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Abstract 

The languages and logical formalisms developed by information scientists and logicians 
concentrate on the theory of languages and logical theorem proving. These languages, 
when used by domain experts to represent their domain of discourse, most often have 
issues related to the level of expressiveness and need specific extensions. In this paper we 
first analyze the requirements for the development of structured knowledge 
representation models for manufacturing products using ontologies. We then explore how 
these requirements can be satisfied through the levels of logical formalisms and 
expressivity of a structured knowledge representation model. We report our evaluation of 
Description Logic (DL) with respect to the requirements by giving an example of a 
product ontology developed with OWL (Ontology Web Language-Description Logic). In 
order to represent a product, we also need to combine both DL expressivity and domain-
specific rules. Domain-specific rules are defined to add specific constraints in the 
knowledge base and we have used SWRL (Semantic Web Rule Language) for this 
purpose. We present a case study of an electro-mechanical product to validate the 
evaluation and further show how the OWL-DL reasoner together with the rule engine can 
enable reasoning of the product ontology.  We finally discuss the open issues such as 
capabilities and limitations related to the usage of DL, OWL and SWRL for product 
modeling. 

1 Introduction 

In a typical industrial scenario a number of enterprises collaborate to accomplish various 
tasks by sharing resources, applications and services infrastructure throughout the 
product lifecycle. The elements that describe this scenario can primarily be grouped into 
i) entities, e.g., applications, persons and enterprises and ii) connections between these 
entities, e.g., data exchange and collaborations. In this network of entities, product 
models play a crucial role in achieving interoperability.  To work together, the entities 
have to share a common model through which they can communicate. For example 
geometry representation models, such as STEP (Standard for the Exchange of Product 
model data) AP 203 [1], are used to exchange product geometry information between 
CAD systems, PDM (Product Data Management) schema [2] is used to share product 
data (identification, classification, structure and relationships, and properties of parts, 
work management data, etc.) between engineering information systems.   
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In this landscape of product models, semantic models can enable entities to achieve 
reliable and efficient collaboration. The tasks achievable with the semantic model include 
inferring new knowledge, querying, retrieving, and storing. To facilitate knowledge 
sharing, semantic models are used e.g., to eliminate ambiguities and to enable knowledge 
reuse by making domain assumptions explicit. 

Developing product semantic models requires knowledge and information from different 
fields: domain knowledge, product modeling, programming, knowledge representation 
reasoning, etc. In this paper we focus on logic-based representation, which is currently in 
vogue for the semantic web applications.  

Our approach is to match the requirements for product modeling to the expressivity 
provided by description logic. To meet the product modeling requirements we also need 
domain-specific rules. We provide some examples taken from a semantic model that we 
developed to test the expressivity of description logic (DL) for product modeling (Core 
Product Model and Open Assembly Model [3]). We hope to provide a critical and 
impartial assessment of the use of DL for product modeling. 

This paper is structured as follows. In section 2 we review previous product ontologies 
and their representations, and emphasize the necessity of our evaluation. In section 3 we 
analyze the expressivity requirements for product model representation. In section 4 we 
describe how the expressivity of DL can support the expressivity requirements for the 
product model. OWL-DL 1.0 (Ontology Web Language) [4] and Protégé (tool)  are 
currently very popular with ontology researchers. We discuss how these two meet DL 
requirements in section 5. In section 6 we introduce CPM/OAM as product model for 
evaluation. Section 7 presents how the DL expressivity is used in representing the 
product model. Section 8 provides some examples of reasoning mechanisms based on DL 
and domain specific rules. Section 9 describes the expressivity requirements that cannot 
be satisfied either with DL or with domain specific rules. The modeling language is 
included in our evaluation. We provide our conclusions in Section 10.  

We use the following notations: classes are in Arial font (Artifact), the properties are in 
Arial font with leading character in lowercase (partOf), individuals are in Arial italics font 
with the leading character in lowercase (myCar). 

2 Previous Research on Product Ontologies 

Many of the product ontologies that are available in literature can be categorized into two 
groups according to their modeling scope. One is specific product ontologies, and another 
is generic product ontologies. Since the 1990’s, many specific product ontologies have 
been proposed, and each of them was represented or implemented in different languages. 
So, specific product ontologies can be further classified according to their languages’ 
expressivity. We classified them into three types: semi-structured representation, object-
oriented representation, logic/rule representation.  
 
STEP -the Standard for the Exchange of Product model data- is a comprehensive ISO 
standard (ISO-10303) that describes how to represent and exchange digital product 
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information [5]. STEP has been very successful in specifying data models for domains 
such as solid modeling and finite-element geometry. STEP uses the EXPRESS language 
to represent information models. Product Data Markup Language (PDML) is a set of 
XML vocabularies for deploying product data on the internet [6]. PDML adopted STEP 
Integrated Resources for its information model, and it used XML instead of EXPRESS. 
 
CONGEN [7], SHARED [8] and OAM product models [9] were specific product 
ontologies represented in an object-oriented representation. CONGEN (a framework for 
conceptual design) is the design application shell implemented as a part of the MIT DICE 
project. It provided a design knowledge representation scheme, and maintained design 
alternatives and context information. A product-process model, which included 
primitives such as context, specification, artifact, function, form, behavior, decision, goal 
and plan, formed the basis for the design knowledge representation. The DICE project 
also developed comprehensive engineering knowledge bases, called SHARED. Sudarsan 
et al. [9] proposed the Open Assembly Model (OAM) to provide a standard 
representation and exchange protocol for assembly and system-level tolerance 
information. OAM was extensible: it provided for tolerance representation and 
propagation, representation of kinematics, and engineering analysis at the system level. 
OAM was based on the Core Product Model (CPM), and it was represented in UML.  
 
Generic product ontologies, such as the MOKA [10] product model and the NIST Core 
Product Model (CPM), were represented in object-oriented languages such as UML. The 
MOKA product model [11] supported five distinct views of a product: 1) structure, 2) 
function, 3) behavior, 4) technology, and 5) representation. In MOKA the product 
informal model was described using a class diagram in UML. Fenves et al. [12] proposed 
the CPM to provide a base-level product model that is open, nonproprietary, generic, 
extensible, independent of any one product development process and capable of capturing 
the full engineering context commonly shared in product development. Initially, they 
used UML to represent CPM, and mapped it to OWL-DL later on.  
 
In the past decades, a number of researchers have developed product ontologies using 
logic-based formalisms. We discuss a few representative projects. There were also many 
specific product ontologies represented in logic or rule languages. Lin et al. [13] 
proposed a requirement ontology to manage customers’ requirements, product 
specifications and relations among them. They defined the requirement ontology in first 
order logic (FOL), and implemented it in Prolog in an object-oriented fashion. Borst and 
Akkermans [14] developed an engineering ontology based on the PHYSYS ontology. 
The PHYSYS ontology included three conceptual viewpoints on physical systems: 1) 
system layout, 2) physical processes underlying behavior, and 3) descriptive 
mathematical relations. They represented the ontology in KIF (Knowledge Interchange 
Format) [15]. Kitamura et al. [16] designed a functional concept ontology, which 
provided a rich vocabulary for functional representation. They applied the functional 
concept ontology to the automatic identification of functional structure of an existing 
product. They implemented their functional understanding system using Lisp. Kim et al. 
[17] defined an assembly ontology by enhancing the assembly relation mode using 
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ontologies. Their ontology represents engineering, spatial, assembly, and joining relations 
in an assembly. They implemented their ontology using both OWL and SWRL.  
 
Although the above product ontologies worked well for their specific purposes, a generic 
product ontology is still required to express product lifecycle knowledge uniformly and 
consistently. The concepts and relations involved in a generic product ontology have 
semantically different levels of abstraction. For example, a product’s geometry or form 
are physical concepts, but the product’s requirement, function or behavior are abstract 
concepts. A generic product ontology should include all of those concepts, and specify 
their semantics explicitly and logically.  
 
Expressive logic and rule representation are required in order to specify semantics of all 
concepts and relations in a product lifecycle. However, no rigorous evaluation has been 
made on the applicability of logic for product representations. Nonetheless, many 
previous researches proposed their product ontologies using logic representations, and 
consequently no one knows whether their logic representations had enough 
expressiveness to represent their product ontologies or not. In the following sections we 
attempt to do such an evaluation. 

3 Expressivity Requirements for Product Representation 

In this paper we focus on product models that have to be shared along the whole product 
lifecycle. These models have to be generic enough to: 

• Represent the core characteristics of the product. 

• Be independent from specific product development processes. 

• Be compatible with the detailed product representation that each application 
contains. 

The development of such a high level interoperable model poses many challenges, such 
as encoding complex nature of interactions in product modeling and representing 
semantics. Hence, the information model for representing manufacturing product is 
inherently complex.  

The following partial list sketches some of the issues with respect to each information 
element: 

• Function: one aspect of what the artifact is supposed to do. The artifact satisfies the 
engineering requirements largely through its functions [3]. 

• Behavior: information supporting the simulation of the product under some given 
conditions. This simulation could be, for example, kinematics, dynamics and control 
systems.  

• Structure: the individual parts that constitute the assembly, the hierarchy of the 
composition tree (parts-subassemblies-assembly) and the associated Bill of 
Materials (BOM). 
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• Geometry and material:  a generic shape, chosen by the designer at early stages of 
the lifecycle and defined geometry and material captured in one or more CAD 
(Computer-Aided Design) systems.  

• Features: a portion of the artifact’s form that has some specific functions assigned 
to it. An artifact may have design features, analysis features, manufacturing features, 
etc., as determined by their respective functions [3]. 

• Tolerances: tolerance design is the process of deriving a description of geometric 
tolerance specifications for a product from a given set of desired properties of the 
product. Tolerancing includes both tolerance analysis and tolerance synthesis [3]. 

The second source of complexity is due to the abstraction principles needed to represent 
the information on products. The model may incorporate the following mechanisms [18]:  

• Generalization / specialization: relationships built through intentional properties, e.g., 
“gear shifts are mechanical assemblies.” This abstraction principle involves a 
hierarchical mechanism where concepts are categorized through the general 
knowledge of the problem. 

• Grouping / individualization: relationships built through extensional properties, e.g., 
“manual gear shifts are gear shifts.” In this case concepts are categorized through the 
specific knowledge of the represented domain and the group can contain 
heterogeneous things. 

• Classification / instantiation: relationships between a real object (instance) and the 
concept it belongs to, e.g., “gear shift #1 is a gear shift.” In modeling, particular 
attention needs to be paid to the establishment of the boundary between concepts and 
real objects. 

• Aggregation / decomposition: part-of relationships between an element and its 
constituents, e.g., “gear shifts are part-of cars” and “gear shift #1 is part-of car #1.”  

Other types of part-of relationships may be required, for example, a given chemical 
compound “consists of” many other chemicals. For more details regarding general part-of 
formalisms, readers can refer to the General Extensional Mereology [19]. 

This paper outlines evaluation of the expressiveness of DL to capture both the 
information content and the abstraction principles discussed above, with the aim of 
developing a consistent formal model for manufacturing product assemblies.  We use the 
terms expressiveness to mean both language expressiveness and processible 
expressiveness [20]. The language expressiveness is related to the language symbols, 
rules, conventions and vocabulary, while the processible expressiveness is related to the 
computability. For more detailed discussion on the issues related to the computational 
complexity, please refer to [21] [22]. 

4 DL expressivity in product modeling 

Description Logic (DL) is a family of knowledge representation languages used to 
represent the knowledge of a domain in a structured fashion. The domain is modeled by 
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means of concepts and roles, which denote, respectively, classes of objects and 
relationships between objects. The concepts and roles, together with knowledge 
specification mechanisms, form the knowledge base.  Automatic reasoning procedures 
can be performed on the knowledge base. 

DL is decidable, that is, there exists an automatic reasoning procedure such that, for 
every knowledge specification mechanism in the logic, the reasoning procedure is 
capable of deciding whether the mechanism is valid or not [23]. DL expressiveness 
enables explicit information representation and support inference mechanisms, i.e., 
mechanisms to find implicit consequences based on the explicit information.  

4.1 DL for information representation 

The DL formalism allows us not only to create concepts but also to create concept level 
hierarchies of the knowledge using is-a relationships (e.g., car is-a vehicle), to express 
complex roles (properties) between concepts (e.g., cars have exactly four wheels while 
bicycles have exactly two wheels) and to declare the membership of an individual in a 
concept (e.g., car #1 belongs to the concept of cars). Thus, the DL formalism helps us in 
satisfying some of the requirements inherent to the abstraction principles as well as 
information elements listed in Section 3: 

• Function, behavior, structure, geometry and material, features, tolerances can be 
expressed in concepts and roles 

• Generalization / specialization can be expressed as taxonomy structures in DL. 

• Grouping / individualization where we can create in DL a complex concept that 
represents the grouping of concepts.  

• Classification / instantiation where DL allows for the declaration of the membership 
of an individual in a concept.  

4.2 DL for inference mechanisms 

For inference mechanisms, consider the examples in Table 1. The first two questions are 
inherent to the generalization and grouping abstraction principles. The third and fourth 
questions address the classification abstraction principle, while the fifth question deals 
with the aggregation abstraction principle. In the second column we use the concepts of 
Vehicle, Car, Bicycle, Wheel and Engine to create our knowledge base and to query it. In 
the third column we present the DL mechanisms that allow for answers to those queries. 
In the fourth column we show answers to these queries. 

Table 1: Examples of inference mechanisms 

 Question DL mechanisms Answer 
1 We subsume the concept 

of Car1 in the concept of 
Bicycles2. Is it logically 
correct? 

The “consistency 
checking” mechanism 
finds whether a concept 
admits at least one 
individual. 

No, the model is 
inconsistent. There cannot be 
an individual that has four 
wheels and is a bicycle at the 
same time. 



 7

2 We introduce the 
concept of ElectricCar. 
What is its position in 
the hierarchy? 

The “subsumption” 
mechanism finds 
implicit sub-concept 
relationships. 

In the concept’s hierarchy, 
the ElectricCar concept is a 
sub-concept of Car. 

3 We declare myCar as an 
individual of the concept 
of Vehicle with four 
wheels. Is it a Car or a 
Bicycle? 

The “realization 
reasoning” mechanism 
finds the most specific 
concept for each 
individual. 

myCar has four wheels, so it 
is an individual of the 
concept  of Car.  

4 Which cars have the 
same kind of wheels?        

The “retrieval” 
mechanism finds the 
individuals that are 
instances of a given 
concept or intersection 
of concepts.  

The set of different instances 
of Car that have same kind of 
wheels. 

5 We declare a wheel part-
of a car but the engine 
powering that wheel is 
partOf another car. Is it 
logically correct? 

DL can not help here 
since DL can not 
specify restrictions 
among properties’ 
instances. 
 

The individual of the Wheel 
concept is connected to the 
wrong individual of Car. The 
partOf property between the 
concepts of Wheel and Car is 
still correct. 

1 Car is a Vehicle with four wheels 
2 Bicycle is a Vehicle with two wheels 

 
The DL formalism consists of four reasoning mechanisms [23]: consistency checking, 
subsumption, realization, and retrieval. Each of these provides the answer for one of the 
first four questions. The fifth question represents a different situation, it falls outside the 
scope of DL. To answer this question we need to represent appropriate role paths 
between individuals and not between classes. In other words it is the role path, going 
from the instance of Wheel to the instance of Car passing through the instance of Engine, 
which has to be constrained. To answer the fifth question, we have to introduce new 
elements in the representation: domain-specific rules. 

4.3 Domain-specific rules 

Domain-specific rules are defined to add specific constraints in a knowledge base. These 
rules are in the form of implications between an antecedent (body) and a consequent 
(head): whenever the conditions specified in the antecedent hold, then the conditions 
specified in the consequent must also hold. These rules not only allow the declaration of 
the membership of an individual to a concept, but also the declaration of properties with 
specific constraints between individuals. In the fifth example given in Table 1, a rule can 
state that if a wheel is powered by an engine and that engine is part-of a car, then the 
wheel has to be part-of the same car.  
 
In order to represent knowledge in the assembly domain, i.e., to answer all five questions 
in Table 1, we need to combine both DL expressivity and domain-specific rules. 
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5 Languages and tools 

Several modeling languages and tools can be considered to implement both the DL 
expressivity and the domain-specific rules. 

5.1 Modeling Languages 

We discuss the applicability of several commonly used modeling languages for DL 
expressivity. The candidate languages have been evaluated according to their capability 
of expressing DL axioms. It is outside the scope of this paper to provide an exhaustive 
and fair comparison of these modeling languages.  

We have evaluated the following languages/frameworks: 

• Unified Modeling Language (UML) [24] 

• Entity-Relationship diagrams (ERD) [25] 

• EXPRESS [26] 

• Ontology Web Language (OWL-DL, version 1.0) [4].  

In UML, the modeling elements are substantially aligned with the needs of object-
oriented programming. UML, if evaluated according to its DL expressivity, lacks several 
features, for example, transitive and reflexive properties, which can be achieved only 
through Object Constraint Language- [OCL] constraints [27]. On the other hand, the 
expressivity of UML is enhanced by its meta-modeling architecture called Meta-Object 
Facility (MOF). This architecture is organized in four layers, from M3 to M0, where each 
layer provides precise constructs and rules for creating models in the successive layers 
[28]. The meta-modeling expressivity of UML is not currently considered in our 
evaluation and it will be carried out in the future. 

ERD was developed for the organization of information within databases, therefore the 
correspondence with DL expressivity is even lower than for UML [25]. ERD, for 
example, does not provide any construct to express enumerated classes and negation. 

In EXPRESS, the correspondence with DL is not high. EXPRESS misses some DL 
constructs, such as properties hierarchies and disjointness1. The expressive power of 
EXPRESS, on the other hand, is enhanced with algorithms not captured in the DL 
expressivity. These algorithms define the entities’ behavior using functions, procedures, 
and rules.  

OWL-DL was specifically created to express the DL constructs; therefore it is the most 
appropriate for our purpose. Each DL sublanguage is named with a combination of letters 
(acronyms), e.g., ALC, SHOIN, and SHIQ ,: each letter denotes its expressivity. OWL-DL 

1.0 is classified as SHOIN(D). Although decidable, OWL-DL could become intractable, 

                                                 
1 The EXPRESS construct “ONE OF” only represents a local disjointness.  
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especially when dealing with large ontologies. The computational complexity of OWL-
DL is outside the scope of this paper. The expressiveness of OWL is contained in its 
constructs: a model-theoretic semantic is specified for each construct.  These language 
constructs have been designed with the aim of using DL for the semantic web to enable 
interoperability between systems through semantic data representation.  

The use of the XML (Extensible Markup Language) syntax within OWL facilitates the 
exchange of models between agents, while the OWL features give the model the 
expressive power needed for ontological representation. 

5.2 Modeling Tools 

We evaluated the OWL expressiveness for product modeling by building a product 
ontology (see Section 6) and by performing inference mechanisms on it (see Section 7). 
We developed the ontology in OWL-DL version 1.0, using Protégé-OWL 3.3 [29] to edit 
it. We excluded OWL Lite and OWL Full from consideration because of their low formal 
expressivity and the hard computational problems, respectively. The Protégé ontology 
editor supports  SHOIN(D).  

We used the reasoning engine RACERPro [30] for doing inference in DL. We chose 
RACERPro because it includes subsumption and classification algorithms which are 
typical DL reasoning algorithms. Further, it is easily accessible through the OWL Plug-in 
in Protégé.  For domain-specific rules we used the Semantic Web Rule Language 
(SWRL) [31]. Since the general combination SWRL and OWL-DL is undecidable, we 
selected only the DL-safe portion of SWRL. The rules are edited directly in Protégé-
OWL through the SWRLTab - an extension to the editor - and then executed by Jess [32], 
a rule engine for the Java platform that supports reasoning on declarative rules. We used 
the Jess Bridge for the following: 

• merge SWRL rules and relevant OWL data 

• input them to the Jess engine, and  

• return the new inferred information to the OWL ontology.  

Figure 1 depicts how the OWL data and the SWRL rules are connected. The bold arrows 
indicate the flow of information (initial data, rules and final data) while the dashed 
arrows indicate how the Jess Bridge enables that flow.  
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Figure 1: Connection between the OWL ontology and SWRL rules 

In the next sections we will describe, with an example, how we used the selected 
languages and tools to develop a product ontology. The concepts and their relationships 
in CPM/OAM described in Section 6 will be the source of the examples used in Section 7 
and 8. 
 

6 Description of the information model 

The Core Product Model (CPM) [3] was intended to form a base for representing a 
product model that could respond to the demands of the next generation CAD systems, 
besides providing improved interoperability among future software. The Open Assembly 
Model (OAM) is the CPM extension for assembly and tolerances representation. Based 
on CPM and OAM [3], [33] presents two ontological models. These two models were 
developed at the National Institute of Standards and Technology (NIST) as part of the 
ongoing work related to product representation for lifecycle management [3]. A brief 
description of these two models is given below.  

6.1 Core Product Model 

The concepts (classes in OWL) in CPM are grouped into four categories (see Figure 2): 

• Classes that provide supporting information for the objects (abstract classes, i.e. 
classes that do no have direct instances): CoreProductModel, CommonCoreObject, 
CommonCoreRelationship, CoreProperty and CoreEntity. 

• Physical or conceptual objects classes: Artifact, Feature, Port, Specification, 
Requirement, Function, Flow, Behavior, Form, Geometry and Material. 

• Classes that describe associations (relationships) among the objects: Constraint, 
EntityAssociation, Usage and Trace. 

• Classes that are commonly used by other classes (utility classes): Information, 
ProcessInformation and Rationale. 

The hierarchy of classes begins from CommonCoreEntity. This class represents real 
objects and relationships or associations between them. The two subclasses of 
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CommonCoreEntity are CommonCoreObject and CommonCoreRelationship. 
CommonCoreObject is the parent class for all the object classes. CommonCoreRelationship 
and its specializations, the EntityAssociation, Constraint, Usage and Trace relationships, 
can be applied to individuals of classes derived from this class. CommonCoreRelationship 
is the base class from which all association classes are specialized. It also serves as an 
association to the CommonCoreObject class. CoreEntity is an abstract class from which the 
classes Artifact and Feature are specialized. EntityAssociation relationships may be applied 
to entities in this class. CoreProperty is an abstract class from which the classes Function, 
Flow, Form, and Material are specialized. Constraint relationships may be applied to 
individuals of this class.  

The information elements listed in Section 3 that are included in CPM are Function, 
Behavior, Geometry , Material and Features. The structure of Assembly is partially defined 
in the CPM: the relationship between an Assembly and its components is defined in the 
relationship partOf but the connections between the components are outside the scope of 
CPM. For further details, please, refer to [3]. 

6.2 Open Assembly Model 

OAM incorporates information about assembly relationships and component composition 
(we used the term “structure” in Section 3 to identify both); the representation of the 
latter is by the class ArtifactAssociation, which represents the assembly relationship that 
generally involves two or more Artifacts. ArtifactAssociation is specialized into the 
following classes: PositionOrientation, Relative-Motion and Connection. ArtifactAssociation 
is directly connected to Assembly to allow the possibility to check the assembly 
relationship involved in the Assembly through the property ArtifactAssociation2Assembly 
(see Figure 3). 

An assembly is a composition of its subassemblies and parts. The Assembly and Part 
classes are subclasses of the CPM Artifact class. A Part is the lowest level component. 
Each assembly component (whether a subassembly or part) is made up of one or more 
features, represented in the model by OAMFeature, a subclass of the CPM Feature class. 
OAMFeature has tolerance information, represented by the class Tolerance. Tolerance is 
one of the information elements we identify among the requirements in Section 3. 

The class AssemblyFeatureAssociation (AFA) represents the association between mating 
assembly features through which relevant Artifacts are associated. The class 
ArtifactAssociation is the aggregation of AssemblyFeatureAssociation. The class 
AssemblyFeatureAssociationRepresentation (AFAR) represents the assembly relationship 
between two or more assembly features. This class is an aggregation of 
ParametricAssemblyConstraints, KinematicPair, and/or KinematicPath between assembly 
features. KinematicPair defines the kinematic constraints between two adjacent Artifacts 
(links) at a joint. KinematicPath provides the description of the kinematic motion. For 
further details, please, refer to [3]. 
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Figure 2: Core Product Model, OWL version (highlighting is-a and part-of relationships) 
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Figure 3: Open Assembly Model, OWL version (highlighting is-a relationship) 
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7 Expressivity capabilities 

In this section we will discuss the detail evaluation of OWL-DL1.0 with respect to 
CPM/OAM with the expressivity of DL and capability of supplementary rules (domain-
specific rules).  

7.1 Expressivity of DL 

In Table 2 we give relationship between the DL expressivity included in OWL and the 
expressions (classes) defined in CPM/OAM model. The first column of the table shows 
the notation for expressivity of OWL-DL, i.e., SHOIN(D) [23].  The third column in Table 

2 indicates the expressivity associated with each letter of the DL notation. The fourth and 
the fifth column provide respectively the description and the related expressions of 
CPM/OAM.   

Table 2: Examples of DL expressivity in product modeling 

Notation No Expressivity Description DL-related expressions of CPM/OAM 

1 Universal 
concept 

The concept that contains 
all the individuals. 

The concept of Thing: included in every 
OWL ontology. 

2 Bottom concept  The concept without any 
individual. 

The concept of Nothing: included in 
every OWL ontology. 

3 Atomic concept A concept name. The concept of Assembly. 

4 Atomic 
negation 

The negation of an atomic 
concept. 

The concept of Part consists of those 
individuals that are not Assemblies. 

5 
Value 
restriction 
 

All the individuals that 
are in the relationship 
with the described 
concept belong to a 
specified concept. 

A Feature can be connected through the 
property 
feature2ParametricAssemblyConstr
aint only to the concept 
ParametricAssemblyConstraint. 

AL 

6 Intersection of 
concepts 

The set of individuals 
belonging to both the 
concepts. 

An OAMFeature is the intersection 
between the concept of Feature and the 
concept of the individuals connected at 
least with one AFA through the property 
feature2AFA. An OAMFeature can be 
automatically recognized by giving the 
definition of that concept. 
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Notation No Expressivity Description DL-related expressions of CPM/OAM 

S 7 Transitive 
properties 

For all individuals a, b, 
and c, if a is related to b 
and b is related to c, then 
a is related to c. 

We introduce two properties: 
artifactHasPart (transitive) and 
artifactHasPart_direct (not transitive) 
to address the issue of undecideability. 
The property artifactHasPart is used to 
connect an Assembly with all its 
components. If you specify cardinality 
constraints for transitive properties than it 
becomes undecideable. 
For this reason, we also define the 
property artifactHasPart_direct which 
is not transitive. This allows to specify 
cardinality constraints on this property.  
artifactHasPart_direct is used to 
connect the Assembly to its direct 
subassemblies or Parts. 

H 8 Role hierarchy 

If P1 is a subproperty of 
P2, then the property 
extension of P1 (a set of 
pairs) should be a subset 
of the property extension 
of P2 (also a set of pairs). 

The property artifactHasPart is a 
subproperty of the generic property 
hasPart. 

O 9 Enumerated 
classes 

The concept is made of 
exactly the enumerated 
individuals. 

Two CommonCoreObject can be 
linked through the 
CommonCoreRelationships 
“alternativeOf”, “isSameAs”, 
“versionOf”, “isBasedOn”, 
“derivedFrom”: these are the 
enumerated individuals of the range class 
of the link.  

I 10 Inverse 
properties 

For all individuals a and 
b, iff a is related to b, then 
b is related to a through 
the inverse property. 

The property partOf is the inverse of 
artifactHasPart. When an Assembly is 
connected to its component through 
artifactHasPart, the component will be 
connected to the Assembly through 
partOf. 

N 11 Cardinality 
restrictions 

The concept is 
constrained to have a 
number of values of a 
particular property. 

An ArtifactAssociation has to link at 
least 2 Artifacts. An inconsistency will 
be identified if not. 

F 12 Functional 
properties 

The individuals of certain 
concepts have unique 
property fillers for a given 
property. 

A KinematicPair can be referred only to 
one AFAR. 

E 13 Full existential 
quantification 

The set of all individuals 
in the domain which has 
at least one specified R-
successor. 

A DatumFeature has to have some 
connections with 
AssemblyFeatureAssociation. If it 
doesn’t the reasoner will recognize an 
inconsistency. 

U 14 Concept union 
(disjunction) 

The set of the individuals 
belonging at least to one 
of the disjointed concepts. 

The property that connects 
ArtifactAssociation to the assembled 
components has as range the concept 
union of Assembly and Part. 
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Notation No Expressivity Description DL-related expressions of CPM/OAM 

(D) 15 Datatype 
properties 

Property for which the 
value is a data literal, 
such as a string or a 
number. 

CommonCoreEntities have names: the 
property links CommonCoreEntity to a 
string. 

 
All OWL DL 1.0 constructs (SHOIN(D)) are required for CPM/OAM but only the 

inference mechanisms of SHIN (D) are performed since the reasoning capability of 

RacerPro in the presence of enumerated classes (O) is incomplete [34]. In our ongoing 

research we are evaluating the Pellet reasoner (SHOIQ(D)) because it is more compatible 

with OWL 1.1 (SROIQ(D)), the newest version of OWL [35]. 

With the set of axioms listed in Table 2, the reasoner is able to: 

• Query and search the model. 

• Check its consistency. 

• Perform inference on the classes’ hierarchy. 

• Perform inference on the membership of the individuals to the classes. 

In OWL-DL 1.0 a property is declared in terms of its domain, range and characteristics 
such as transitivity or reflexivity. In cases where it is required to impose specific 
conditions or restrictions we need to specify some rules (see question 5 in Table 1). For 
example, consider Figure 4. Class Car and class Person are connected through the 
property hasOwner, class Person and class Garage are connected through the property 
isRenter and class Car and class Garage are connected through the property isParked. To 
infer that a particular person’s car is parked in the garage the person rents we need a rule 
to specify this explicitly. 

Car Person
hasOwner

Garage

isRenter
isParked

Car Person
hasOwner

Garage

isRenter
isParked

 
Figure 4: Example of a case where rules are needed 

In OWL 1.1 the above rule can also be achieved through property chains, e.g., the 
property isParked is the combination of the properties hasOwner and isRenter, but in our 
opinion not in all cases the rules can be replaced by property chains. 

7.2 Expressivity of Rules 

We use SWRL [31] rules in order to:   
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• create properties between individuals, 

• associate individuals to classes:  we use this capability to associate an individual 
to a class for detecting inconsistencies in the ontology. 

We classify these rules into four groups:  

• property rules 

• association rules 

• partOf rules, and  

• acyclic rules.  

In the following diagrams, we use rectangles to identify classes and ovals to identify 
individuals. All the diagrams representing the rules (Figures from 6 to 9) are related to 
the following portion in Figure 5 of the CPM/OAM models and they all share the same 
legend. 

Assembly Part

ArtifactArtifactAssociation

subClassOf

artifactHasPart_direct

artifactAssociation2Artifact

artifactAssociation2Assembly: inferred property

artifactHasPart: inferred property

Assembly Part

ArtifactArtifactAssociation

subClassOfsubClassOf

artifactHasPart_directartifactHasPart_direct

artifactAssociation2ArtifactartifactAssociation2Artifact

artifactAssociation2Assembly: inferred propertyartifactAssociation2Assembly: inferred property

artifactHasPart: inferred propertyartifactHasPart: inferred property

 

Figure 5: CPM and OAM for representing assembly structure 

The class Artifact is specialized into Assembly and Part. The relationship part-of between 
two Artifacts is expressed through the properties artifactHasPart_direct and artifactHasPart. 
ArtifactAssociation, i.e., the class that represents the assembly relationships, is connected 
through the property artifactAssociation2Artifact to two or more Artifacts. As the inferred 
relationship from this, the class ArtifactAssociation is also connected through the property 
artifactAssociation2Assembly to the Assembly that contains the assembly relationships. 

Property rules enable inferring new properties between individuals. The property rules 
add additional semantics in the ontology. In the following example, 
artifactAssociation2Assembly  property (inferred) associates the ArtifactAssociation directly 
to the Assembly. Figure 6 shows how this rule connects the master assembly_1 to the 
ArtifactAssociations existing between its subcomponents assembly_2, part_1, and 
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assembly_3. In this way, we can explicitly make it available how many artifactAssociation 
are involved in assembly_1. 

assembly_2 Assembly_3

artifactAssociation_α artifactAssociation_β

assembly_1

part_1assembly_2 Assembly_3

artifactAssociation_α artifactAssociation_β

assembly_1

part_1

 
Figure 6: Example of a property rule 

 
Association rules represent the binary relationships between association classes and 
object classes. In Figure 7 a minimum cardinality 2 is applied in the OWL model, and 
then a SWRL rule specifies that if two different individuals of the association class are 
connected to the same individuals of the object class then these two association 
individuals are the same (sameAs). In this way a unique ArtifactAssociation can be 
connected to the same individuals of Artifact. 

ArtifactAssociation α
sameAs

ArtifactAssociation β

artifactAssociation_α
artifact_1

artifact_2

artifactAssociation_β
artifact_1

artifact_2

ArtifactAssociation Artifact
min 2

ArtifactAssociation α
sameAs

ArtifactAssociation β

artifactAssociation_α
artifact_1

artifact_2

artifact_1

artifact_2

artifactAssociation_β
artifact_1

artifact_2

artifact_1

artifact_2

ArtifactAssociation Artifact
min 2

 

Figure 7: Example of an association rule 

PartOf rules create the right assembly structure, i.e., enable the assemblies to distinguish 
between the direct and the indirect partOf properties. After executing the partOf rules, the 
indirect property links an assembly with all its parts (example in Figure 8). 
 

assembly_2

assembly_1 part_3

part_2part_1

assembly_2

part_3part_2part_1

assembly_2

assembly_1 part_3

part_2part_1 part_2part_1

assembly_2

part_3part_2part_1

 
Figure 8: Example of a partOf rule 
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Acyclic rules instantiate classes of the kind not-allowed, to identify the individuals that, 
although declared, are included in a part-of cycle. Since no inference mechanism can 
delete wrong information from the ontology, we insert the wrong information in the not-
allowed classes through the acyclic rules. Since the not-allowed classes are declared 
disjoint from the original ones, the reasoner will detect an inconsistency.  

Consider the example in Figure 9: the assembly_2 is composed by itself (assembly_2 is 
composed by assembly_1 that is in turn composed by assembly_2). 

assembly_2

assembly_1

assembly_2

assembly_2

assembly_1

assembly_2
 

Figure 9: Example of an acyclic rule 

In this example, both assembly_2 and assembly_1 are individuals of the same class. Since 
the DL axioms can only apply to classes, no axiom can constrain the relationship between 
instances of the same class. In this case we can insert any axiom to declare that the part-
of relationship is acyclic. For this reason, we create the NotAllowedAssembly class and 
instantiate it through the acyclic rules. Since the classes NotAllowedAssembly and 
Assembly are disjoint, the reasoner detects an inconsistency. 

We give practical examples of the reasoning mechanisms employed in the next section, 
where a case study is presented for the exploration of the potentialities of the ontology 
assembly representation. 

8 Reasonings Examples 

We tested the reasoning capabilities of DL for product modelling by instantiating the 
OAM model with a planetary gear system. Figure 10 and the summary presented below 
are taken from [12] [3]. 
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planetary_Gear_Assembly

planet_Carrier_Assembly

planet_Gear_Pins output_Shaft

bearings

screws
output_Housing_Assembly

input_Housing sun_Gear

output_Housingwasher

ring_Gear

ring_Gear_Assembly

ring_Gear_Pins

planet_Gears

planet_Gear_Carrier_Assembly

planetary_Gear_Assembly

planet_Carrier_Assembly

planet_Gear_Pins output_Shaft

bearings

screws
output_Housing_Assembly

input_Housing sun_Gear

output_Housingwasher

ring_Gear

ring_Gear_Assembly

ring_Gear_Pins

planet_Gears

planet_Gear_Carrier_Assembly

 
Figure 10: Case study: planetary gear system 

The planetary gear system is composed of two parts and three subassemblies. The parts 
include the input-housing and the sungear. The three subassemblies include: (1) the 
output end assembly comprising two bearings, a washer, and the output housing; (2) the 
ring gear assembly comprising a ring gear and two ring-gear pins; and (3) the planet gear 
holder assembly comprising three planet gears and a planet carrier assembly, which 
further decomposes into the output shaft and three planet-gear pins. In total there are 30 
different parts. The connections and pairs between different Artifacts are of different 
types: fixed connection (fc), movable connection (mc) or position orientation (po). 

 To represent the planetary gear system we declare in total 187 individuals and 277 
properties between the individuals. These individuals comprise not only the Artifacts but 
also their Features, their Geometries, their Tolerances and their connections through the 
association classes. Out of the 187 individuals, 70 are declared to belong to the class 
Thing, parent of all the classes in the ontology. The reasoner, using the classes and 
properties axioms, classifies these 70 individuals into their proper classes. 

The inference mechanisms deal with not only the individuals in the ontology but also the 
properties between the individuals. The editor Protégé-OWL automatically defines the 
inverse and the parent properties. Since all the properties in the model have their inverse, 
Protégé automatically defines 277 inverse properties, one for each declared direct 
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property. Moreover, Protégé defines all the properties parents of the asserted properties. 
After performing the DL reasoner, the rule-based inference found additional 170 
properties that are added to the ontology. 

In the following sections, we provide three examples of the inference mechanisms we 
used: the first is based on description logic, the second is based on domain-specific rules 
while the third combines both DL and rules. 

8.1 Example of DL reasoning 

Table 3 presents an example of description logic reasoning from the case study. The class 
Artifact and its subclasses are the main focus. In OAM we describe the class Part with a 
necessary and sufficient condition: Parts are Artifacts without subassemblies. In other 
words, in DL expressivity, the concept of Part is the intersection between the concept of 
Artifact and the concept of the Thing having cardinality 0 on the property 
artifactHasPart_direct (AL expressivity, number 6 in Table 2). This property has as 

domain (the class owning the property) and as range (the class of the values of the 
property) the class Artifact.  

Moreover, we describe the class Assembly with a necessary condition: Assemblies must 
have at least two Artifacts connected through the inherited property artifactHasPart_direct. 
In other words, in DL expressivity, we apply a cardinality restriction (N expressivity, 

number 11 in Table 2) to the concept of Assembly. 

We then define Assembly and Part as partitions of the class Artifact, i.e., the concept of 
Artifact is made by the union (U expressivity, number 14 in Table 2) of the disjoint 

concepts Assembly and Part. As a result, an instance of Artifact (planet_Carrier_Assembly 
in this example) composed by other Artifacts (output_Shaft, planet_Gear_Pin_1, 
planet_Gear_Pin_2, planet_Gear_Pin_3) is inferred to be an individual of Assembly.   

Table 3: Example of DL reasoning 

AIM Infer that an Artifact composed by other Artifacts is an Assembly 
CLASSES Artifact, Assembly  
PROPERTIES artifactHasPart_direct (Range: Artifact , Domain: Artifact)  
RESTRICTION 
 

On Assembly:  artifactHasPart_direct min 2  
(an Artifact is an Assembly only if it is related with at least 2 other 
Artifacts)  

INPUT 
 

An individual of Artifact (planet_Carrier_Assembly) is composed 
through artifactHasPart_direct by 4 individuals of Part (output_Shaft, 
planet_Gear_Pin_1, planet_Gear_Pin_2, planet_Gear_Pin_3)  

OUTPUT planet_Carrier_Assembly is reclassified as an individual of the class 
Assembly rather then general Artifact. 
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8.2 Example of rule-based reasoning 

 
Table 4 presents an example of rule-based reasoning from the case study: the structure of 
an Assembly is described by its parts/subassemblies and by the relationship between its 
components. 

Table 4: Example of rule-based reasoning 

AIM Infer the relation between Assembly and ArtifactAssociation 
CLASSES Assembly, Part, ArtifactAssociation 
PROPERTIES artifactAssociation2Assembly (Range: ArtifactAssociation, Domain: 

Assembly) 
RULES If the components of an Assembly are linked through an 

ArtifactAssociation, then relate that ArtifactAssociation to the Assembly 
(see Table 5) 

INPUT An individual of Assembly (output_Housing_Assembly) is composed 
of bearing_1, bearing_2, output_Housing and washer through 
artifactHasPart_direct. These individuals are connected with 
individuals of the class ArtifactAssociation   

OUTPUT output_Housing_Assembly is linked with the corresponding 
individuals of ArtifactAssociation (fc_1, fc_2, fc_3) through the 
artifactAssociation2Assembly property. 

 
In this example, output_Housing_Assembly is composed of bearing_1, bearing_2, 
output_Housing and washer. The ArtifactAssociations connect washer with output_Housing 
(fc_1), bearing_1 with output_Housing (fc_2) and bearing_2 with output_Housing (fc_3).  

The aim of the reasoning is to correctly relate the output_Housing_Assembly to the 
ArtifactAssociations involved in the Assembly. In this case we can not use OWL 
declarations since the condition for creating the new relation is dependent on the specific 
properties each individual possesses. For this reason we have to resort to SWRL rules. 

In this example we need four different property rules (see Table 5). Each of them takes 
into account a different scenario: 

• Rule 1 is applied when the description of the Assembly is detailed (the 
AssemblyAssociation connects two or more Parts) and the Assembly has at least one 
subassembly that is a Part. The antecedent of the rule indicates that one Part is 
directly part-of the Assembly while the other Part is indirectly connected to the 
Assembly. 

• Rule 2 is applied when the description is detailed but the ArtifactAssociation exists 
between Parts that are not directly subassemblies of the Assembly. This means that 
the Assembly is composed of other subassemblies and each subassembly has a Part 
involved in the Assembly. In the antecedent of Rule 2 we explore the indirect property 
to search these Parts in the subassemblies.  
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• Rule 3 is applied when the description is not detailed so that the Assembly is 
composed of two or more subassemblies connected together.  

• Rule 4 is similar to the third but is useful when the Assembly is made of a Part and a 
subassembly.  

Table 5: Rules needed to connect Assembly with its ArtifactAssociations 
Rule 1 Rule 2 Rule 3 Rule 4 
artifactHasPart_direct(?x, ?y)  
Part(?y) 
artifactHasPart(?x, ?z) 
Part(?z) 
differentFrom(?y, ?z) 
artifact2AA(?y, ?a) 
artifact2AA(?z, ?a) 

artifactHasPart_direct(?x, ?y) 
Assembly(?y)  
artifactHasPart_direct(?x, ?z) 
Assembly(?z)  
differentFrom(?y, ?z)  
artifactHasPart(?y, ?q) 
Part(?q) 
artifactHasPart(?z, ?r) 
Part(?r) 
differentFrom(?q, ?r) 
artifact2AA(?q, ?a) 
artifact2AA(?r, ?a)   

artifactHasPart_direct(?x, ?y) 
Assembly(?y)  
artifactHasPart_direct(?x, ?z)  
Assembly(?z)  
artifact2AA(?y, ?a)  
artifact2AA(?z, ?a)   

artifactHasPart_direct(?x, ?y)  
Assembly(?y)   
artifactHasPart_direct(?x, ?z)  
Part(?z)   
artifact2AA(?y, ?a)  
artifact2AA(?z, ?a)    

 Assembly2ArtifactAssociation(?x, ?a) 

8.3 Example of combining DL and rule-based reasonings 

Table 6 presents an example of combining both DL and rule-based reasoning. The focus 
is the composition hierarchy of an Assembly. The goal in this example is to avoid cyclic 
composition hierarchies, i.e., hierarchies in which an assembly contains itself. Since 
composition hierarchies are constituted by individuals of the same class Assembly, we 
can not use any DL axiom to impose the acyclicity constraint on the hierarchy. The use of 
domain-specific rules is the only solution (see Section 4).  

We create in the product ontology the class NotAllowedAssembly, disjoint from the class 
Assembly. NotAllowedAssembly will contain all the individuals of the Assembly involved 
in a cyclic hierarchy composition (planetary_Gear_System_Assembly in the case of Table 
6). We create a SWRL rule to automatically instantiate this class. After executing the 
rule, the individuals involved in the cyclic hierarchy will belong to both the classes 
Assembly and  NotAllowedAssembly. Since these two classes are declared disjoint, the DL 
reasoner will detect an inconsistency. 

Table 6: Example of combining DL and rule-based reasonings 

AIM Infer an inconsistency in case of a cyclic composition of an Assembly 
CLASSES Assembly, NotAllowedAssembly 
PROPERTIES artifactHasPart (Range: Artifact , Domain: Artifact) 
RULES If an Assembly is composed of itself, then the Assembly will belong to 

the class NotAllowedAssembly 
RESTRICTION Assembly and  NotAllowedAssembly are disjoint classes 
INPUT An individual of Assembly (planetary_Gear_System_Assembly) 

contains the subassembly planet_Gear_Holder, that in turn contains the 
planetary_Gear_System_Assembly 

OUTPUT planetary_Gear_System_Assembly belongs to both the classes 
Assembly and  NotAllowedAssembly: an inconsistency is detected 
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9 Expressivity limitations 

The process for selecting the appropriate logical formalism for product ontology 
modeling is a question of trade-off between expressivity, decidability and computational 
complexity. To help the reader in this process, we provide in this paper an evaluation of 
description logic sublanguages and domain-specific rules. In this section we complete our 
evaluation by highlighting the limits of their expressivity capabilities. In other words, we 
show some of the expressivity requirements that can not be satisfied with OWL and 
SWRL, both widely used in the world wide web.  

OWL and SWRL are continuously evolving to meet the needs of application-specific 
communities (e.g., the bio-ontologies community). OWL 1.1, an extension of OWL-DL 
1.0, is the typical example of this evolution. This extension enhances the expressivity 
capability of OWL 1.0   [http://www.webont.org/owl/1.1/overview.html] by including 
new DL constructs   such as: 

• qualified cardinality restrictions 

• reflexive, irreflexive, symmetric, and asymmetric properties, local reflexivity 
restrictions 

• disjoint properties 

• property chain inclusion axioms 

•  user-defined datatypes 

Table 7 shows some examples on how the expressivity of these new constructs can be 
used for product modeling. 

Table 7: Example of OWL 1.1 expressivity in product modeling 

Expressivity Examples of Axioms using the Expressivity 
Qualified cardinality restrictions a DieselCar has exactly 1 DieselEngine as engine. 
Irreflexive properties a Car can not be a part of itself 

Disjoint properties 

the properties partOf and artifactHasPart cannot 
hold between the same instances of Artifact. If 
artifact_1 is a partOf artifact_2, then it is impossible 
that artifact_1   artifactHasPart  artifact_2. 

Property chain if a Wheel is powered by an Engine that is a  partOf 
a Car, then the Wheel is  partOf of the Car 

User-defined datatypes the price of an EconomicCar is represented by an 
integer less than 15000. 

 
OWL 1.1. is supported by Protégé 4 but a SWRL tab for this new version of Protégé has 
not yet been developed. Hence, we decided to develop our product ontology in OWL 1.0.  

9.1 DL issues 

Our major concern for DL is regarding the Open World Assumption (OWA) which is the 
assumption that the knowledge we represent in an ontology is considered to be 
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incomplete by default, i.e., whatever we do not declare in the ontology is unknown and 
therefore not possible to draw any conclusion. Now, although the OWA allows for easy 
reusability and extensibility of the ontology, it is sometimes useful in the product domain 
to close that open world [36].  

For example, consider the declaration for the class Car with a minimum cardinality 
constraint on the number of Seats it has to contain: a Car must have at least two Seats. In 
this case we can still create an instance of Car (car_1) that doesn’t have any Seat. car_1, 
till proven otherwise, will have at least two seats (recorded in the memory of the 
inference engine) but these seats are yet to be specified in the ontology because our 
knowledge on these seats is incomplete. This reflects exactly our knowledge at the early 
design stage of that Car, when the seats haven’t been designed yet. However, if we 
represent the same knowledge of that Car for developing a catalogue, an inconsistency 
should be detected. Therefore we would need a new reasoner that can apply the Close 
World Assumption (CWA) conveniently. Depending on the context, we could then apply 
either the OWA or the CWA. 

Another issue related to the OWA appears in the OAM ontology presented in Section 6, 
where the concept of Part is defined as the intersection between the concept of Artifact 
and the concept of Thing having cardinality 0 on the property artifactHasPart_direct. Even 
with this definition, an instance of Artifact without subassemblies (i.e., not holding the 
property artifactHasPart_direct) is not inferred to be a Part.  

To reason on the concept of Part we would need to define it with a Negation as Failure 
(NaF): a Part is an Artifact that does not hold the property artifactHasPart_direct. NaF 
would allow us to infer that an instance belongs to the class Part, until we do not find 
proof that a particular instance holds the property artifactHasPart_direct. Unfortunately, 
NaF, or non-monotonic negation, as a consequence of the OWA, is not provided in DL. 
Therefore we would need the capability for expressing NaF and also the reasoners’ 
ability to handle NaF (as already provided by most of the first order logic reasoners). 

9.2 SWRL issues 

The issue we described in the previous example could be overcome by declaring a 
domain-specific rule that if an instance of Artifact does not hold the property 
artifactHasPart_direct, then that instance belongs to the class Part. The rule would look 
like: 

Artifact (?x) and not artifactHasPart_direct (?x, ?y)  Part (?x) 

Unfortunately, SWRL  does not provide a syntax to express  negation, so it is impossible 
to express this rule. Introducing negation as failure for domain-specific rules is a 
requirement for the representation of product models. 

Moreover SWRL supports only procedural rules, i.e., rules of the form of an implication 
between an antecedent and a consequent [31]. These rules are called procedural because 
they are on the form if-then, where the negation of the consequent does not imply the 
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negation of the antecedent. As an example, consider the possibility of defining an 
EconomyCar with SWRL: 

Car (?x) and hasPrice (?x, ?y) and swrlb:lessThan(?y, 15000)  EconomyCar (?x) 

If we then introduce an instance of ExpensiveCar (the negation of the EconomyCar 
concept), nothing is inferred about its price. We would need a rule engine to be able to 
logically interpret the rule and therefore able to infer that an ExpensiveCar has a price 
higher than $15000. This kind of rule engine would allow us to reason that if condition A 
implies condition B, then the negation of the condition B implies the negation of the 
condition A: 

A  B, 

notB  not A. 

Now, consider again the rule that asserts that a Car with a price less than $15000 is an 
EconomyCar. In an ontology we can define the concept of EconomyCar as a Car with a 
price less than $12000 using an appropriate axiom. If we create an instance of Car with a 
price equal to $13000, first the reasoner will assert the consistency (validated through the 
axiom) of the ontology and then the Jess engine will infer that that instance is an 
EconomyCar using the appropriate SWRL rule. To detect the inconsistency between what 
is asserted with the ontology declarations and the rules, we have to run the reasoner 
again. This example shows that there is a strong need for a concurrent reasoner-engine 
which can check the consistency of the rules and the ontology together.  

9.3 OWL issues 

The other major problem in using OWL for product modeling is dealing with datatypes 
and datatype properties ((D) notation in Table 2). At the beginning of this section we 

already discussed the utility of user-defined datatypes, a feature already implemented in 
OWL 1.1. We still cannot define classes in terms of restrictions on: 1) more than one 
datatype property at a time, and 2) one property in multiple ways. N-ary predicates, the 
term used to identify these restrictions, would allow us to express, for example, 1) the 
retail price of a Car is always greater than the manufacturing cost of that Car, and 2) the 
weight of an Assembly is equal to the sum of the weights of its subassemblies/parts 
(mathematically defining the summation). Mathematical functions are also required while 
computing the Behavior of the Artifact.  

Currently, datatype properties can only be declared to be functional (F notation in Table 

2), whereas we could specify more characteristics, namely functional, inverse functional, 
symmetric and transitive for object properties (properties holding between individuals). 
But we need to declare a datatype property as inverse functional to avoid many to one 
relationships. For example, if we could declare the id property of the Artifacts (unique 
identifier) as both functional and inverse functional, the effect of that will be that each 
Artifact will have a unique id and each id will refer to a unique Artifact.  



 26

The major obstacle we found in dealing with object properties is their hierarchy (built 
through the subproperty mechanism). For example, consider the case in which we want to 
declare that: Car hasEngine exactly 1 Engine (N  notation in Table 2 ). In our ontology 

we could assert that: 1) the property hasPart has as domain the class Car and as range the  
class ElectroMechanicalComponents, and 2) the property hasEngine, which is a 
subproperty of hasPart, has as domain the class Car and as range the class Engine, 
subclass of ElectroMechanicalComponents (see Figure 11). 
 

Car ElectroMechanicalComponent

Engine

hasPart

hasEngine

subClassOfsubPropetyOf

Car ElectroMechanicalComponent

Engine

hasPart

hasEngine

subClassOfsubPropetyOf

 
Figure 11: Example of a property hierarchy system 

Now, although we assert these restrictions, we can still connect a Car to multiple Engines 
through the property hasPart, therefore avoiding using the property hasEngine for which 
the cardinality was specified. In this way an instance of Car containing more than one 
Engine will not create any inconsistency in the model. To identify the inconsistency, we 
would require a mechanism to “define” properties themselves. With this mechanism we 
could declare, in the previous example, that the property hasEngine is equivalent to the 
property hasPart connecting Car to Engine. A reasoner could then infer the most specific 
property that connects two instances. 
 
One major concern of product modelers is the scalability of OWL ontologies. Ontology 
scalability is defined in terms of three aspects of the ontology [37; 38]: 1) ontology size, 
i.e., the number of classes, instances and properties contained in the ontology, 2) 
ontology complication, i.e., complexity of the logical relationship contained in the 
ontology, and 3) ontology modularity, i.e., knowledge reusability. Choosing an ontology 
size is the task of product modelers: they have to find the right compromise between 
comprehensive domain coverage and a suitable number of classes, instances and 
properties. In terms of ontology complication and modularity, we would need two 
different kinds of mechanisms: 1) mechanisms for partial expressivity usage, and 2) 
mechanisms for partial import.  

To manage ontology complication, a mechanism for partial expressivity usage would 
allow us to specify all the definitions and restrictions in the product ontology and then 
select, depending on the context of usage, only the part of the expressivity we are 
interested in. If, for example, a set of axioms considerably increases the reasoning time, 
we would like to exclude that set of axioms from the ontology when that set is not 
relevant in our context of usage.     

To enable ontology modularity, the only OWL mechanism available is the “import” 
mechanism. This mechanism allows us to reuse the concepts defined in one particular 
ontology (the imported ontology) in other ontology (the importing ontology). 
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Unfortunately this mechanism will import all the concepts from the imported ontology to 
the importing one. To make an ontology more scalable, we need a mechanism to be able 
to import only the concepts (partial import) we are interested in.  

10 Summary and Conclusions 

To ensure interoperability of different systems sharing product information across its 
different stages of lifecycle, a multiple view of the product model is required. Such a 
model development is influenced by three factors: logical formalisms, computer 
interpretable languages and product information.  

Usually logicians focus on logical theorem proving, computer scientists focus on theory 
of languages, while product engineers focus on product information representation. The 
aim of this paper is to evaluate DL for product modeling taking into account the 
interrelations between logical formalisms, computer interpretable languages and product 
information.  

First, we identified the expressivity requirements for representing products. We grouped 
these requirements into information elements and abstraction principles. Second, we 
discussed the expressivity of description logic with respect to the requirements for 
representing products. DL provides mechanisms for both explicit knowledge 
specification and implicit knowledge inference. These mechanisms, in the case of DL, are 
decidable, so that a user can generally define product model with DL. Since some 
expressivity requirements can not be satisfied through DL, we chose domain-specific 
rules to increase the expressivity in the product model. Description logic and domain-
specific rules are combined together to accommodate the level of expressivity required in 
product modeling. For the expression of DL, we chose OWL-DL and for domain-specific 
rules, we chose SWRL, because it is compatible with the OWL editor Protégé.  

Third, we used OWL and SWRL to build product ontologies: ontological version of Core 
Product Model (CPM) representing a generic product and Open Assembly Model (OAM), 
extension of the CPM for representing mechanical assemblies. We use these ontologies to 
show how the expressivity of DL with domain-specific rules satisfies the requirements of 
the product modeling. We described an instantiated ontology with a planetary gear 
system use case to show how the level of expressivity in the model allows explicit 
knowledge specification and implicit knowledge inference. 

Finally, we concluded our evaluation by listing the expressivity limitations of DL, OWL 
and SWRL. The issues presented in our evaluation provide future research directions for 
developing high expressive product models. Developing such a model requires close 
collaboration between product engineers, computer scientists and logicians. The 
community that is using DL and its implementation languages can guide the development 
of new expressivity features.  These new expressivity features can then be finally tested 
by that community. 

This paper outlined how DL with rules satisfies the expressivity requirements for 
developing a consistent formal model for mechanical products. We believe this study can 
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be extended to understand how to choose appropriate logical frameworks (OWL DL to 
OWL Full) for developing product ontologies. Moreover, since OWL, the reasoners and 
the available tools are evolving, we are constantly evaluating our approach. 

Disclaimer 
No approval or endorsement of any commercial product by NIST is intended or implied. Certain 
commercial equipment, instruments or materials are identified in this report to facilitate better 
understanding. Such identification does not imply recommendations or endorsement by NIST nor does it 
imply the materials or equipment identified are necessarily the best available for the purpose. 
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