
 1

An Evaluation of Description Logic for the Development of Product Models

Xenia Fiorentini, Sudarsan Rachuri, Hyowon Suh, Jaehyun Lee, Ram D Sriram

Manufacturing Systems Integration Division,
 Design Process Group,

National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

{xenia.fiorentini, rachuri.sudarsan, hyowon.suh, lee.jaehyun, ram.sriram}@nist.gov

Abstract

The languages and logical formalisms developed by information scientists and logicians
concentrate on the theory of languages and logical theorem proving. These languages,
when used by domain experts to represent their domain of discourse, most often have
issues related to the level of expressiveness and need specific extensions. In this paper we
first analyze the requirements for the development of structured knowledge
representation models for manufacturing products using ontologies. We then explore how
these requirements can be satisfied through the levels of logical formalisms and
expressivity of a structured knowledge representation model. We report our evaluation of
Description Logic (DL) with respect to the requirements by giving an example of a
product ontology developed with OWL (Ontology Web Language-Description Logic). In
order to represent a product, we also need to combine both DL expressivity and domain-
specific rules. Domain-specific rules are defined to add specific constraints in the
knowledge base and we have used SWRL (Semantic Web Rule Language) for this
purpose. We present a case study of an electro-mechanical product to validate the
evaluation and further show how the OWL-DL reasoner together with the rule engine can
enable reasoning of the product ontology. We finally discuss the open issues such as
capabilities and limitations related to the usage of DL, OWL and SWRL for product
modeling.

1 Introduction

In a typical industrial scenario a number of enterprises collaborate to accomplish various
tasks by sharing resources, applications and services infrastructure throughout the
product lifecycle. The elements that describe this scenario can primarily be grouped into
i) entities, e.g., applications, persons and enterprises and ii) connections between these
entities, e.g., data exchange and collaborations. In this network of entities, product
models play a crucial role in achieving interoperability. To work together, the entities
have to share a common model through which they can communicate. For example
geometry representation models, such as STEP (Standard for the Exchange of Product
model data) AP 203 [1], are used to exchange product geometry information between
CAD systems, PDM (Product Data Management) schema [2] is used to share product
data (identification, classification, structure and relationships, and properties of parts,
work management data, etc.) between engineering information systems.

 2

In this landscape of product models, semantic models can enable entities to achieve
reliable and efficient collaboration. The tasks achievable with the semantic model include
inferring new knowledge, querying, retrieving, and storing. To facilitate knowledge
sharing, semantic models are used e.g., to eliminate ambiguities and to enable knowledge
reuse by making domain assumptions explicit.

Developing product semantic models requires knowledge and information from different
fields: domain knowledge, product modeling, programming, knowledge representation
reasoning, etc. In this paper we focus on logic-based representation, which is currently in
vogue for the semantic web applications.

Our approach is to match the requirements for product modeling to the expressivity
provided by description logic. To meet the product modeling requirements we also need
domain-specific rules. We provide some examples taken from a semantic model that we
developed to test the expressivity of description logic (DL) for product modeling (Core
Product Model and Open Assembly Model [3]). We hope to provide a critical and
impartial assessment of the use of DL for product modeling.

This paper is structured as follows. In section 2 we review previous product ontologies
and their representations, and emphasize the necessity of our evaluation. In section 3 we
analyze the expressivity requirements for product model representation. In section 4 we
describe how the expressivity of DL can support the expressivity requirements for the
product model. OWL-DL 1.0 (Ontology Web Language) [4] and Protégé (tool) are
currently very popular with ontology researchers. We discuss how these two meet DL
requirements in section 5. In section 6 we introduce CPM/OAM as product model for
evaluation. Section 7 presents how the DL expressivity is used in representing the
product model. Section 8 provides some examples of reasoning mechanisms based on DL
and domain specific rules. Section 9 describes the expressivity requirements that cannot
be satisfied either with DL or with domain specific rules. The modeling language is
included in our evaluation. We provide our conclusions in Section 10.

We use the following notations: classes are in Arial font (Artifact), the properties are in
Arial font with leading character in lowercase (partOf), individuals are in Arial italics font
with the leading character in lowercase (myCar).

2 Previous Research on Product Ontologies

Many of the product ontologies that are available in literature can be categorized into two
groups according to their modeling scope. One is specific product ontologies, and another
is generic product ontologies. Since the 1990’s, many specific product ontologies have
been proposed, and each of them was represented or implemented in different languages.
So, specific product ontologies can be further classified according to their languages’
expressivity. We classified them into three types: semi-structured representation, object-
oriented representation, logic/rule representation.

STEP -the Standard for the Exchange of Product model data- is a comprehensive ISO
standard (ISO-10303) that describes how to represent and exchange digital product

 3

information [5]. STEP has been very successful in specifying data models for domains
such as solid modeling and finite-element geometry. STEP uses the EXPRESS language
to represent information models. Product Data Markup Language (PDML) is a set of
XML vocabularies for deploying product data on the internet [6]. PDML adopted STEP
Integrated Resources for its information model, and it used XML instead of EXPRESS.

CONGEN [7], SHARED [8] and OAM product models [9] were specific product
ontologies represented in an object-oriented representation. CONGEN (a framework for
conceptual design) is the design application shell implemented as a part of the MIT DICE
project. It provided a design knowledge representation scheme, and maintained design
alternatives and context information. A product-process model, which included
primitives such as context, specification, artifact, function, form, behavior, decision, goal
and plan, formed the basis for the design knowledge representation. The DICE project
also developed comprehensive engineering knowledge bases, called SHARED. Sudarsan
et al. [9] proposed the Open Assembly Model (OAM) to provide a standard
representation and exchange protocol for assembly and system-level tolerance
information. OAM was extensible: it provided for tolerance representation and
propagation, representation of kinematics, and engineering analysis at the system level.
OAM was based on the Core Product Model (CPM), and it was represented in UML.

Generic product ontologies, such as the MOKA [10] product model and the NIST Core
Product Model (CPM), were represented in object-oriented languages such as UML. The
MOKA product model [11] supported five distinct views of a product: 1) structure, 2)
function, 3) behavior, 4) technology, and 5) representation. In MOKA the product
informal model was described using a class diagram in UML. Fenves et al. [12] proposed
the CPM to provide a base-level product model that is open, nonproprietary, generic,
extensible, independent of any one product development process and capable of capturing
the full engineering context commonly shared in product development. Initially, they
used UML to represent CPM, and mapped it to OWL-DL later on.

In the past decades, a number of researchers have developed product ontologies using
logic-based formalisms. We discuss a few representative projects. There were also many
specific product ontologies represented in logic or rule languages. Lin et al. [13]
proposed a requirement ontology to manage customers’ requirements, product
specifications and relations among them. They defined the requirement ontology in first
order logic (FOL), and implemented it in Prolog in an object-oriented fashion. Borst and
Akkermans [14] developed an engineering ontology based on the PHYSYS ontology.
The PHYSYS ontology included three conceptual viewpoints on physical systems: 1)
system layout, 2) physical processes underlying behavior, and 3) descriptive
mathematical relations. They represented the ontology in KIF (Knowledge Interchange
Format) [15]. Kitamura et al. [16] designed a functional concept ontology, which
provided a rich vocabulary for functional representation. They applied the functional
concept ontology to the automatic identification of functional structure of an existing
product. They implemented their functional understanding system using Lisp. Kim et al.
[17] defined an assembly ontology by enhancing the assembly relation mode using

 4

ontologies. Their ontology represents engineering, spatial, assembly, and joining relations
in an assembly. They implemented their ontology using both OWL and SWRL.

Although the above product ontologies worked well for their specific purposes, a generic
product ontology is still required to express product lifecycle knowledge uniformly and
consistently. The concepts and relations involved in a generic product ontology have
semantically different levels of abstraction. For example, a product’s geometry or form
are physical concepts, but the product’s requirement, function or behavior are abstract
concepts. A generic product ontology should include all of those concepts, and specify
their semantics explicitly and logically.

Expressive logic and rule representation are required in order to specify semantics of all
concepts and relations in a product lifecycle. However, no rigorous evaluation has been
made on the applicability of logic for product representations. Nonetheless, many
previous researches proposed their product ontologies using logic representations, and
consequently no one knows whether their logic representations had enough
expressiveness to represent their product ontologies or not. In the following sections we
attempt to do such an evaluation.

3 Expressivity Requirements for Product Representation

In this paper we focus on product models that have to be shared along the whole product
lifecycle. These models have to be generic enough to:

• Represent the core characteristics of the product.

• Be independent from specific product development processes.

• Be compatible with the detailed product representation that each application
contains.

The development of such a high level interoperable model poses many challenges, such
as encoding complex nature of interactions in product modeling and representing
semantics. Hence, the information model for representing manufacturing product is
inherently complex.

The following partial list sketches some of the issues with respect to each information
element:

• Function: one aspect of what the artifact is supposed to do. The artifact satisfies the
engineering requirements largely through its functions [3].

• Behavior: information supporting the simulation of the product under some given
conditions. This simulation could be, for example, kinematics, dynamics and control
systems.

• Structure: the individual parts that constitute the assembly, the hierarchy of the
composition tree (parts-subassemblies-assembly) and the associated Bill of
Materials (BOM).

 5

• Geometry and material: a generic shape, chosen by the designer at early stages of
the lifecycle and defined geometry and material captured in one or more CAD
(Computer-Aided Design) systems.

• Features: a portion of the artifact’s form that has some specific functions assigned
to it. An artifact may have design features, analysis features, manufacturing features,
etc., as determined by their respective functions [3].

• Tolerances: tolerance design is the process of deriving a description of geometric
tolerance specifications for a product from a given set of desired properties of the
product. Tolerancing includes both tolerance analysis and tolerance synthesis [3].

The second source of complexity is due to the abstraction principles needed to represent
the information on products. The model may incorporate the following mechanisms [18]:

• Generalization / specialization: relationships built through intentional properties, e.g.,
“gear shifts are mechanical assemblies.” This abstraction principle involves a
hierarchical mechanism where concepts are categorized through the general
knowledge of the problem.

• Grouping / individualization: relationships built through extensional properties, e.g.,
“manual gear shifts are gear shifts.” In this case concepts are categorized through the
specific knowledge of the represented domain and the group can contain
heterogeneous things.

• Classification / instantiation: relationships between a real object (instance) and the
concept it belongs to, e.g., “gear shift #1 is a gear shift.” In modeling, particular
attention needs to be paid to the establishment of the boundary between concepts and
real objects.

• Aggregation / decomposition: part-of relationships between an element and its
constituents, e.g., “gear shifts are part-of cars” and “gear shift #1 is part-of car #1.”

Other types of part-of relationships may be required, for example, a given chemical
compound “consists of” many other chemicals. For more details regarding general part-of
formalisms, readers can refer to the General Extensional Mereology [19].

This paper outlines evaluation of the expressiveness of DL to capture both the
information content and the abstraction principles discussed above, with the aim of
developing a consistent formal model for manufacturing product assemblies. We use the
terms expressiveness to mean both language expressiveness and processible
expressiveness [20]. The language expressiveness is related to the language symbols,
rules, conventions and vocabulary, while the processible expressiveness is related to the
computability. For more detailed discussion on the issues related to the computational
complexity, please refer to [21] [22].

4 DL expressivity in product modeling

Description Logic (DL) is a family of knowledge representation languages used to
represent the knowledge of a domain in a structured fashion. The domain is modeled by

 6

means of concepts and roles, which denote, respectively, classes of objects and
relationships between objects. The concepts and roles, together with knowledge
specification mechanisms, form the knowledge base. Automatic reasoning procedures
can be performed on the knowledge base.

DL is decidable, that is, there exists an automatic reasoning procedure such that, for
every knowledge specification mechanism in the logic, the reasoning procedure is
capable of deciding whether the mechanism is valid or not [23]. DL expressiveness
enables explicit information representation and support inference mechanisms, i.e.,
mechanisms to find implicit consequences based on the explicit information.

4.1 DL for information representation

The DL formalism allows us not only to create concepts but also to create concept level
hierarchies of the knowledge using is-a relationships (e.g., car is-a vehicle), to express
complex roles (properties) between concepts (e.g., cars have exactly four wheels while
bicycles have exactly two wheels) and to declare the membership of an individual in a
concept (e.g., car #1 belongs to the concept of cars). Thus, the DL formalism helps us in
satisfying some of the requirements inherent to the abstraction principles as well as
information elements listed in Section 3:

• Function, behavior, structure, geometry and material, features, tolerances can be
expressed in concepts and roles

• Generalization / specialization can be expressed as taxonomy structures in DL.

• Grouping / individualization where we can create in DL a complex concept that
represents the grouping of concepts.

• Classification / instantiation where DL allows for the declaration of the membership
of an individual in a concept.

4.2 DL for inference mechanisms

For inference mechanisms, consider the examples in Table 1. The first two questions are
inherent to the generalization and grouping abstraction principles. The third and fourth
questions address the classification abstraction principle, while the fifth question deals
with the aggregation abstraction principle. In the second column we use the concepts of
Vehicle, Car, Bicycle, Wheel and Engine to create our knowledge base and to query it. In
the third column we present the DL mechanisms that allow for answers to those queries.
In the fourth column we show answers to these queries.

Table 1: Examples of inference mechanisms

 Question DL mechanisms Answer
1 We subsume the concept

of Car1 in the concept of
Bicycles2. Is it logically
correct?

The “consistency
checking” mechanism
finds whether a concept
admits at least one
individual.

No, the model is
inconsistent. There cannot be
an individual that has four
wheels and is a bicycle at the
same time.

 7

2 We introduce the
concept of ElectricCar.
What is its position in
the hierarchy?

The “subsumption”
mechanism finds
implicit sub-concept
relationships.

In the concept’s hierarchy,
the ElectricCar concept is a
sub-concept of Car.

3 We declare myCar as an
individual of the concept
of Vehicle with four
wheels. Is it a Car or a
Bicycle?

The “realization
reasoning” mechanism
finds the most specific
concept for each
individual.

myCar has four wheels, so it
is an individual of the
concept of Car.

4 Which cars have the
same kind of wheels?

The “retrieval”
mechanism finds the
individuals that are
instances of a given
concept or intersection
of concepts.

The set of different instances
of Car that have same kind of
wheels.

5 We declare a wheel part-
of a car but the engine
powering that wheel is
partOf another car. Is it
logically correct?

DL can not help here
since DL can not
specify restrictions
among properties’
instances.

The individual of the Wheel
concept is connected to the
wrong individual of Car. The
partOf property between the
concepts of Wheel and Car is
still correct.

1 Car is a Vehicle with four wheels
2 Bicycle is a Vehicle with two wheels

The DL formalism consists of four reasoning mechanisms [23]: consistency checking,
subsumption, realization, and retrieval. Each of these provides the answer for one of the
first four questions. The fifth question represents a different situation, it falls outside the
scope of DL. To answer this question we need to represent appropriate role paths
between individuals and not between classes. In other words it is the role path, going
from the instance of Wheel to the instance of Car passing through the instance of Engine,
which has to be constrained. To answer the fifth question, we have to introduce new
elements in the representation: domain-specific rules.

4.3 Domain-specific rules

Domain-specific rules are defined to add specific constraints in a knowledge base. These
rules are in the form of implications between an antecedent (body) and a consequent
(head): whenever the conditions specified in the antecedent hold, then the conditions
specified in the consequent must also hold. These rules not only allow the declaration of
the membership of an individual to a concept, but also the declaration of properties with
specific constraints between individuals. In the fifth example given in Table 1, a rule can
state that if a wheel is powered by an engine and that engine is part-of a car, then the
wheel has to be part-of the same car.

In order to represent knowledge in the assembly domain, i.e., to answer all five questions
in Table 1, we need to combine both DL expressivity and domain-specific rules.

 8

5 Languages and tools

Several modeling languages and tools can be considered to implement both the DL
expressivity and the domain-specific rules.

5.1 Modeling Languages

We discuss the applicability of several commonly used modeling languages for DL
expressivity. The candidate languages have been evaluated according to their capability
of expressing DL axioms. It is outside the scope of this paper to provide an exhaustive
and fair comparison of these modeling languages.

We have evaluated the following languages/frameworks:

• Unified Modeling Language (UML) [24]

• Entity-Relationship diagrams (ERD) [25]

• EXPRESS [26]

• Ontology Web Language (OWL-DL, version 1.0) [4].

In UML, the modeling elements are substantially aligned with the needs of object-
oriented programming. UML, if evaluated according to its DL expressivity, lacks several
features, for example, transitive and reflexive properties, which can be achieved only
through Object Constraint Language- [OCL] constraints [27]. On the other hand, the
expressivity of UML is enhanced by its meta-modeling architecture called Meta-Object
Facility (MOF). This architecture is organized in four layers, from M3 to M0, where each
layer provides precise constructs and rules for creating models in the successive layers
[28]. The meta-modeling expressivity of UML is not currently considered in our
evaluation and it will be carried out in the future.

ERD was developed for the organization of information within databases, therefore the
correspondence with DL expressivity is even lower than for UML [25]. ERD, for
example, does not provide any construct to express enumerated classes and negation.

In EXPRESS, the correspondence with DL is not high. EXPRESS misses some DL
constructs, such as properties hierarchies and disjointness1. The expressive power of
EXPRESS, on the other hand, is enhanced with algorithms not captured in the DL
expressivity. These algorithms define the entities’ behavior using functions, procedures,
and rules.

OWL-DL was specifically created to express the DL constructs; therefore it is the most
appropriate for our purpose. Each DL sublanguage is named with a combination of letters
(acronyms), e.g., ALC, SHOIN, and SHIQ ,: each letter denotes its expressivity. OWL-DL

1.0 is classified as SHOIN(D). Although decidable, OWL-DL could become intractable,

1 The EXPRESS construct “ONE OF” only represents a local disjointness.

 9

especially when dealing with large ontologies. The computational complexity of OWL-
DL is outside the scope of this paper. The expressiveness of OWL is contained in its
constructs: a model-theoretic semantic is specified for each construct. These language
constructs have been designed with the aim of using DL for the semantic web to enable
interoperability between systems through semantic data representation.

The use of the XML (Extensible Markup Language) syntax within OWL facilitates the
exchange of models between agents, while the OWL features give the model the
expressive power needed for ontological representation.

5.2 Modeling Tools

We evaluated the OWL expressiveness for product modeling by building a product
ontology (see Section 6) and by performing inference mechanisms on it (see Section 7).
We developed the ontology in OWL-DL version 1.0, using Protégé-OWL 3.3 [29] to edit
it. We excluded OWL Lite and OWL Full from consideration because of their low formal
expressivity and the hard computational problems, respectively. The Protégé ontology
editor supports SHOIN(D).

We used the reasoning engine RACERPro [30] for doing inference in DL. We chose
RACERPro because it includes subsumption and classification algorithms which are
typical DL reasoning algorithms. Further, it is easily accessible through the OWL Plug-in
in Protégé. For domain-specific rules we used the Semantic Web Rule Language
(SWRL) [31]. Since the general combination SWRL and OWL-DL is undecidable, we
selected only the DL-safe portion of SWRL. The rules are edited directly in Protégé-
OWL through the SWRLTab - an extension to the editor - and then executed by Jess [32],
a rule engine for the Java platform that supports reasoning on declarative rules. We used
the Jess Bridge for the following:

• merge SWRL rules and relevant OWL data

• input them to the Jess engine, and

• return the new inferred information to the OWL ontology.

Figure 1 depicts how the OWL data and the SWRL rules are connected. The bold arrows
indicate the flow of information (initial data, rules and final data) while the dashed
arrows indicate how the Jess Bridge enables that flow.

 10

Jess Engine
Rules running

Jess Bridge

OWL
ontology

SWRL
rules

Results in JAVA Results in the
OWL ontology

Jess Engine
Rules running

Jess Bridge

OWL
ontology

SWRL
rules

Results in JAVA Results in the
OWL ontology

Figure 1: Connection between the OWL ontology and SWRL rules

In the next sections we will describe, with an example, how we used the selected
languages and tools to develop a product ontology. The concepts and their relationships
in CPM/OAM described in Section 6 will be the source of the examples used in Section 7
and 8.

6 Description of the information model

The Core Product Model (CPM) [3] was intended to form a base for representing a
product model that could respond to the demands of the next generation CAD systems,
besides providing improved interoperability among future software. The Open Assembly
Model (OAM) is the CPM extension for assembly and tolerances representation. Based
on CPM and OAM [3], [33] presents two ontological models. These two models were
developed at the National Institute of Standards and Technology (NIST) as part of the
ongoing work related to product representation for lifecycle management [3]. A brief
description of these two models is given below.

6.1 Core Product Model

The concepts (classes in OWL) in CPM are grouped into four categories (see Figure 2):

• Classes that provide supporting information for the objects (abstract classes, i.e.
classes that do no have direct instances): CoreProductModel, CommonCoreObject,
CommonCoreRelationship, CoreProperty and CoreEntity.

• Physical or conceptual objects classes: Artifact, Feature, Port, Specification,
Requirement, Function, Flow, Behavior, Form, Geometry and Material.

• Classes that describe associations (relationships) among the objects: Constraint,
EntityAssociation, Usage and Trace.

• Classes that are commonly used by other classes (utility classes): Information,
ProcessInformation and Rationale.

The hierarchy of classes begins from CommonCoreEntity. This class represents real
objects and relationships or associations between them. The two subclasses of

 11

CommonCoreEntity are CommonCoreObject and CommonCoreRelationship.
CommonCoreObject is the parent class for all the object classes. CommonCoreRelationship
and its specializations, the EntityAssociation, Constraint, Usage and Trace relationships,
can be applied to individuals of classes derived from this class. CommonCoreRelationship
is the base class from which all association classes are specialized. It also serves as an
association to the CommonCoreObject class. CoreEntity is an abstract class from which the
classes Artifact and Feature are specialized. EntityAssociation relationships may be applied
to entities in this class. CoreProperty is an abstract class from which the classes Function,
Flow, Form, and Material are specialized. Constraint relationships may be applied to
individuals of this class.

The information elements listed in Section 3 that are included in CPM are Function,
Behavior, Geometry , Material and Features. The structure of Assembly is partially defined
in the CPM: the relationship between an Assembly and its components is defined in the
relationship partOf but the connections between the components are outside the scope of
CPM. For further details, please, refer to [3].

6.2 Open Assembly Model

OAM incorporates information about assembly relationships and component composition
(we used the term “structure” in Section 3 to identify both); the representation of the
latter is by the class ArtifactAssociation, which represents the assembly relationship that
generally involves two or more Artifacts. ArtifactAssociation is specialized into the
following classes: PositionOrientation, Relative-Motion and Connection. ArtifactAssociation
is directly connected to Assembly to allow the possibility to check the assembly
relationship involved in the Assembly through the property ArtifactAssociation2Assembly
(see Figure 3).

An assembly is a composition of its subassemblies and parts. The Assembly and Part
classes are subclasses of the CPM Artifact class. A Part is the lowest level component.
Each assembly component (whether a subassembly or part) is made up of one or more
features, represented in the model by OAMFeature, a subclass of the CPM Feature class.
OAMFeature has tolerance information, represented by the class Tolerance. Tolerance is
one of the information elements we identify among the requirements in Section 3.

The class AssemblyFeatureAssociation (AFA) represents the association between mating
assembly features through which relevant Artifacts are associated. The class
ArtifactAssociation is the aggregation of AssemblyFeatureAssociation. The class
AssemblyFeatureAssociationRepresentation (AFAR) represents the assembly relationship
between two or more assembly features. This class is an aggregation of
ParametricAssemblyConstraints, KinematicPair, and/or KinematicPath between assembly
features. KinematicPair defines the kinematic constraints between two adjacent Artifacts
(links) at a joint. KinematicPath provides the description of the kinematic motion. For
further details, please, refer to [3].

 12

CommonCoreRelationship

CommonCoreEntity

CommonCoreObject

CoreEntity

CoreProperty

RationaleInformationProcessInformation

Usage

EntityAssociationConstraint

Trace

Flow

Function

TransferFunction

Form
Geometry

Material Port

FeatureArtifact

Behavior

Specification Requirement

partOfFunction

partOfForm

partOfGeometry

partOfMaterial

is_a
is_a

is_a is_a is_a

is_a

partOfArtifact partOfFeature

is_a is_a

is_a

partOfBehavior

is_a
is_a

is_a

is_a

is_a

is_a

is_a

is_a
is_a

is_a
is_a

Utility classes

Association classes

Physical classes

Abstract classses

Legend

CommonCoreRelationship

CommonCoreEntity

CommonCoreObject

CoreEntity

CoreProperty

RationaleInformationProcessInformation

Usage

EntityAssociationConstraint

Trace

Flow

Function

TransferFunction

Form
Geometry

Material Port

FeatureArtifact

Behavior

Specification Requirement

partOfFunction

partOfForm

partOfGeometry

partOfMaterial

is_a
is_a

is_a is_a is_a

is_a

partOfArtifact partOfFeature

is_a is_a

is_a

partOfBehavior

is_a
is_a

is_a

is_a

is_a

is_a

is_a

is_a
is_a

is_a
is_a

Utility classes

Association classes

Physical classes

Abstract classses

Legend

Utility classes

Association classes

Physical classes

Abstract classses

Legend

Figure 2: Core Product Model, OWL version (highlighting is-a and part-of relationships)

CommonCoreRelationship

CommonCoreEntity

CommonCoreObject

CoreEntityCoreProperty EntityAssociation

Geometry Feature Artifact

is_a
is_a

Datum PartOAMFeature Assembly

ArtifactAssociation

ParametricAssemblyConstraint

KinematicPath

KinematicPair

AssemblyFeatureAssociation

AssemblyFeatureAssociationRepresentation

is_a is_a is_a

is_a
is_a is_a

is_a

is_a
is_ais_ais_a is_a

is_a is_a

is_a

is_a

OAM classses

Legend

CommonCoreRelationship

CommonCoreEntity

CommonCoreObject

CoreEntityCoreProperty EntityAssociation

Geometry Feature Artifact

is_a
is_a

Datum PartOAMFeature Assembly

ArtifactAssociation

ParametricAssemblyConstraint

KinematicPath

KinematicPair

AssemblyFeatureAssociation

AssemblyFeatureAssociationRepresentation

is_a is_a is_a

is_a
is_a is_a

is_a

is_a
is_ais_ais_a is_a

is_a is_a

is_a

is_a

OAM classses

Legend

OAM classses

Legend

Figure 3: Open Assembly Model, OWL version (highlighting is-a relationship)

 13

7 Expressivity capabilities

In this section we will discuss the detail evaluation of OWL-DL1.0 with respect to
CPM/OAM with the expressivity of DL and capability of supplementary rules (domain-
specific rules).

7.1 Expressivity of DL

In Table 2 we give relationship between the DL expressivity included in OWL and the
expressions (classes) defined in CPM/OAM model. The first column of the table shows
the notation for expressivity of OWL-DL, i.e., SHOIN(D) [23]. The third column in Table

2 indicates the expressivity associated with each letter of the DL notation. The fourth and
the fifth column provide respectively the description and the related expressions of
CPM/OAM.

Table 2: Examples of DL expressivity in product modeling

Notation No Expressivity Description DL-related expressions of CPM/OAM

1 Universal
concept

The concept that contains
all the individuals.

The concept of Thing: included in every
OWL ontology.

2 Bottom concept The concept without any
individual.

The concept of Nothing: included in
every OWL ontology.

3 Atomic concept A concept name. The concept of Assembly.

4 Atomic
negation

The negation of an atomic
concept.

The concept of Part consists of those
individuals that are not Assemblies.

5
Value
restriction

All the individuals that
are in the relationship
with the described
concept belong to a
specified concept.

A Feature can be connected through the
property
feature2ParametricAssemblyConstr
aint only to the concept
ParametricAssemblyConstraint.

AL

6 Intersection of
concepts

The set of individuals
belonging to both the
concepts.

An OAMFeature is the intersection
between the concept of Feature and the
concept of the individuals connected at
least with one AFA through the property
feature2AFA. An OAMFeature can be
automatically recognized by giving the
definition of that concept.

 14

Notation No Expressivity Description DL-related expressions of CPM/OAM

S 7 Transitive
properties

For all individuals a, b,
and c, if a is related to b
and b is related to c, then
a is related to c.

We introduce two properties:
artifactHasPart (transitive) and
artifactHasPart_direct (not transitive)
to address the issue of undecideability.
The property artifactHasPart is used to
connect an Assembly with all its
components. If you specify cardinality
constraints for transitive properties than it
becomes undecideable.
For this reason, we also define the
property artifactHasPart_direct which
is not transitive. This allows to specify
cardinality constraints on this property.
artifactHasPart_direct is used to
connect the Assembly to its direct
subassemblies or Parts.

H 8 Role hierarchy

If P1 is a subproperty of
P2, then the property
extension of P1 (a set of
pairs) should be a subset
of the property extension
of P2 (also a set of pairs).

The property artifactHasPart is a
subproperty of the generic property
hasPart.

O 9 Enumerated
classes

The concept is made of
exactly the enumerated
individuals.

Two CommonCoreObject can be
linked through the
CommonCoreRelationships
“alternativeOf”, “isSameAs”,
“versionOf”, “isBasedOn”,
“derivedFrom”: these are the
enumerated individuals of the range class
of the link.

I 10 Inverse
properties

For all individuals a and
b, iff a is related to b, then
b is related to a through
the inverse property.

The property partOf is the inverse of
artifactHasPart. When an Assembly is
connected to its component through
artifactHasPart, the component will be
connected to the Assembly through
partOf.

N 11 Cardinality
restrictions

The concept is
constrained to have a
number of values of a
particular property.

An ArtifactAssociation has to link at
least 2 Artifacts. An inconsistency will
be identified if not.

F 12 Functional
properties

The individuals of certain
concepts have unique
property fillers for a given
property.

A KinematicPair can be referred only to
one AFAR.

E 13 Full existential
quantification

The set of all individuals
in the domain which has
at least one specified R-
successor.

A DatumFeature has to have some
connections with
AssemblyFeatureAssociation. If it
doesn’t the reasoner will recognize an
inconsistency.

U 14 Concept union
(disjunction)

The set of the individuals
belonging at least to one
of the disjointed concepts.

The property that connects
ArtifactAssociation to the assembled
components has as range the concept
union of Assembly and Part.

 15

Notation No Expressivity Description DL-related expressions of CPM/OAM

(D) 15 Datatype
properties

Property for which the
value is a data literal,
such as a string or a
number.

CommonCoreEntities have names: the
property links CommonCoreEntity to a
string.

All OWL DL 1.0 constructs (SHOIN(D)) are required for CPM/OAM but only the

inference mechanisms of SHIN (D) are performed since the reasoning capability of

RacerPro in the presence of enumerated classes (O) is incomplete [34]. In our ongoing

research we are evaluating the Pellet reasoner (SHOIQ(D)) because it is more compatible

with OWL 1.1 (SROIQ(D)), the newest version of OWL [35].

With the set of axioms listed in Table 2, the reasoner is able to:

• Query and search the model.

• Check its consistency.

• Perform inference on the classes’ hierarchy.

• Perform inference on the membership of the individuals to the classes.

In OWL-DL 1.0 a property is declared in terms of its domain, range and characteristics
such as transitivity or reflexivity. In cases where it is required to impose specific
conditions or restrictions we need to specify some rules (see question 5 in Table 1). For
example, consider Figure 4. Class Car and class Person are connected through the
property hasOwner, class Person and class Garage are connected through the property
isRenter and class Car and class Garage are connected through the property isParked. To
infer that a particular person’s car is parked in the garage the person rents we need a rule
to specify this explicitly.

Car Person
hasOwner

Garage

isRenter
isParked

Car Person
hasOwner

Garage

isRenter
isParked

Figure 4: Example of a case where rules are needed

In OWL 1.1 the above rule can also be achieved through property chains, e.g., the
property isParked is the combination of the properties hasOwner and isRenter, but in our
opinion not in all cases the rules can be replaced by property chains.

7.2 Expressivity of Rules

We use SWRL [31] rules in order to:

 16

• create properties between individuals,

• associate individuals to classes: we use this capability to associate an individual
to a class for detecting inconsistencies in the ontology.

We classify these rules into four groups:

• property rules

• association rules

• partOf rules, and

• acyclic rules.

In the following diagrams, we use rectangles to identify classes and ovals to identify
individuals. All the diagrams representing the rules (Figures from 6 to 9) are related to
the following portion in Figure 5 of the CPM/OAM models and they all share the same
legend.

Assembly Part

ArtifactArtifactAssociation

subClassOf

artifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred property

artifactHasPart: inferred property

Assembly Part

ArtifactArtifactAssociation

subClassOfsubClassOf

artifactHasPart_directartifactHasPart_direct

artifactAssociation2ArtifactartifactAssociation2Artifact

artifactAssociation2Assembly: inferred propertyartifactAssociation2Assembly: inferred property

artifactHasPart: inferred propertyartifactHasPart: inferred property

Figure 5: CPM and OAM for representing assembly structure

The class Artifact is specialized into Assembly and Part. The relationship part-of between
two Artifacts is expressed through the properties artifactHasPart_direct and artifactHasPart.
ArtifactAssociation, i.e., the class that represents the assembly relationships, is connected
through the property artifactAssociation2Artifact to two or more Artifacts. As the inferred
relationship from this, the class ArtifactAssociation is also connected through the property
artifactAssociation2Assembly to the Assembly that contains the assembly relationships.

Property rules enable inferring new properties between individuals. The property rules
add additional semantics in the ontology. In the following example,
artifactAssociation2Assembly property (inferred) associates the ArtifactAssociation directly
to the Assembly. Figure 6 shows how this rule connects the master assembly_1 to the
ArtifactAssociations existing between its subcomponents assembly_2, part_1, and

 17

assembly_3. In this way, we can explicitly make it available how many artifactAssociation
are involved in assembly_1.

assembly_2 Assembly_3

artifactAssociation_α artifactAssociation_β

assembly_1

part_1assembly_2 Assembly_3

artifactAssociation_α artifactAssociation_β

assembly_1

part_1

Figure 6: Example of a property rule

Association rules represent the binary relationships between association classes and
object classes. In Figure 7 a minimum cardinality 2 is applied in the OWL model, and
then a SWRL rule specifies that if two different individuals of the association class are
connected to the same individuals of the object class then these two association
individuals are the same (sameAs). In this way a unique ArtifactAssociation can be
connected to the same individuals of Artifact.

ArtifactAssociation α
sameAs

ArtifactAssociation β

artifactAssociation_α
artifact_1

artifact_2

artifactAssociation_β
artifact_1

artifact_2

ArtifactAssociation Artifact
min 2

ArtifactAssociation α
sameAs

ArtifactAssociation β

artifactAssociation_α
artifact_1

artifact_2

artifact_1

artifact_2

artifactAssociation_β
artifact_1

artifact_2

artifact_1

artifact_2

ArtifactAssociation Artifact
min 2

Figure 7: Example of an association rule

PartOf rules create the right assembly structure, i.e., enable the assemblies to distinguish
between the direct and the indirect partOf properties. After executing the partOf rules, the
indirect property links an assembly with all its parts (example in Figure 8).

assembly_2

assembly_1 part_3

part_2part_1

assembly_2

part_3part_2part_1

assembly_2

assembly_1 part_3

part_2part_1 part_2part_1

assembly_2

part_3part_2part_1

Figure 8: Example of a partOf rule

 18

Acyclic rules instantiate classes of the kind not-allowed, to identify the individuals that,
although declared, are included in a part-of cycle. Since no inference mechanism can
delete wrong information from the ontology, we insert the wrong information in the not-
allowed classes through the acyclic rules. Since the not-allowed classes are declared
disjoint from the original ones, the reasoner will detect an inconsistency.

Consider the example in Figure 9: the assembly_2 is composed by itself (assembly_2 is
composed by assembly_1 that is in turn composed by assembly_2).

assembly_2

assembly_1

assembly_2

assembly_2

assembly_1

assembly_2

Figure 9: Example of an acyclic rule

In this example, both assembly_2 and assembly_1 are individuals of the same class. Since
the DL axioms can only apply to classes, no axiom can constrain the relationship between
instances of the same class. In this case we can insert any axiom to declare that the part-
of relationship is acyclic. For this reason, we create the NotAllowedAssembly class and
instantiate it through the acyclic rules. Since the classes NotAllowedAssembly and
Assembly are disjoint, the reasoner detects an inconsistency.

We give practical examples of the reasoning mechanisms employed in the next section,
where a case study is presented for the exploration of the potentialities of the ontology
assembly representation.

8 Reasonings Examples

We tested the reasoning capabilities of DL for product modelling by instantiating the
OAM model with a planetary gear system. Figure 10 and the summary presented below
are taken from [12] [3].

 19

planetary_Gear_Assembly

planet_Carrier_Assembly

planet_Gear_Pins output_Shaft

bearings

screws
output_Housing_Assembly

input_Housing sun_Gear

output_Housingwasher

ring_Gear

ring_Gear_Assembly

ring_Gear_Pins

planet_Gears

planet_Gear_Carrier_Assembly

planetary_Gear_Assembly

planet_Carrier_Assembly

planet_Gear_Pins output_Shaft

bearings

screws
output_Housing_Assembly

input_Housing sun_Gear

output_Housingwasher

ring_Gear

ring_Gear_Assembly

ring_Gear_Pins

planet_Gears

planet_Gear_Carrier_Assembly

Figure 10: Case study: planetary gear system

The planetary gear system is composed of two parts and three subassemblies. The parts
include the input-housing and the sungear. The three subassemblies include: (1) the
output end assembly comprising two bearings, a washer, and the output housing; (2) the
ring gear assembly comprising a ring gear and two ring-gear pins; and (3) the planet gear
holder assembly comprising three planet gears and a planet carrier assembly, which
further decomposes into the output shaft and three planet-gear pins. In total there are 30
different parts. The connections and pairs between different Artifacts are of different
types: fixed connection (fc), movable connection (mc) or position orientation (po).

 To represent the planetary gear system we declare in total 187 individuals and 277
properties between the individuals. These individuals comprise not only the Artifacts but
also their Features, their Geometries, their Tolerances and their connections through the
association classes. Out of the 187 individuals, 70 are declared to belong to the class
Thing, parent of all the classes in the ontology. The reasoner, using the classes and
properties axioms, classifies these 70 individuals into their proper classes.

The inference mechanisms deal with not only the individuals in the ontology but also the
properties between the individuals. The editor Protégé-OWL automatically defines the
inverse and the parent properties. Since all the properties in the model have their inverse,
Protégé automatically defines 277 inverse properties, one for each declared direct

 20

property. Moreover, Protégé defines all the properties parents of the asserted properties.
After performing the DL reasoner, the rule-based inference found additional 170
properties that are added to the ontology.

In the following sections, we provide three examples of the inference mechanisms we
used: the first is based on description logic, the second is based on domain-specific rules
while the third combines both DL and rules.

8.1 Example of DL reasoning

Table 3 presents an example of description logic reasoning from the case study. The class
Artifact and its subclasses are the main focus. In OAM we describe the class Part with a
necessary and sufficient condition: Parts are Artifacts without subassemblies. In other
words, in DL expressivity, the concept of Part is the intersection between the concept of
Artifact and the concept of the Thing having cardinality 0 on the property
artifactHasPart_direct (AL expressivity, number 6 in Table 2). This property has as

domain (the class owning the property) and as range (the class of the values of the
property) the class Artifact.

Moreover, we describe the class Assembly with a necessary condition: Assemblies must
have at least two Artifacts connected through the inherited property artifactHasPart_direct.
In other words, in DL expressivity, we apply a cardinality restriction (N expressivity,

number 11 in Table 2) to the concept of Assembly.

We then define Assembly and Part as partitions of the class Artifact, i.e., the concept of
Artifact is made by the union (U expressivity, number 14 in Table 2) of the disjoint

concepts Assembly and Part. As a result, an instance of Artifact (planet_Carrier_Assembly
in this example) composed by other Artifacts (output_Shaft, planet_Gear_Pin_1,
planet_Gear_Pin_2, planet_Gear_Pin_3) is inferred to be an individual of Assembly.

Table 3: Example of DL reasoning

AIM Infer that an Artifact composed by other Artifacts is an Assembly
CLASSES Artifact, Assembly
PROPERTIES artifactHasPart_direct (Range: Artifact , Domain: Artifact)
RESTRICTION

On Assembly: artifactHasPart_direct min 2
(an Artifact is an Assembly only if it is related with at least 2 other
Artifacts)

INPUT

An individual of Artifact (planet_Carrier_Assembly) is composed
through artifactHasPart_direct by 4 individuals of Part (output_Shaft,
planet_Gear_Pin_1, planet_Gear_Pin_2, planet_Gear_Pin_3)

OUTPUT planet_Carrier_Assembly is reclassified as an individual of the class
Assembly rather then general Artifact.

 21

8.2 Example of rule-based reasoning

Table 4 presents an example of rule-based reasoning from the case study: the structure of
an Assembly is described by its parts/subassemblies and by the relationship between its
components.

Table 4: Example of rule-based reasoning

AIM Infer the relation between Assembly and ArtifactAssociation
CLASSES Assembly, Part, ArtifactAssociation
PROPERTIES artifactAssociation2Assembly (Range: ArtifactAssociation, Domain:

Assembly)
RULES If the components of an Assembly are linked through an

ArtifactAssociation, then relate that ArtifactAssociation to the Assembly
(see Table 5)

INPUT An individual of Assembly (output_Housing_Assembly) is composed
of bearing_1, bearing_2, output_Housing and washer through
artifactHasPart_direct. These individuals are connected with
individuals of the class ArtifactAssociation

OUTPUT output_Housing_Assembly is linked with the corresponding
individuals of ArtifactAssociation (fc_1, fc_2, fc_3) through the
artifactAssociation2Assembly property.

In this example, output_Housing_Assembly is composed of bearing_1, bearing_2,
output_Housing and washer. The ArtifactAssociations connect washer with output_Housing
(fc_1), bearing_1 with output_Housing (fc_2) and bearing_2 with output_Housing (fc_3).

The aim of the reasoning is to correctly relate the output_Housing_Assembly to the
ArtifactAssociations involved in the Assembly. In this case we can not use OWL
declarations since the condition for creating the new relation is dependent on the specific
properties each individual possesses. For this reason we have to resort to SWRL rules.

In this example we need four different property rules (see Table 5). Each of them takes
into account a different scenario:

• Rule 1 is applied when the description of the Assembly is detailed (the
AssemblyAssociation connects two or more Parts) and the Assembly has at least one
subassembly that is a Part. The antecedent of the rule indicates that one Part is
directly part-of the Assembly while the other Part is indirectly connected to the
Assembly.

• Rule 2 is applied when the description is detailed but the ArtifactAssociation exists
between Parts that are not directly subassemblies of the Assembly. This means that
the Assembly is composed of other subassemblies and each subassembly has a Part
involved in the Assembly. In the antecedent of Rule 2 we explore the indirect property
to search these Parts in the subassemblies.

 22

• Rule 3 is applied when the description is not detailed so that the Assembly is
composed of two or more subassemblies connected together.

• Rule 4 is similar to the third but is useful when the Assembly is made of a Part and a
subassembly.

Table 5: Rules needed to connect Assembly with its ArtifactAssociations
Rule 1 Rule 2 Rule 3 Rule 4
artifactHasPart_direct(?x, ?y)
Part(?y)
artifactHasPart(?x, ?z)
Part(?z)
differentFrom(?y, ?z)
artifact2AA(?y, ?a)
artifact2AA(?z, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?z)
differentFrom(?y, ?z)
artifactHasPart(?y, ?q)
Part(?q)
artifactHasPart(?z, ?r)
Part(?r)
differentFrom(?q, ?r)
artifact2AA(?q, ?a)
artifact2AA(?r, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Assembly(?z)
artifact2AA(?y, ?a)
artifact2AA(?z, ?a)

artifactHasPart_direct(?x, ?y)
Assembly(?y)
artifactHasPart_direct(?x, ?z)
Part(?z)
artifact2AA(?y, ?a)
artifact2AA(?z, ?a)

 Assembly2ArtifactAssociation(?x, ?a)

8.3 Example of combining DL and rule-based reasonings

Table 6 presents an example of combining both DL and rule-based reasoning. The focus
is the composition hierarchy of an Assembly. The goal in this example is to avoid cyclic
composition hierarchies, i.e., hierarchies in which an assembly contains itself. Since
composition hierarchies are constituted by individuals of the same class Assembly, we
can not use any DL axiom to impose the acyclicity constraint on the hierarchy. The use of
domain-specific rules is the only solution (see Section 4).

We create in the product ontology the class NotAllowedAssembly, disjoint from the class
Assembly. NotAllowedAssembly will contain all the individuals of the Assembly involved
in a cyclic hierarchy composition (planetary_Gear_System_Assembly in the case of Table
6). We create a SWRL rule to automatically instantiate this class. After executing the
rule, the individuals involved in the cyclic hierarchy will belong to both the classes
Assembly and NotAllowedAssembly. Since these two classes are declared disjoint, the DL
reasoner will detect an inconsistency.

Table 6: Example of combining DL and rule-based reasonings

AIM Infer an inconsistency in case of a cyclic composition of an Assembly
CLASSES Assembly, NotAllowedAssembly
PROPERTIES artifactHasPart (Range: Artifact , Domain: Artifact)
RULES If an Assembly is composed of itself, then the Assembly will belong to

the class NotAllowedAssembly
RESTRICTION Assembly and NotAllowedAssembly are disjoint classes
INPUT An individual of Assembly (planetary_Gear_System_Assembly)

contains the subassembly planet_Gear_Holder, that in turn contains the
planetary_Gear_System_Assembly

OUTPUT planetary_Gear_System_Assembly belongs to both the classes
Assembly and NotAllowedAssembly: an inconsistency is detected

 23

9 Expressivity limitations

The process for selecting the appropriate logical formalism for product ontology
modeling is a question of trade-off between expressivity, decidability and computational
complexity. To help the reader in this process, we provide in this paper an evaluation of
description logic sublanguages and domain-specific rules. In this section we complete our
evaluation by highlighting the limits of their expressivity capabilities. In other words, we
show some of the expressivity requirements that can not be satisfied with OWL and
SWRL, both widely used in the world wide web.

OWL and SWRL are continuously evolving to meet the needs of application-specific
communities (e.g., the bio-ontologies community). OWL 1.1, an extension of OWL-DL
1.0, is the typical example of this evolution. This extension enhances the expressivity
capability of OWL 1.0 [http://www.webont.org/owl/1.1/overview.html] by including
new DL constructs such as:

• qualified cardinality restrictions

• reflexive, irreflexive, symmetric, and asymmetric properties, local reflexivity
restrictions

• disjoint properties

• property chain inclusion axioms

• user-defined datatypes

Table 7 shows some examples on how the expressivity of these new constructs can be
used for product modeling.

Table 7: Example of OWL 1.1 expressivity in product modeling

Expressivity Examples of Axioms using the Expressivity
Qualified cardinality restrictions a DieselCar has exactly 1 DieselEngine as engine.
Irreflexive properties a Car can not be a part of itself

Disjoint properties

the properties partOf and artifactHasPart cannot
hold between the same instances of Artifact. If
artifact_1 is a partOf artifact_2, then it is impossible
that artifact_1 artifactHasPart artifact_2.

Property chain if a Wheel is powered by an Engine that is a partOf
a Car, then the Wheel is partOf of the Car

User-defined datatypes the price of an EconomicCar is represented by an
integer less than 15000.

OWL 1.1. is supported by Protégé 4 but a SWRL tab for this new version of Protégé has
not yet been developed. Hence, we decided to develop our product ontology in OWL 1.0.

9.1 DL issues

Our major concern for DL is regarding the Open World Assumption (OWA) which is the
assumption that the knowledge we represent in an ontology is considered to be

 24

incomplete by default, i.e., whatever we do not declare in the ontology is unknown and
therefore not possible to draw any conclusion. Now, although the OWA allows for easy
reusability and extensibility of the ontology, it is sometimes useful in the product domain
to close that open world [36].

For example, consider the declaration for the class Car with a minimum cardinality
constraint on the number of Seats it has to contain: a Car must have at least two Seats. In
this case we can still create an instance of Car (car_1) that doesn’t have any Seat. car_1,
till proven otherwise, will have at least two seats (recorded in the memory of the
inference engine) but these seats are yet to be specified in the ontology because our
knowledge on these seats is incomplete. This reflects exactly our knowledge at the early
design stage of that Car, when the seats haven’t been designed yet. However, if we
represent the same knowledge of that Car for developing a catalogue, an inconsistency
should be detected. Therefore we would need a new reasoner that can apply the Close
World Assumption (CWA) conveniently. Depending on the context, we could then apply
either the OWA or the CWA.

Another issue related to the OWA appears in the OAM ontology presented in Section 6,
where the concept of Part is defined as the intersection between the concept of Artifact
and the concept of Thing having cardinality 0 on the property artifactHasPart_direct. Even
with this definition, an instance of Artifact without subassemblies (i.e., not holding the
property artifactHasPart_direct) is not inferred to be a Part.

To reason on the concept of Part we would need to define it with a Negation as Failure
(NaF): a Part is an Artifact that does not hold the property artifactHasPart_direct. NaF
would allow us to infer that an instance belongs to the class Part, until we do not find
proof that a particular instance holds the property artifactHasPart_direct. Unfortunately,
NaF, or non-monotonic negation, as a consequence of the OWA, is not provided in DL.
Therefore we would need the capability for expressing NaF and also the reasoners’
ability to handle NaF (as already provided by most of the first order logic reasoners).

9.2 SWRL issues

The issue we described in the previous example could be overcome by declaring a
domain-specific rule that if an instance of Artifact does not hold the property
artifactHasPart_direct, then that instance belongs to the class Part. The rule would look
like:

Artifact (?x) and not artifactHasPart_direct (?x, ?y) Part (?x)

Unfortunately, SWRL does not provide a syntax to express negation, so it is impossible
to express this rule. Introducing negation as failure for domain-specific rules is a
requirement for the representation of product models.

Moreover SWRL supports only procedural rules, i.e., rules of the form of an implication
between an antecedent and a consequent [31]. These rules are called procedural because
they are on the form if-then, where the negation of the consequent does not imply the

 25

negation of the antecedent. As an example, consider the possibility of defining an
EconomyCar with SWRL:

Car (?x) and hasPrice (?x, ?y) and swrlb:lessThan(?y, 15000) EconomyCar (?x)

If we then introduce an instance of ExpensiveCar (the negation of the EconomyCar
concept), nothing is inferred about its price. We would need a rule engine to be able to
logically interpret the rule and therefore able to infer that an ExpensiveCar has a price
higher than $15000. This kind of rule engine would allow us to reason that if condition A
implies condition B, then the negation of the condition B implies the negation of the
condition A:

A B,

notB not A.

Now, consider again the rule that asserts that a Car with a price less than $15000 is an
EconomyCar. In an ontology we can define the concept of EconomyCar as a Car with a
price less than $12000 using an appropriate axiom. If we create an instance of Car with a
price equal to $13000, first the reasoner will assert the consistency (validated through the
axiom) of the ontology and then the Jess engine will infer that that instance is an
EconomyCar using the appropriate SWRL rule. To detect the inconsistency between what
is asserted with the ontology declarations and the rules, we have to run the reasoner
again. This example shows that there is a strong need for a concurrent reasoner-engine
which can check the consistency of the rules and the ontology together.

9.3 OWL issues

The other major problem in using OWL for product modeling is dealing with datatypes
and datatype properties ((D) notation in Table 2). At the beginning of this section we

already discussed the utility of user-defined datatypes, a feature already implemented in
OWL 1.1. We still cannot define classes in terms of restrictions on: 1) more than one
datatype property at a time, and 2) one property in multiple ways. N-ary predicates, the
term used to identify these restrictions, would allow us to express, for example, 1) the
retail price of a Car is always greater than the manufacturing cost of that Car, and 2) the
weight of an Assembly is equal to the sum of the weights of its subassemblies/parts
(mathematically defining the summation). Mathematical functions are also required while
computing the Behavior of the Artifact.

Currently, datatype properties can only be declared to be functional (F notation in Table

2), whereas we could specify more characteristics, namely functional, inverse functional,
symmetric and transitive for object properties (properties holding between individuals).
But we need to declare a datatype property as inverse functional to avoid many to one
relationships. For example, if we could declare the id property of the Artifacts (unique
identifier) as both functional and inverse functional, the effect of that will be that each
Artifact will have a unique id and each id will refer to a unique Artifact.

 26

The major obstacle we found in dealing with object properties is their hierarchy (built
through the subproperty mechanism). For example, consider the case in which we want to
declare that: Car hasEngine exactly 1 Engine (N notation in Table 2). In our ontology

we could assert that: 1) the property hasPart has as domain the class Car and as range the
class ElectroMechanicalComponents, and 2) the property hasEngine, which is a
subproperty of hasPart, has as domain the class Car and as range the class Engine,
subclass of ElectroMechanicalComponents (see Figure 11).

Car ElectroMechanicalComponent

Engine

hasPart

hasEngine

subClassOfsubPropetyOf

Car ElectroMechanicalComponent

Engine

hasPart

hasEngine

subClassOfsubPropetyOf

Figure 11: Example of a property hierarchy system

Now, although we assert these restrictions, we can still connect a Car to multiple Engines
through the property hasPart, therefore avoiding using the property hasEngine for which
the cardinality was specified. In this way an instance of Car containing more than one
Engine will not create any inconsistency in the model. To identify the inconsistency, we
would require a mechanism to “define” properties themselves. With this mechanism we
could declare, in the previous example, that the property hasEngine is equivalent to the
property hasPart connecting Car to Engine. A reasoner could then infer the most specific
property that connects two instances.

One major concern of product modelers is the scalability of OWL ontologies. Ontology
scalability is defined in terms of three aspects of the ontology [37; 38]: 1) ontology size,
i.e., the number of classes, instances and properties contained in the ontology, 2)
ontology complication, i.e., complexity of the logical relationship contained in the
ontology, and 3) ontology modularity, i.e., knowledge reusability. Choosing an ontology
size is the task of product modelers: they have to find the right compromise between
comprehensive domain coverage and a suitable number of classes, instances and
properties. In terms of ontology complication and modularity, we would need two
different kinds of mechanisms: 1) mechanisms for partial expressivity usage, and 2)
mechanisms for partial import.

To manage ontology complication, a mechanism for partial expressivity usage would
allow us to specify all the definitions and restrictions in the product ontology and then
select, depending on the context of usage, only the part of the expressivity we are
interested in. If, for example, a set of axioms considerably increases the reasoning time,
we would like to exclude that set of axioms from the ontology when that set is not
relevant in our context of usage.

To enable ontology modularity, the only OWL mechanism available is the “import”
mechanism. This mechanism allows us to reuse the concepts defined in one particular
ontology (the imported ontology) in other ontology (the importing ontology).

 27

Unfortunately this mechanism will import all the concepts from the imported ontology to
the importing one. To make an ontology more scalable, we need a mechanism to be able
to import only the concepts (partial import) we are interested in.

10 Summary and Conclusions

To ensure interoperability of different systems sharing product information across its
different stages of lifecycle, a multiple view of the product model is required. Such a
model development is influenced by three factors: logical formalisms, computer
interpretable languages and product information.

Usually logicians focus on logical theorem proving, computer scientists focus on theory
of languages, while product engineers focus on product information representation. The
aim of this paper is to evaluate DL for product modeling taking into account the
interrelations between logical formalisms, computer interpretable languages and product
information.

First, we identified the expressivity requirements for representing products. We grouped
these requirements into information elements and abstraction principles. Second, we
discussed the expressivity of description logic with respect to the requirements for
representing products. DL provides mechanisms for both explicit knowledge
specification and implicit knowledge inference. These mechanisms, in the case of DL, are
decidable, so that a user can generally define product model with DL. Since some
expressivity requirements can not be satisfied through DL, we chose domain-specific
rules to increase the expressivity in the product model. Description logic and domain-
specific rules are combined together to accommodate the level of expressivity required in
product modeling. For the expression of DL, we chose OWL-DL and for domain-specific
rules, we chose SWRL, because it is compatible with the OWL editor Protégé.

Third, we used OWL and SWRL to build product ontologies: ontological version of Core
Product Model (CPM) representing a generic product and Open Assembly Model (OAM),
extension of the CPM for representing mechanical assemblies. We use these ontologies to
show how the expressivity of DL with domain-specific rules satisfies the requirements of
the product modeling. We described an instantiated ontology with a planetary gear
system use case to show how the level of expressivity in the model allows explicit
knowledge specification and implicit knowledge inference.

Finally, we concluded our evaluation by listing the expressivity limitations of DL, OWL
and SWRL. The issues presented in our evaluation provide future research directions for
developing high expressive product models. Developing such a model requires close
collaboration between product engineers, computer scientists and logicians. The
community that is using DL and its implementation languages can guide the development
of new expressivity features. These new expressivity features can then be finally tested
by that community.

This paper outlined how DL with rules satisfies the expressivity requirements for
developing a consistent formal model for mechanical products. We believe this study can

 28

be extended to understand how to choose appropriate logical frameworks (OWL DL to
OWL Full) for developing product ontologies. Moreover, since OWL, the reasoners and
the available tools are evolving, we are constantly evaluating our approach.

Disclaimer
No approval or endorsement of any commercial product by NIST is intended or implied. Certain
commercial equipment, instruments or materials are identified in this report to facilitate better
understanding. Such identification does not imply recommendations or endorsement by NIST nor does it
imply the materials or equipment identified are necessarily the best available for the purpose.

 29

11 References

 1. ISO 10303-203: 1994, Industrial automation systems and integration -- Product data
representation and exchange -- Part 203: Application Protocol: Configuration
controlled 3D design of mechanical parts and assemblies.

 2. The STEP PDM Usage Guide.
http://www.wikistep.org/index.php/PDM_Usage_Guide, last visited 2008.

 3. Sudarsan, R., Baysal, M. M., Roy, U., Foufou, S., Bock, C., Fenves, S. J.,
Subrahmanian, E., Lyons K.W, and Sriram, R. D., "Information models for product
representation: core and assembly models," International Journal of Product
Development, Vol. 2, No. 3, 2005, pp. 207-235.

 4. Web Ontology Language (OWL), 2005. http://www.w3.org/2004/OWL/ .

 5. ISO 10303-1: 1994, Industrial automation systems and integration -- Product data
representation and exchange -- Part 1: Overview and fundamental principles.

 6. Burkett, W. C., "Product data markup language: a new paradigm for product data
exchange and integration," Computer-Aided Design, No. 33, 2001, pp. 489-500.

 7. Gorti, R. and Sriram, R. D., "From symbol to form: a framework for conceptual
design," Computer-Aided Design, Vol. 28, No. 11, 1996, pp. 853-870.

 8. Gorti, S. R., Gupta, A., Kim, G. J., Sriram, R. D., and Wong, A., "An object-
oriented representation for product and design processes," Computer-Aided Design,
Vol. 30, No. 7, 1998, pp. 489-501.

 9. Sudarsan, R., Fenves, S. J., Sriram, R. D., and Wang, F., "A product information
modeling framework for product lifecycle management," Computer-Aided Design,
Vol. 37, No. 13, 2005, pp. 1399-1411.

 10. MOKA, Managing Engineering Knowledge: MOKA Methodology for Knowledge
Based Engineering Applications, Wiley,2001.

 11. Brimble, R., and Sellini, F., "The MOKA modelling language," Vol. Knowledge
Engineering and Knowledge Management, Proceedings,2000, pp. 49-56.

 12. Fenves, S., Foufou, S., Bock, C., Bouillon, N., and Sriram, R. D., "CPM2: A
Revised Core Product Model for Representing Design Information ," National
Institute of Standards and Technology, NISTIR 7185, Gaithersburg, MD 20899,
USA, 2004.

 13. Lin, J. X., Fox, M. S., and Bilgic, T., "A requirement ontology for engineering
design," Concurrent Engineering Research and Applications, Vol. 4, No. 3, 1996,
pp. 279-291.

 30

 14. Borst, P., Akkermans, H., and Top, J., "Engineering ontologies," Internation
Journal of Human-Computer Studies, Vol. 46, No. 2-3, 1997, pp. 365-406.

 15. KIF-Knowledge Interchange Format, 2006. http://logic.stanford.edu/kif/kif.html .

 16. Kitamura, Y., "A functional concept ontology and its application to automatic
identification of functional structures," Advanced Engineering Informatics, Vol. 16,
No. 2, 2002, pp. 145-163.

 17. Kim, K. Y., Manley, D. G., and Yang, H., "Ontology-based assembly design and
information sharing for collaborative product development," Computer-Aided
Design, Vol. 38, No. 12, 2006, pp. 1233-1250.

 18. Taivalsaari, A., "On the notion of inheritance," ACM Computing Surveys, Vol. 28,
No. 3, 1996, pp. 438-479.

 19. Artale, A., Franconi, E., Guarino, N., and Pazzi, L., "Part-whole relations in object-
centered systems: an overview," Data & Knowledge Engineering, Vol. 20, No. 3,
1996, pp. 347-383.

 20. Sudarsan, R., Subrahmanian, E., Bouras, A., Fenves, S., Foufou, S., and Sriram, R.
D., "Information sharing and exchange in the context of product lifecycle
management: Role of standards," Computer-Aided Design, Vol. to appear, 2008.

 21. Ma, L., Mei, J., Pan, Y., Kulkarni, K., Fokoue, A., and Ranganathan, A.. Semantic
Web Technologies and Data Management, 2007.
http://www.w3.org/2007/03/RdfRDB/papers/ma.pdf .

 22. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., and Ma, L.. Scalable Semantic Retrieval Through Summarization and
Refinement, 2007.
http://domino.research.ibm.com/comm/research_projects.nsf/pages/iaa.index.html/$
FILE/techReport2007.pdf .

 23. Baader, F., Calavanese, D., McGuinnes, D., Nardi, D., and Patel-Schneider, The
description logic handbook, Cambridge University Press2003.

 24. OMG. UML 2.0 Superstructure Specification, 2003. http://www.omg.org/cgi-
bin/doc?ptc/03-08-02 .

 25. Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of Data,"
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

 26. Schenck, D., and Wilson, P. R., Information modeling: the EXPRESS way, Oxford
University Press, New York,1994.

 31

 27. Berardi, D., Cal, A., Calvanese, D., and De Giacomo, G.. Reasoning on UML Class
Diagrams. Dipartimento di Informatica e Sistemistica, Università di Roma "La
Sapienza," 2003. http://www.dis.uniroma1.it/~degiacom/didattica/esslli03/

 28. Meta Object Facility (MOF) Specification, 2002.
http://www.omg.org/docs/formal/02-04-03.pdf .

 29. Protégé. http://protege.stanford.edu/, last visited 2008.

 30. RacerPro. http://www.racer-systems.com/index.phtml, last visited 2008.

 31. SWRL, W3C Member Submission 2004. http://www.w3.org/Submission/SWRL/ .

 32. Sandia National Laboratories. Jess Engine. http://herzberg.ca.sandia.gov/, last
visited 2008.

 33. Fiorentini, X., Gambino, I., Liang, V., Foufou, S., Rachuri, S., Bock, C., and
Mahesh, M., "Towards an ontology for open assembly model," International
Conference on Product Lifecycle Management,2007, pp. 445-456.

 34. W3C. Representing Specified Values in OWL: "value partitions" and "value sets",
2005. http://www.w3.org/TR/swbp-specified-values/ .

 35. Liebig, T., "Reasoning with OWL: System Support and Insights," Computer
Science Faculty, Ulm University, Technical report 2006-04, Sept. 2006.

 36. Sirin, E., Smith, M., and Wallace, E.. Opening, Closing Worlds - On Integrity
Constraints. http://clarkparsia.com/weblog/2008/08/21/owl-integrity-constraints-
survey/, last visited 2008.

 37. Jarrar, M., and Meersman, R., "Scalability and knowledge reusability in ontology
modeling," International conference on Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine, Rome,2002.

 38. Wache, H., Serafini, L., and Gracia-Castro, R., "Survey of Scalability Techniques
for Reasoning with Ontologies, 2004. " http://www.sti-
innsbruck.at/results/browse/deliverables/details/?uid=245 .

