
NISTIR 89-4177

DECODING BAR
CODES FROM
IMAGE DATA

Michael D. Garris
Charles L Wilson

u.s. DEPARTMENTOF COMMERCE
N8tlo •••• Inatltut. of stand.rd •
• nd Tecllnoloe
N8tlo •••• Computer Science Laboratory
Advanced .yst ••••• Dlvl"on
111I8'. R••••• ltlon Group
G.lt ••••••••u•.•• MD 20811

.pon.red by:
Bureau of the cen.u •
• ultland, MD 20735

u.•. DEPARTMENTOF COMMERCE
Robert A. M_bach.r, Secretary
NATIONAL INS11TUTE OF STANDARDS
AND TECHNOLOGY
Raymond Q. Kammer, Actin. Director

Decoding Bar Codes from Image Data
National Institute of Standards and Technology

Advanced Systems Division
July 21, 1989

Michael D. Garris
Charles L. Wilson

Direct image storage technology promises to provide massive improvements in the trans-
mission and storage of forms. Many existing forms use bar codes to provide machine
readable indexing information. While it is possible to provide separate bar code readers
to index these forms, direct decoding of the bar code in a scanned image can simplify
paper handling and systems design. This software was designed to provide portable 'c'
programs which demonstrate the feasibility to directly decode bar codes from raster im-
ages.

The two principal difficulties in direct image decoding of bar codes are image quality and
decoding speed. The bar codes used in the development of these algorithms contain 14
digits of data which would be decoded and transmitted as serial ASCII by a typical at-
tached reader at 1200 baud in approximately 0.093 seconds with transmission being the
time limiting factor. Software decoding must occur in a comparable time.

Image quality issues arise from the basic specifications of the bar code image.
The nominal width of narrow lines or spaces in bar codes can be as small as 0.19 mm
wide. [1,2] This yields 1 to 2 pixel/line with 12 pixel/mm scanning. If the scanning
density is decreased to save on scan time, transmission bandwidth, or image storage
space, then false breaks will result from undersampling the narrow features. By the same
argument, aliasing can introduce false lines.

This aspect of image degradation is particularly evident in the sample set of bar
codes used in this project. ~ese bar codes were generated by a dot matrix printer so that
each wide bar is comprised of 3 concatenated narrow lines. The separation of the 3
component lines is noticeable by humans, and in some samples, the separation is large
enough to be replicated in the scanned images.

3. Basic Algorithms
Three distinct decoding algorithms were developed and tested. Initially a single scan
method was developed which decodes a single scan line without any prior image process-
ing or enhancements. This method minimizes the processing time necessary to decode a
bar code, but it is susceptible to noise within the selected scan line. To ensure reliability,
a global averaging method was developed. This approach takes into account information
from the entire image maximizing reliability at the expense of processing time. Finally, a
hybrid method was designed which samples the original bar code image into a collection
of representative scan lines. These scan lines are then averaged together providing noise
reduction while maintaining efficiency.

The first algorithm developed at NIST simulates in software the physical action of passing
a hand-held reader across a bar code. A single scan line of data from a bar code raster
image has the same information as raw data captured by a conventional reader. A
method was designed to accept a scan line from an image, decode it, and return the
ASCn characters represented by the bar code.

To illustrate this method, a bar code in Figure 1 is shown which uses Inter-
leaved Two of Five to encode 14 numeric digits plus stop and start characters. [3] A
selected scan line is first quantized into an array of integers. One integer quantity is
accumulated for each consecutive duration of on or off pixel values. The quantized
integers are thresholded into binary values corresponding to wide and narrow elements in
the original bar code. These element representations are then organized into character
groupings according to the format specifications of the bar code and interpreted using a
look-up table which maps element groupings to ASCn characters.

Selected
Scan Line

Bar Code Image

1111111111111111111111 111I111111111
111111111111111111 III III 11111111

Extracted Simulated---- ..- -- -..- _ - ----- ...- .---- - .. ---- -- -.--
Scan Line Reader Scan

Quantized Pixel Durations
5 5 6 4 15 16 13 5 7 15 6 5 4 4 4 6 15 14 17 5 5 6 4 15 5 4 4 5 5 ...

Wide = 1 I Narrow = 0
(Threshold = 10)

00001110010000001110000100000 ...

ASCII Characters
(From Look-Up Table)

35627 0 6 7 4 0 0 0 9 1

This method implemented in software to decode images has several advantages
over physical readers. The scan algorithm is resolution and size independent, whereas
physical devices are typically calibrated explicitly for bar codes of uniform dimension and
fixed element size. Programmed parameters can be modified in software to accurately
decode images of varied resolution and size as long as the image is free of image degra-
dation factors discussed in Section 2. Although extremely time efficient, this method is
critically dependent on image quality for ensured reliability.

3.2 Averaging Method:

A second method was designed to average the image data prior to decoding in order to
eliminate image degradations and thereby increase reliability. The fundamental steps
described in Section 3.1 are also used in this algorithm. The difference with this method
is, rather than using a raw scan line of image data for input, a histogram is first com-
puted on the bar code image. This histogram globally averages all the scan lines from an
entire image which in the experiments reported was on average 295 scan lines. By glob-
ally accumulating scan lines, missing pixels rise to the top of the histogram and extra
pixels to fall to the bottom. These accumulators are thresholded producing a binary array
of integers representing a clean raster scan line. Figure 2 illustrates the averaging proc-
ess. Once a clean scan line representation has been produced, it can be decoded just as
in Section 3.1.

Noisy
Bar Code

White Pixel

CE~~;d~ JI ~ I
Data II Threshold

Filtered -+ ~ +- . -+
in Middle Shce

Black Pixe~
Noise

Collected
at Bottom Histogram

Accumulators
Clean

Scan Line

3.3 Hybrid Method:

This method combines the speed efficiency of the Scan Method with the reliability of the
Averaging Method. In this algorithm, a randomly selected sample of scan lines is chosen
to represent the entire bar code image. A histogram computation like the one in Section
3.2 is performed on only the sampled scan lines, and the pixel accumulators are
thresholded. This process is illustrated in Figure 3. This produces an averaged scan line

representation which eliminates most of the image noise while minimizing the amount of
histogram computation. This method then applies the steps used in Section 3.1 to decode
the averaged scan line.

111111 NoiseII ; I nI :. Ci~ll~~;d~

lInl.111 l ~I~ sampled] __ H_a_lf_[iLl ••• I~ Threshold
I __ •••••...-Slice ---.

• II II+- Scan Lines /

iii J II ' ~ .- F~t:~:d• ~I in Bottom
Half

Noisy
Bar Code

Sampled
Histogram

Accumulators
Clean

Scan Line

Two important aspects of decoding bar codes in software were studied and used in the
development of the methods in Section 3. One aspect is the measurement of computation
time versus the reliability of decoding, and the second is what effects do different factors
of image quality have on each method.

Experiments were implemented and executed at NIST on a Sun 3/180 Workstation to
compile speed and reliability statistics for each of the decoding methods. A sample
database of 108 bar code images was digitized at 300 pixels/inch on a Calera binary
scanner and stored for testing. Each of these images is on average 29,578 bytes long with
an average width of 794 pixels and average height of 295 pixels. On average, memory to
hold the image can be allocated and the image read and loaded into the memory in 0.08
seconds.

The Scan Method decodes bar codes from raw image data without any image preprocess-
ing or enhancements. This allows the method to capitalize on speed at the expense of
reliability. An experiment was conducted whereby attempts to select a new scan line
upon decode failure was measured against resulting recognition percentages. A parame-
ter was programmed to regulate the number of retries permitted before the bar code is
rejected as non-decodable.

The following results were tabulated by running the retry algorithm across the
set of 108 bar codes. Timings and decode percentages were accumulated for retry pa-
rameter settings varying from 0 to 10. For each unique parameter value, 100 random
number seeds where used and the Scan Method was applied to all 108 images per individ-
ual seed. The times and recognition percentages that follow are averages of all the runs
executed for each of the retry parameter values. The results of this test are shown in
Figure 4. The times reported are theoretically the maximum time required to successfully
decode a bar code for the given number of retries permitted. These times include the
system overhead to call the Scan Method function and return the decoded value, the
random selection of all permitted scan lines, and the attempt to decode each of the scan
lines. Image load time is not included.

Retries Seconds Decodes % 0.117

0 0.0177593 94.111 0.097
1 0.0288148 98.389 S
2 0.0398703 99.370 e
3 0.0509258 99.657 c 0.077
4 0.0619813 99.769 0

5 0.0730368 99.852 n 0.057
6 0.0840923 99.880 d

s7 0.0951478 99.926 0.037
8 0.1062033 99.944
9 0.1172588 99.944

10 0.1283143 99.972 0.01794 95 96 97 98 99 100
Decode %

Figure 4: Scan Method Time vs Recognition Results

The Averaging Method globally averages the entire image before decoding is attempted.
This enhances the quality of the input data maximizing the percentage of successful
decodings at the expense of processing time. This algorithm was tested across the sample
set of 108 bar code images. Average time to process and decode an image along with the
percentage of correct decodes where computed and the results are shown in Figure 5.

Average + Decode Decode
Seconds %

1.8081487 100.00

The Hybrid Method tries to capitalize on the strengths of the previous two methods while
minimizing their weaknesses. By selecting a limited number of scan lines from the origi-
nal image, a histogram average can be computed on just the sampled data. This enables
preprocessing of image data before decoding while minimizing the amount of computa-
tion time needed. This method is intended to give fast and yet highly reliable bar code
decodings.

Experiments which varied the number of sample scan lines to be used in the
averaging process were conducted to measure both speed and reliability across the test set
of 108 bar code images. Ten unique runs were executed for each scan line sample size
across the complete set of 108 images. Time statistics were averaged across all runs.
Twenty runs each with a unique random number seed were executed across the same set
of images to compile decode percentages. The results from these tests are shown in
Figure 6.

0.0576228
0.0637267
0.0698306

99.815
99.907
99.815

100.00
99.95
99.90
99.85
99.80
99.75
99.70
99.65
99.60
99.55
99.50

Number of
Sample
Lines

6
7
8

0.0576 0.0637 0.0698
Seconds

One of the significant advantages of software bar code processing is that the sensitivity of
the software to image quality can be selected for the application. If the images are of
uniform high quality, then the Scan Method algorithm can be used to maximize speed. If
the image is of very poor quality, then the Averaging Method algorithm can be used to
provide maximum tolerance to image noise. The Hybrid Method algorithm provides a
continuously adjustable set of speed and noise immunity parameters.

It should be kept in mind that the test dot matrix images used in this study are,
based on inspection, substantially lower in quality than images found in commercially
printed bar codes. [4] It would be of interest to compare the reliability of the software
methods presented here with hardware bar code readers.

A reliable method of software bar code reading has been developed at NIST. Using the
Hybrid Method discussed in Section 3.3, a wide variety of speed vs reliability trade-offs
are possible. The method is fully portable and can be incorporated in a wide range of
imaging applications.

We wish to acknowledge B. Hammond, H. Chansky, A. E. Levin, and C. Linett
of the Bureau of the Census for providing NIST the opportunity to research the problem
of processing bar codes in software.

[1] Craig D. Harmon and Russ Adams, Reading Between the Lines, an Introduction to Bar
Code Technology, (North American Technology, Inc., Peterborough, New Hampshire,
1984), p 19.

[2] ANSI Committee MH10.8M, "American National Standard for Material Handling -
Bar Code Symbols on Unit Loads and Transport Packages," (American National Stan-
dards Institute, Inc., New York, New York, 1983), p 11.

[3] Automatic Identification Manufacturers, "Uniform Symbol Description-1 Interleaved
Two of Five," (The Material Handling Institute, Inc., Pittsburgh, Pennsylvania, 1981).

[4] ANSI Committees MH10.8 and X3A1.3, "Guideline For Bar Code Print Quality,"
(proposed working standard, draft December, 1988), pp 16-17, 29-30.

Appendix A: Source Code for Scan Method

/* File Name: 2of5.c */
/* Package: NIST Bar Codes */
/* Scan Method */
/* Author: Michael D. Garris */
/**/
Hinclude <stdio.h>

/* General Definitions */
Hdefine TRUE
Hdefine FALSE
Hdefine BYTE_SIZE
Hdefine ELEMENT LEN
Hdefine THRESH
Hdefine TABLE LEN
Hdefine START_MASK
Hdefine START_LEN
Hdefine STOP_MASK
Hdefine STOP_LEN
Hdefine SPACE
Hdefine BAR
Hdefine NARROW
Hdefine WIDE
Hdefine FOUND
Hdefine NOT_FOUND
Hdefine BADCHAR
Hdefine BAD SCAN

1
o
8
5
10
32
OxOOOO
4
Ox0004
3
o
1
o
1
1
o
o
NULL

/* Function Type Declarations */
int *binarize();
int binary2char();
void collapse ();
char *build_decode_string();
char *decode_2of5();
int startchar();
int stopchar ();
void split ();

/* ASCII Character Look-Up Table */
int table_2of5[TABLE_LEN] =
{

'\0','\0','\0', '7','\0', '4', "'0"','\0',
'\0', '2', '9', '\0', '6', '\0', '\0', '\0',
'\0', '1', '8','\0', '5','\0','\0','\0',
'3' ,'\0' ,'\0' ,'\0' ,'\0' ,'\0' ,'\0' ,'\0'

/**/
/* Decode_2of5 takes a scan line centered vertically within */
/* the input bar code image, decodes the scan line, and if */
/* successful, returns an ASCII string. */
/* expnum - fixed number of characters encoded. */
/* image stream of binary raster data. */
/* width - width in bytes of the image. */
/* height - height in pixels of the image. */
/**/
char *decode_2of5(expnum,image,width,height)
int expnum;
unsigned char *image;
int width, height;
{

unsigned char *line;
int 1,J;
int *quants,nquants,*bins,nbins,*bptr;
int *bars,nbars,*spaces,nspaces;
char *barchars,*spacechars;
int nbchars,nschars;
char *code;

/* assign pointer to center scanline in image */
line = (unsigned char *)(image + «height/2) * width»;
/* quantize consecutive bits of 1's or O's */
collapse(line,width,&quantS,&nquants);
/* convert quantized values to binary using a threshold */
bins = binarize(quants,nquants,THRESH);
/* store address of original memory allocation */
bptr = bins;
/* set number of binarized values */
nbins = nquants;
/* synchronize binbuf in order to search for the start character */
/* if the first element in the line is a space ... */
if««line[O] & Ox0080) != 0) ? BAR : SPACE) == SPACE) {

/* strip off the space and point to the first bar */
bins += 1;
--nbins;

}
/* search for the start character and, if found, strip it off */
if(!startchar(&bins,&nbins,START_MASK,START_LEN»{

fprintf(stderr,"Start character not found in scan\n");
free (bptr) ;
return (BADSCAN) ;

/* search for the stop character */
if(!stopchar(bins,&nbins,ELEMENT_LEN,expnum,STOP_MASK,STOP_LEN»{

fprintf(stderr,"Stop character not found in scan\n");
free (bptr) ;
return (BADSCAN) ;

}
/* separate bar bits from interleaved space bits */
split(bins,nbins,&bars,&nbars,&spaces,&nspaces) ;
/* deallocate binarized buffer */
free (bptr) ;
/* using LUT convert bars to characters */
if(binary2char(bars,nbars,ELEMENT_LEN,&barchars,&nbchars)

fprintf(stderr,"Bad character found in scan\n");
free(bars) ;
free (spaces) ;
free(barchars);
return (BADSCAN) ;

}
/* using LUT convert spaces to characters */
if(binary2char(spaces,nspaces,ELEMENT_LEN,&spacechars,&nschars)==BADCHAR){

fprintf(stderr,"Bad character found in scan\n");
free(bars) ;
free(spaces);
free (barchar s) ;
free(spacechars);
return (BADSCAN) ;

}
/* deallocate bar buffer */
free(bars) ;
/* deallocate space buffer */
free(spaces);
/* if number of bar chars differ from number of space chars, ERROR */
if(nbchars != nschars){

fprintf(stderr,"Character Synchronization Error in scan\n");
free(barchars);
free(spacechars) ;
return (BADSCAN) ;

}
/* construct output decode string */
code = build_decode_string(barchars,nbchars,spacechars,nschars);
/* deallocate bar characters buffer */
free (barchars)
/* deallocate space characters buffer */
free(spacechars);
/* return the decoded ASCII character string */
return(code);

/**/
/* Collapes takes a raster scan line and returns a list of */
/* quantized accumulations for consecutive durations of on */
/* or off pixels in the scan line. */
/* data - binary scan line. */
/* len - width in bytes of the scan line. */
/* obuf - pointer to return the quantized list. */
/* olen - pointer to the length of the quantized list. */
/**/
void collapse(data,len,obuf,olen)
unsigned char *data;
int **obuf;
int len,*olen;
{

(*obuf) = (int *)malloc(len * sizeof(int»;
count = 0;
/* get the first bit in the buffer */
curbit = «(data[O] & Ox0080) != 0) ? 1 0);
/* for each byte in the buffer */
for(i = 0; i < len; i++){

/* set a mask to get bits left to right */
mask = Ox0080;
/* for each bit in the current byte */
for(n = 0; n < BYTE_SIZE; n++){

/* get the bit */
bit = «(data[i] & mask) != 0) ? 1 0);

/* if the same bit */
if (bit == curbit)

/* bump number of same bits */
count++;

else {
/* store the duration into output buffer */
(*obuf) [j++] = count;
/* have seen the first bit of new bits */
count = 1;
curbit = bit;

}
/* shift mask for next bit */
mask = mask» 1;

}
(*obuf) [j++]
*olen = j;

/* Binarize takes an input list and a threshold and
/* the binarized list having applied the threshold.
/* qbuf - input list.
/* qlen - length of the input list.
/* thresh- threshold value.

returns */
*/
*/
*/
*/

/**/
int *binarize(qbuf,qlen,thresh)
int *qbuf,qlen, thresh;
{

bins = malloc(qlen * sizeof(int»;
for(i = 0; i < qlen; i++){

if(qbuf[i] < thresh)
bins[i] 0;

else
bins[i] 1;

}
return(bins);

/**/
/* Startchar searches a list of elements for a start char, */
/* and if successful, strips the start char from the list */
/* of elements. */
/* ibuf - list of elements. */
/* ilen number of elements in the list. */
/* sc - start character bit pattern. */
/* sclen - number of elements in the start char. */
/**/
int startchar(ibuf,ilen,sc,sclen)
int **ibuf, *ilen;
int sC,sclen;
{

/* last possible position */
last = (*ilen) - sclen;
/* while not at end of list ... */
while(i < last) {

t = 0;
/* foreach element in start char ... */
for(j = 0; j < sclen; j++){

/* build a potential start char */
t += (*ibuf) [i+j];
if(j < (sclen-1»

t = t « 1;

}
/* if start char found ... */

if(t == sc){
/* strip start char from list */
(*ibuf) += (i+j);
(*ilen) -= (i+j);
return(FOUND);

}
return(NOT_FOUND);

/**/
/* Stopchar searches a list of elements for a stop char, */
/* and if successful, strips the stop char from the list */
/* of elements. */
/* ibuf - list of elements. */
/* ilen number of elements in the list. */
/* incr number of elements per character. */
/* expt - number of expected characters in bar code. */
/* sc - start character bit pattern. */
/* sclen - number of elements in the start char. */
/**/
int stopchar(ibuf,ilen,incr,expt,sc,sclen)
int *ibuf, *ilen, incr, expt, sc, sclen;

/* last position of possible characters */
last = expt * incr;
/* if input buffer too short ... */
if(*ilen < (last + sclen»

return(NOT_FOUND);
t = 0;
/* foreach element in the stop char ...*/
for(j = 0; j < sclen; j++){

/* build a potential stop char */
t += ibuf[last+j];
if(j < (sclen-1»

t = t « 1;
}
/* if stop character found ... */
if(t == sc){

/* strip off the stop char */
(*ilen) = last;
return(FOUND);

else
return(NOT_FOUND);

/**/
/* Split divides an input list into two even length output */
/* lists by alternatingly assigning elements. */
/* inbuf - input list of elements. */
/* inlen - number of input elements. */
/* obuf1 - output list 1. */
/* olen1 number of elements in obuf1. */
/* obuf2 - output list 2. */
/* olen2 number of elements in obuf2. */
/**/
void split(inbuf,inlen,obuf1,olen1,obuf2,olen2)
int *inbuf,inlen;
int **obuf1,*olen1;
int **obuf2,*olen2;
{

/* allocate output lists */
*obuf1 = (int *)malloc«(inlen/2)+1) * sizeof(int»;
*obuf2 = (int *)malloc«(inlen/2)+1) * sizeof(int»;
/* foreach element in the input list ... */
for(i = 0; i < inlen; i++){

/* alternate list assignments */
if(s == O){

(*obuf1)[j++l = inbuf[il;
s = 1;

}
else{

(*obuf2) [k++l
s = 0;

}
*olen1
*olen2

/**/
/* Binary2char converts an input element list into a decoded*/
/* output list of ASCII characters. */
/* buf - list of input elements. */
/* len - number of input elements. */
/* window - number of elements per character. */
/* cbuf - output character buffer. */
/* clen - number of output characters. */
/**/
int binary2char(buf,len,window,cbuf,clen)
int *buf,len;
int windoW,*clen;
char **cbuf;

int i,j,num;
int t,b = 0;

/* how many possible characters do we have */
num = len/window;
/* allocate the output character buffer */
*cbuf = (char *)malloc(num*sizeof(char»;
/* foreach expected character */
for(i = 0; i < num; i++){

t = 0;
/* foreach element in a character */
for(j = 0; j < window; j++){

t += buf[b++];
if(j < (window - 1»

t = t « 1;

}
/* address the LUT with the char's elements */
(*cbuf) [i] = table_2of5[t];
/* if a bad character the ERROR */
if«*cbuf) [i] == NULL)

return (BADCHAR) ;
}
(*clen) = i;
return(TRUE) ;

/**/
/* Build_decode_string interleaves an input buffer of bar */
/* characters with a buffer of space characters returning */
/* an ASCII string of characters represented by the bar */
/* code. */
/* barchars - buffer of bar characters. */
/* nbchars - number of bar characters. */
/* spacechars - buffer of space characters. */
/* nschars - number of space characters. */
/**/
char *build_decode_string(barchars,nbchars,spacechars,nschars)
char *barchars,*spacechars;
int nbchars,nschars;

int i,j;
char *code;

/* allocate output decode buffer */
code = (char *)malloc«nbchars + nschars + 1) * sizeof(char»;
/* for each bar and space character pair ...*/
for(i = O,j = 0; j < nbchars; i+=2){

/* store bar character */
code[i] = barchars[j];
/* store space character */

}
/* Null terminates to create a string for printing */
code[i] = NULL;
return(code) ;

/* File Name: H2of5.c */
/* Package: NIST Bar Codes */
/* Averaging Method */
/* Author: Michael D. Garris */

/* Function Type Declarations */
void compute_y_hist();
void quantizeo;
int find_max_bin();
void rasterize();

/**/
/* Decode_h2of5 computes a global histogram on the input */
/* bar code image, thresholds the histogram bins, decodes */
/* the thresholded bins, and if successful, returns an */
/* ASCII string. */
/* expnum fixed number of characters encoded. */
/* image stream of binary raster data. */
/* width width in bytes of the image. */
/* height - height in pixels of the image. */
/**/
char *decode_h2of5(expnum,image,width,height)
int expnum;
unsigned char *image;
int width,height;
{

int i,j;
int *quants ,nquants ,*bins,nbins, *bptr;
int *bars,nbars,*spaces,nspaces;
char *barchars,*spacechars;
int nbchars,nschars;
char *code;
int *hbins,len,max;

/* compute y-oriented histogram on entire image */
compute_y_hist(image,width,height,&hbins,&len);
/* find the maximum histogram bin value */
max = find_max_bin(hbins,len);
/* threshold histogram bin values to 1'5 and 0'5 */
rasterize(hbins,len, (int) (max * PCT_THRESH»;
/* quantize consecutive integers of 1'5 or 0'5 */
quantize(hbins,len,&quants,&nquants);

/* convert quantized values to binary using a defined threshold */
bins = binarize(quants,nquants,THRESH);
/* store address of original memory allocation */
bptr = bins;
/* set number of binarized values */
nbins = nquants;
/* deallocate quants buffer */
free (quants) ;
/* synchronize binarized buffer in order to search for */
/* the start character */
if(hbins[O] == SPACE) {

/* strip off the space and point to the first bar */
bins += 1;
--nbins;

}
/* deallocate histogram buffer */
free(hbins);
/* search for the start character and, if found, strip it off */
if(!startchar(&bins,&nbins,ELEMENT_LEN,expnum,START_MASK,START_LEN»{

fprintf(stderr,"Start character not found in scan\n");
free (bptr) ;
return (BADSCAN) ;

}
/* search for the stop character */
if(!stopchar(bins,&nbins,ELEMENT_LEN,expnum,STOP_MASK,STOP_LEN»{

fprintf(stderr,"Stop character not found in scan\n");
free(bptr);
return (BADSCAN) ;

}
/* separate bar elements from interleaved space elements */
split(bins,nbins,&bars,&nbars,&spaces,&nspaces);
/* deallocate binarized buffer */
free(bptr);
/* use LUT to convert bar elements to characters */
if (binary2char(bars ,nbars ,ELEMENT_LEN,&barchars ,&nbchars) BADCHAR) {

fprintf(stderr,"Bad character found in scan\n");
free(bars);
free(spaces);
free (barchars) ;
return (BADSCAN) ;

}
/* use LUT to convert space elements to characters */
if(binary2char(spaces,nspaces,ELEMENT_LEN,&spacechars,&nschars)==BADCHAR){

fprintf(stderr,"Bad character found in scan\n");
free(bars);
free(spaces);
free(barchars);
free(spacechars);
return (BADSCAN) ;

/* deallocate bars buffer */
free(bars);
/* deallocate spaces buffer */
free (spaces) ;
/* if number of bar chars differs from number of space chars, ERROR */
if(nbchars != nschars){

fprintf(stderr,"Character Synchronization Error in scan\n");
free(barchars);
free(spacechars);
return (BADSCAN) ;

}
/* construct output decode string */
code = build_decode_string(barchars,nbchars,spacechars,nschars);
free (barchar s) ;
free(spacechars);
return(code) ;

/***/
/* Compute_y_hist computes a Y-oriented histogram on the */
/* input image with the parameters passed. */
/* data - raster image data. */
/* width - width of image in bytes. */
/* height - height of image in pixels. */
/* bins - histogram accumulation bins. */
/* len - number of accumulators. */
/***/
void compute_y_hist(data,width,height,bins,len)
unsigned char *data;
int width,height,**bins,*len;
{

int num,y,x_byte,i,bnum,mask;
unsigned char s;

/* compute pixel width of image */
num = width * BYTE_SIZE;
/* allocate the list of accumulators */
(*bins) = (int *)malloc(num * sizeof(int»;
/* initialize the accumulators to 0 */
for(i = 0; i < num; i++)

(*bins) [i] = 0;
/* foreach scan line in the image ... */
for(y = 0; y < height; y++){

bnum = 0;
/* foreach byte in the current scan line */
for(x_byte = 0; x_byte < width; x_by te++) {

mask = Ox0080;
s = *(data + «y * width) + x_byte»;
/* foreach bit in the current byte */
for(i = 0; i < BYTE_SIZE; i++){

/* accumulate the bit */
if «s & mask) != 0)

«*bins) [bnum])++;
mask = mask » 1;
bnum++;

}
*len num;

/***/
/* Find_max_bin returns the maximum value from the list of */
/* integers passed. */
/* bins - list of integer accumulators. */
/* len - number of accumulators. */
/***/
int find_max_bin(bins,len)
int *bins,len;
{

max = bins[O];
for (i = 1; i < len; i++) {

if (bins [i] > max) {
max = bins[i];

}
return(max);

/**/
/* Rasterize takes an input list of integers and given a */
/* threshold and returns the list binarized. */
/* bins - input integer list. */
/* len - length of the input list. */
/* thresh - threshold value. */
/**/
void rasterize(bins,len,thresh)
int *bins, len,thresh;
{

for (i = 0; i < len; i++) {
if (bins[i] < thresh)

bins [i] 0;
else

bins[i] 1;

/**/
/* Quantize takes a binarized list of integers and returns */
/* a list of quantized accumulations for consecutive */
/* durations of on or off integers in the input list. */
/* data - binary scan line. */
/* len - width in bytes of the scan line. */
/* obuf - pointer to return the quantized list. */
/* olen - pointer to the length of the quantized list. */
/**/
void quantize(data.len.obuf.olen)
int *data;
int **obuf;
int len.*olen;

/* allocate the output list */
(*obuf) = (int *)malloc(len * sizeof(int));
count = 0;
/* get the first int in the buffer */
curint = data[Ol ;
/* for each int in the buffer */
for(i = 0; i < len; i++){

/* if the same int '" */
if(data[il == curint)

/* bump number of same ints */
count++;

else {
/* store the duration into output buffer */
(*obuf) [j++l = count;
/* have seen the first int of new bits */
count = 1;
curint = data[il ;

}
(*obuf) [j++l
*olen = j;

Appendix C: Hybrid Method Source Code

/**/
/* File Name: R2of5.c */
/* Package: NIST Bar Codes */
/* Hybrid Method */
/* Author: Michael D. Garris */
/**/

#define NUM_LINES
#define MAXRAND
#define RANGE

6
2147483647
150

void accum_y_hist();
int select_scanline();

/**/
/* Decode_r2of5 randomly selects a predefined number of */
/* scan-lines to represent the bar code image and then */
/* computes a vertical histogram on the sample represen- */
/* tation. The routine thresholds the accumulated pixel */
/* bins from the histogram, averaging out any noise in */
/* the original image data. An array of quantized dur - */
/* ations of on and off pixel values is then interpreted */
/* as the bar code and an ASCII string of characters */
/* represented by the original bar code is returned. */
/* expnum - fixed number of characters encoded. */
/* image stream of binary raster data. */
/* width - width in bytes of the image. */
/* height - height in pixels of the image. */
/**/
char *decode_r2of5(expnum,image,width,height)
int expnum;
unsigned char *image;
int width,height;
{

unsigned char *line;
int i,j;
int *quants,nquants,*bins,nbins,*bptr;
int *bars,nbars,*spaces,nspaces;
char *barchars,*spacechars;
int nbchars,nschars;
char *code;
int *hbins,len,max,rnd,nline;

/* compute length of histogram bin list */
len = width * BYTE_SIZE;
/* allocate histogra~ bin list */

hbins = (int *)malloc(len * sizeof(int»;
/* initialize histogram bins to zero */
for (i = 0; i < len; i++)

hbins[i] = 0;
/* foreach scanline to be used in the histogram ... */
for (i = 0; i < NUM_LINES; i++) {

/* randomly select a scanline */
nline = select_scanline(height,RANGE);
/* assign pointer to center scanline in image */
line = (unsigned char *)(image + (nline * width»;
/* accumulate into histogram bins the current scanline */
accum_y_hist(line,width.1.hbins,len) ;

}
/* find the maximum histogram bin value */
max = find_max_bin(hbins,len);
/* threshold histogram bin values to 1's and O's */
rasterize(hbins,len. (int) (max * PCT_THRESH»;
/* quantizes consecutive integers of 1's or O's */
quantize(hbins.len,&quants.&nquants);
/* convert quantized values to binary using a defined threshold */
bins = binarize(quants,nquants,THRESH);
/* store address of original memory allocation */
bptr = bins;
/* set number of binarized values */
nbins = nquants;
/* deallocate quants buffer */
free (quants) ;
/* synchronize binarized buffer in order to search for */
/* the start character */
if(hbins[O] == SPACE) {

/* strip off the space and point to the first bar */
bins += 1;
--nbins;

}
/* deallocate histogram buffer */
free(hbins);
/* search for the start character and, if found, strip it off */
if(!startchar(&bins,&nbins.ELEMENT_LEN.expnum.START_MASK.START_LEN»{

fprintf(stderr."Start character not found in scan\n");
free (bptr) ;
return (BADSCAN) ;

}
/* search for the stop character */
if(!stopchar(bins,&nbins,ELEMENT_LEN,expnum.STOP_MASK.STOP_LEN»{

fprintf(stderr."Stop character not found in scan\n");
free(bptr);
return (BADSCAN) ;

}
/* separate bar elements from interleaved space elements */
split(bins,nbins,&bars.&nbars.&spaces,&nspaces) ;

/* deallocate binarized buffer */
free(bptr);
/* use LUT to convert bar elements to characters */
if(binary2char(bars,nbars,ELEMENT_LEN,&barchars,&nbchars)

fprintf(stderr,"Bad character found in scan\n");
free(bars);
free(spaces);
free(barchars);
return(BADSCAN);

}
/* use LUT to convert space elements to characters */
if(binary2char(spaces,nspaces,ELEMENT_LEN,&spacechars,&nschars)==BADCHAR){

fprintf(stderr,"Bad character found in scan\n");
free (bars) ;
free (spaces) ;
free(barchars);
free(spacechars);
re turn (BAD SCAN) ;

}
/* deallocate bars buffer */
free (bars) ;
/* deallocate spaces buffer */
free(spaces);
/* if number of bar chars differs from number of space chars, ERROR */
if(nbchars != nschars){

fprintf(stderr,"Character Synchronization Error in scan\n");
free(barchars);
free(spacechars);
return (BADSCAN) ;

}
/* construct output decode string */
code = build_decode_string(barchars,nbchars,spacechars,nschars);
free(barchars);
free(spacechars);
return(code);

/**/
/* Select_scanline randomly returns a scanline index within */
/* a given range. */
/* height - of the raster image in pixels. */
/* range - range from which to choose scanlines. */
/**/
int select_scanline(height,range)
int height, range;
{

int rnd, nline;

rnd = (rand() % range);
if (rnd < (range»l))

nline (height»1) rnd;
else

nline (height»1) + (rnd - (range»1»;
return (nline) ;

/***/
/* Accum_y_hist incrementally accumulates a histogram upon */
/* successive calls given image data defined by the para- */
/* meters passed. */
/* data - raster image data. */
/* width - byte width of image. */
/* height - pixel height of image. */
/* bins - output accumulators. */
/* len - number of output accumulators. */
/***/
void accum_y_hist(data,width,height,bins,len)
unsigned char *data;
int width,height,*bins,len;
{

int num,y,x_byte,i,bnum,mask;
unsigned char s;

/* foreach scanline ... */
for(y = 0; y < height; Y++){

bnum = 0;
/* foreach byte in current scanline ... */
for(x_byte = 0; x_byte.< width; x_byte++) {

mask = Ox0080;
s = *(data + «y * width) + x_byte»;
/* foreach bit in the current byte */
for(i = 0; i < BYTE_SIZE; i++){

/* accumulate the bit */
if «s & mask) != 0)

(bins[bnum)++;
mask = mask » 1;
bnum++;

NIST-114A U.S. DEPARTMENT OF COMMERCE 1. PUBUCATION OR REPORT NUMBER

(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NISTIR 89-4177
2. PERFORMING ORGANIZATION REPORT NUMBER

BIBLIOGRAPHIC DATA SHEET SEPTEMBER 1989
3. PUBUCATION DATE

4. TITLE AND SUBTITLE

Decoding Bar Codes from Image Data
5. AUTHOR(S)

Michael D. Garris and Charles L. Wilson
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7. CONTRACT {GRANT NUMBER

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

8. TYPE OF REPORT AND PERIOD COVEREDGAITHERSIURG, MD 20899

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

Bureau of the Census
Suitland. MD 20735

10. SUPPLEMENTARY NOTES

n DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF·1as, FIPS SOFTWARE SUMMARY, IS ATTACHED.
11. AISTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT IIIUOGRAPHY OR

UTERATURE SURVEY, MENTION IT HERE.)

Image storage technology using direct decoding of bar codes in scanned images can simplify
paper handling and improve the transmission and storage of forms. Software was developed
to provide portable 'c' programs which demonstrate the feasibility to directly decode bar
codes from raster images. Three distinct decoding algorithms were developed and tested:
l. A scan method was developed which decodes a single scan line without any prior image

processing or enhancements. This method minimizes the processing time necessary to
decode a bar code. but is susceptible to noise within the scan line.

2. A global histogram averaging method was developed to ensure reliability. This method
takes into account information from the entire image maximizing reliability at the
expense of processing time.

3. A hybrid method was designed which samples the original bar code into a collection of
representative scan lines. These scan lines are then averaged together providing noise
reduction while maintaining efficiency.

These methods are fully portable and can be incorporated in a wide range of image
applications.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS IY SEMICOLONS)

averaging method; bar code; histogram; hybrid method; raster image; scan method

13. AVAILAIIUTY 14. NUMIER OF PRINTED PAGES

r---x
UNUMITEDI--
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

28
I-- 15. PRICE

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

A037 ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

