci at zero activation threshhold was chosen. Note that little

improvement is seen {for N1 > 16,

4.2. Training on the full set

To demonstrate that it is possible to have a set of weights that doees equally well on both sets. some runs (rained on
all 3434 patterns. As an example, with 24 hidden nodes, training produced a set of weights which gave 98.9% right
on the full set and 99.1% on the testing set.

4.3. Comparison with backpropagation

In order to compare CG and BP. reasonable values of 7 and a mast be found. Because of the 1/V) in the definition
of &(wip). our 7 is larger by a factor of N (han the usual one, and is to first order independent of N1#), Table 2
gives the (raining error after 500 iterations of BP using the first 500 patterns of the training set. all with the same
random number seed. Note that 500 iterations (501 calls Lo forward) are insufficient to train the 32-16-10 nelwork.

[rom this survey and similar ones, reasonable values are 3 = 10 and a = 0.25. (No claim is made that these are
ideal values.)

Figures 4 and 5 compare single runs of BP and SCG for a 32-24-10 network, with late stopping and g = 1073, wilh
N =10 for SCG and A = 100 for BP. Note thal any stopping criterion based on slowness of decrease of the error or
of the number wrongly classified is likely Lo stop well hefore the lowest values are obtained.

5. Conclusions

SCG is faster than BP. An exact comparison is hard to obtain, but SCG appears to be about 10 times laster than
BP.

I'L3 is a reasonable data set to use. but is not a large enough set for training a practical network for classifving
handprinted digits. If it were large enough, the recognition rate on the testing set would not be appreciably lower
than the rate on the Lraining set,

References
(1] D. L. Alkon. K. T. Blackwell. i. S. Barbour, A. K. Rigler. . and T. P. Vogl. Pattern-recognition by an artificial
network derived [ron biological neuronal svstems. Biclogical Cybernetics, 62:363 376, 1990,

[2] G. A. Carpenter and S. Grossherg. Art 2: sel-organization of stable category recognition codes for analog input
patterns. Applied Optics. 26:4919-4930, 1987,

(3] D. E. Rumelhart, . E. Hinton. and R. J. Williams. Learning internal representations by error propagation.
In D. E. Rumelhart and J. L. McClelland, et al., editors, Paralicdd Disiribuicd Processing: Erplovations in the
Microsfructure of Cognifion. Volume I: Foundations, chapter 8, pages 318-362, MIT Press, Cambridge. 1986.

[1] J. E. Dennis and R. B. Schnabel. Numerical Mcthods for Unconstrained Optimization and Nonlinear Equations.
Prentice-Hall, Englewood Clifls, NJ, 1983,

[0] E. Stiefel. Uber einige methoden der relaxationsrechnung. Z. Angew. Math, Physik, 3:1, 1952,

[6] H. Akaike. On a successive transformation of probability distribution and its application to the analysis of the
optimum gradient method. Annals of the Institutc of Statistics and Mathe matics, Tokyo. 11:1-16, 1959.

[7] E. Polak and . Ribitre. Note sur la convergence de methodes de directions conjugées. Rev. Frangaise Infar-
malion Recherche Operationnedle, 16:35-43, 1960.

[8] R. Fletcher and (. M. Reeves. Function minimization by conjugale gradients. Compuler Journal, 7:149- 154,
1964.

[9] E. M. Johansson, F. U'. Dowla. and D. M. Goodman. Backpropagation learning for multi-layer feed-forward
neural nelworks using the conjugate gradient method. IFEE Trans. en Neural Nedworks., To be published.

[10] M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. To he
published.

[11] €. L. Lawson and R. J. Hansou. Solving Leasi Squares Problems. Prentice-1lall. Englewood Cliffs, NJ. 1974.
[12] P. E. Gill. W. Murray, and M. Il. Wright. Practical Optimization. Academic Press. New York, 1981,

(13] D.F. Shanno and K. H. Phua. Remark on algorithin 500: Minimizalion of unconstrained multivariate functions.
ACM Trans. on Mathemalical Software, 6:618-622, 1980,

(1] P. M. Flanders, R. L. Hellier, H. D. Jenkins, (. J. Pavelin. and S. Van Den Berghe. Efficient high-level
progranning on the amt dap. IEEE Proceedings: Speeial Tssue on Massively Paralledl Computers, 79(4):521
536, April 1991,

[15] €. L. Wilson and M. D). Garris. Handprinted characler database. Nufional Institute of Standards and Technology,
Special Database 1. HWDB, April 18, 1990,

[16] R. A. Wilkinson. Segmenting of text images with massively parallel machines. In Visual Communicaiion and
Image Proecssing, Boston, MA, October 199]. SPIL,

[17] D. Gabor. Theory of communication. Journal of the Institute Electrical Enginecrs, 3(93):429-457, 1946.

(18] J. ;. Daugman. Representational issues and local filter models of 2d spatial visual encoding. In D. Rose and
V. G. Dobson, editors, Models of the Visual Corter, pages 96 107, J. Wiley and Sons. 1985,

[19] M. D. Garris. R. A. Wilkinson. and C'. L. Wilson. Analysis of a biolgically motivated neural network for characler
recognition. In Proceedings: Analysis of Newral Network Applications, pages 160 175, ACN Press, May 1991,

[20] M. D. Garris, R. A. Wilkinson, and (' .L. Wilson. Methods for enhancing neural network handwritten char-
acter recognttion. In Infernational Joint Conference on Neural Networks, volume 1. pages 695 700. 1EEL and
International Neural Network Society, July 1991,

Table 1: Results of training 32-N.10 feed-forward net-
works with SCG, g = 1073, and early stopping. Tabular
values are the nuwber of calls to forward. the percent
correct on the training set. and the percent correct on
the testing set, for the best run, selected from 10 runs
with random starts.

N Calls Training Testing

& g2l 94.9% 93.0%
16 321 98.1% 95.1%
24 a3 YR.8% 95.2%
32 422 99.3% 95.7%
10 401 949.4% §5.3%
18 507 99.2% 95.2G

Table 2: Results of (raining a 32-16-10 feed-forward net-
work with 500 iterations ol backpropagation on Lhe first
500 patterns of the lraining set with seed 12345 and var-
ious values for i and a. The tabular value is the error.

7o @
0.10 U:25 0.50 Q.

=]
Py

0.90

0.269 0.263 0.247 0.203 0.260
0240 0.229 0.196 0.162 0.273
0166 0.153 0.131F 0.238 0.285
1| 124 0116 0.196 0,285 0,316
2000 0197 0,222 0.285 0.316 0.316

=l e —

Figure 1: Scatier plot of testing results vs, Lraining re-
sults for 32-24-10 networks. early stopping. Open circles:
g = 0: filled circles: g = 10~

Figure 2: Scatter plot of testing results vs. training re-
sults for 32-24-10 networks, late stopping. Open cireles:
g = 0 filled circles: = 1073,

I'igure 3: Percenl correct as a function of the percent Un-

known. 32-NUL10 networks. early stopping. g = 1073,

filled circles: VUV = 8¢ filled triangles: N = 16: open Figure 4 Error vs. number of function calls for a 32-24-

circles: N = 24: open triangles: N1 = 32, 10 network, late stopping. p# = 107%, filled circles: SCG:
open cireles: BP.

Figure 3: Percent wrong vs. number of function calls for
a 32-24-10 network. late stopping, g = 1073, filled circles:
SCGr open circles: BP.

