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Abstract: A comparison of precision frequency measurements to quantum electrodynamic (QED) theoretical predictions
can be used to test theory and to obtain information regarding fundamental constants. We find that for Rydberg states, the-
oretical uncertainties due to the problematic nuclear size correction are very small. With the help of QED calculations, the
largest remaining source of uncertainty can be eliminated. Theoretical predictions, taking advantage of the latest theoretical
results, in combination with planned experiments, can lead to an improved value for the Rydberg constant.
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Résumé : Une comparaison des mesures de fréquence de précision avec les prédictions théoriques de l’électrodynamique
quantique (QED), peut être utilisée pour tester la théorie et obtenir de l’information sur les constantes fondamentales.
Nous trouvons que pour les états de Rydberg, les incertitudes théoriques dues aux corrections problématiques venant de la
grosseur finie du noyau restent faibles. Avec l’aide des calculs QED, la plus importante source restante d’incertitudes peut
être éliminée. Les prédictions théoriques qui prennent avantage des résultats théoriques les plus récents, en combinaison
avec des expériences planifiées, peuvent mener à des valeurs améliorées pour la constante de Rydberg.

[Traduit par la Rédaction]

1. Introduction
Quantum electrodynamics (QED) makes very precise pre-

dictions of various physical quantities, most of which can be
measured very accurately using high-precision spectroscopy.
As is well-known, this makes QED one of the best tested and
the most precise theories developed so far. Some of the most
accurately known fundamental constants are, in fact, deter-
mined from a combination of QED theory and experiment.

In this work, we focus on hydrogenlike atomic systems.
With the availability of optical frequency combs [1], the
transition frequency for the 1S–2S transition in hydrogen
can be measured with a relative uncertainty of 1.4 � 10–14

[2]. However, the theoretical predictions for these levels suf-
fer from uncertainties due to nuclear effects. Indeed, in the
2006 CODATA adjustment of the fundamental constants
[3], the proton radius is determined mainly from hydrogen
and deuterium spectroscopy. There are plans for independent
measurements of the nuclear radius of the lightest nuclei,

but so far these have not met with success. In fact, one
might ask why the Rydberg constant, which is the most ac-
curately known fundamental constant, can be determined
only to a relative uncertainty of 6.6 � 10–12, which is very
crude in comparison to the most accurate measurement
(1.4 � 10–14). The reason lies with the nuclear size effect,
and a possibility for overcoming this restriction is with the
use of Rydberg states in hydrogenlike ions with a medium
nuclear charge number.

In Rydberg states, the electron is highly excited, and from
a classical point of view, ‘‘far away’’ from the nucleus: the
nuclear size correction becomes negligible. Further, the co-
efficients multiplying the higher-order QED corrections are
much smaller than for states with lower angular momenta,
enhancing the theoretical accuracy that can be reached with
QED corrections up to a specific order. The largest remain-
ing uncertainty, due to higher-order binding corrections to
the one-photon self-energy shift, can be removed with the
aid of new calculations [4]. Some of the new theoretical pre-
dictions for the fine-structure transition frequencies among
Rydberg states have a relative uncertainty as small as 10–16

(neglecting additional uncertainty from the Rydberg constant
and from the electron–nucleus mass ratio). Therefore, a high
precision measurement of various transition frequencies of
Rydberg states combined with the theoretical calculations
we will present here, could yield a new, more precise value
for the Rydberg constant.

In past work by other groups [5], circular Rydberg states
of hydrogen in an 80 K atomic beam have been analyzed. 3

A precision measurement of transition wavelengths in the
millimetre region provided a determination of the Rydberg
constant with a relative uncertainty of 2.1 � 10–11 [5]3. This
is not enough to reduce the uncertainty of the Rydberg con-
stant with respect to the CODATA value, but it shows that
precision measurements on Rydberg states are possible.
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Using a femtosecond laser, it may also be possible to use
optical frequency combs to measure optical transitions be-
tween Rydberg states with at least the same precision as for
lower lying states.

2. Theory
In this section we describe the theory of all the necessary

corrections for Rydberg states. We also show how the
known theoretical expressions simplify for Rydberg states
and further give results of our calculation, which eliminates
the largest remaining source of uncertainty.

To accurately predict the energy levels of atoms and ions
it is vital to recall that the nucleus is not pointlike but occu-
pies a finite region of space. For states with high orbital an-
gular momenta l, the probability for the electron to be found
within a short distance r of the nucleus is very low. For a
Rydberg state of a hydrogenlike ion with charge number Z,
high principal quantum number n, and angular momentum
l = n – 1, this probability is,

PðrÞ ¼
Z
jxj<r

dxjjðxÞj2 � 1

ð2nþ 1Þ!
2Zr

na0

� �2nþ1

ð1Þ

where a0 is the Bohr radius. Because of this strong damping,
effects arising from interactions near or within the nucleus
are negligible. If we take r to be the nuclear radius, then
the high power (r/a0)2n+1 together with the factorial in the
denominator, leads to an almost complete suppression of nu-
clear effects for circular or near-circular Rydberg states. An
example of the probability P(r) as a function of n for hydro-
genlike neon, is shown in Fig. 1.

As discussed in [3], theoretical predictions for energy lev-
els include many effects that cause deviations from Dirac
theory. For Rydberg states, corrections due to effects of the
nucleus are negligible. Thus, a Rydberg-state energy level
En may be written as a sum of the Dirac energy EDM (with
nuclear motion corrections included), the relativistic recoil
correction ERR, and radiative corrections EQED: En = EDM +

ERR + EQED, for l ‡ 2. The difference between the Dirac ei-
genvalue and the rest mass of the electron is proportional to,

a2mec2D ¼ ED � mec2

¼ mec2 1þ ðZaÞ
2

ðn� dÞ2

� ��1=2

� 1

 !
ð2Þ

where d ¼ jkj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðZaÞ2

p
, k = (–1)l+j+1/2(j + 1/2) is the

Dirac spin-angular quantum number, j is the total angular
momentum quantum number, and a is the fine-structure
constant. D can be expanded to give the known Schrödinger
energy and the fine-structure terms,

a2D ¼ �ðZaÞ
2

2n2
þ 3

8n
� 1

2jþ 1

� �
ðZaÞ4

n3
þ � � � ð3Þ

The Dirac energy level, taking into account the leading nu-
clear motion effects but not including the electron or nu-
cleus rest energy, is given by [6],

EDM ¼ 2hcR1 mrD�
rNm

3
r a

2

2
D2 þ r2

Nm
3
r Z4a2

2n3kð2lþ 1Þ

� �
ð4Þ

where h is the Planck constant, c is the speed of light, R1 ¼
a2mec=2h is the Rydberg constant, rN ¼ me=mN is the ratio
of the electron to the nucleus mass, and mr ¼ 1=ð1þ rNÞ is
the ratio of the reduced mass to the electron mass.

The other two terms are relativistic corrections to the
Dirac energy. The relativistic recoil corrections account for
the effect of the nuclear motion, and the radiative correc-
tions are those of the electron. First, we consider the relativ-
istic recoil. Its leading order (lo) term was given for a
general state by Erickson [7]. For a Rydberg state with l ‡
2 it is given as,

ERR;lo ¼ 2hcR1
rNZ5a3

pn3
m3

r �
8

3
ln k0ðn; lÞ �

7

3
an

� �
ð5Þ

where ln k0 (n,l) is the Bethe logarithm and

Fig. 1. Graph showing the electron probability to be inside radius r in hydrogenlike neon in the state with l = n – 1.
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an ¼
1

lðlþ 1Þð2lþ 1Þ ð6Þ

for l ‡ 2. An instructive review of the derivation of this ex-
pression can be found in [8]. To leading order in the mass
ratio, a semi-analytic expansion in Za leads to higher-order
(ho) corrections,

ERR;ho ¼ 2hcR1
Z6a4rN

n3
½D60 þ D72 ln2ðZaÞ�2 þ � � �� ð7Þ

where the first index of the coefficients denotes the power
of (Za) and the second the power of the logarithm of

(Za)–2. (This indexing is common notation in QED and will
be used throughout this paper.) The D60 coefficient has been
determined in [9–13]. For l ‡ 2 it is,

D60 ¼ 3� lðlþ 1Þ
n2

� �
2

ð4l2 � 1Þð2lþ 3Þ ð8Þ

The D72 coefficient was recently calculated in [14, 15] and
is found to be zero for states with l > 0. The complete rela-
tivistic recoil correction for circular or near-circular Ryd-
berg states is then given as,

ERR ¼ ERR;ho þ ERR;lo

¼ 2hcR1
rNZ5a3

pn3
m3

r � � 8

3
ln k0ðn; lÞ �

7

3lðlþ 1Þð2lþ 1Þ

� �
þ pZa 3� lðlþ 1Þ

n2

� �
2

ð4l2 � 1Þð2lþ 3Þ þ � � �
��

ð9Þ

Besides D72, no further terms are known, which means we have to estimate the uncertainty introduced by cutting the expan-
sion after the known terms. Since there might be a contribution from a D71 term, we adopt the procedure of estimating the
uncertainty as being (Za)ln(Za)–2 times the contribution of the last term on the right-hand side of (9).

Next, we will consider the corrections introduced by QED. Here again, the features of Rydberg states allow simplifications
to be made. Similarly, as for the relativistic recoil, the self-energy corrections can be expanded into a semi-analytic series in
(Za) that yields for Rydberg states,

EQED ¼ 2hcR1
Z4a3

pn3
A40 þ A61ðZaÞ2 ln ðZaÞ�2 þ ðZaÞ2GðZaÞ þ a

p
½B40 þ � � �� þ

a

p

	 
2

½C40 þ � � ��
� �

ð10Þ

The A coefficients arise from the one-photon QED corrections, while those starting with B and C come from the two-photon
and three-photon QED corrections, respectively. Furthermore, the non-vanishing contributions of B40 and C40 can be combined
with A40 to give the correction due to the electron magnetic anomaly ae, in leading order. This leads to the compact result,

EQED ¼ 2hcR1
Z4a2

n3 �m2
r

ae

kð2lþ 1Þ þ m3
r

a

p
� 4

3
ln k0ðn; lÞ þ

32

3

3n2 � lðlþ 1Þ
n2

��

� ð2l� 2Þ!
ð2lþ 3Þ! ðZaÞ

2 ln
1

mrðZaÞ2

� �
þ ðZaÞ2GðZaÞ�

�
ð11Þ

for the self-energy corrections to Rydberg states. In the determination of the electron magnetic moment anomaly, terms with
a high number of loops have to be considered. Since the experimental value for ae has been measured very precisely [16], it
is possible to use the experimental value of

ae ¼ 1:159 652 180 73ð28Þ � 10�3 ð12Þ
obtained with a one-electron cyclotron [16]. Even though this term is known theoretically up to three-loop order, using the
experimental value eliminates uncertainties introduced through uncalculated higher-order terms.

To reach the precision necessary to set a more precise value for the Rydberg constant, it is essential to evaluate the self-
energy remainder functions G(Za) as well. The leading terms of G(Za) are expected to be of the form,

GðZaÞ ¼ A60 þ A81ðZaÞ2 ln ðZaÞ�2 þ A80ðZaÞ2 þ � � � þ
a

p
B60 þ � � � þ

a

p

	 
2

C60 þ � � � ð13Þ

The A60 coefficient would be the major source of theoretical uncertainty for Rydberg states. Both contributions from order
a(Za)8 are so far unknown but are expected to be small. Only the vacuum polarization contribution to A80 is known [17]
and is extremely small. The two-photon diagrams lead to additional contributions. The B60 coefficient is the only one of those
that is nonzero for states with l ‡ 2 [3, 18]. So far, it has been calculated only for lower-lying states. We will use an estimate
based on a comparison of the results of B60 [19] and A60 [20] for states with l ‡ 5, which suggests that the magnitude of B60
can be estimated to be about four times that of A60. This will be used as the associated uncertainty. The three-photon dia-
grams lead to the C60 coefficient and have not been determined yet.

The calculation of the A60 coefficient has proved to be
quite difficult. The problem is that this correction receives
contributions from both high- and low-energy photons. For
high-energy photons, perturbation theory in the Coulomb in-

teraction can be used, but for low-energy photons the Cou-
lomb potential has to be treated in all orders. Therefore, the
calculation is split into high- and low-energy parts. In the
low-energy part, effective low-energy QED (NRQED) [21]
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is used, which provides an all-order treatment of the poten-
tial. It also provides a separation into a radial and angular
part of both the wave functions and the hydrogen Coulomb
Green function. Both the high- and low-energy parts are
matched together at the end of the calculation using an inter-
mediate overlap parameter for which a number of reparame-
terization-invariant choices are available [22]. For Rydberg
states, the angular algebra is quite complicated but could be
handled with the use of computer algebra. In many calcula-
tions with the hydrogen Green function, a Sturmian decom-
position is used for the radial part of the propagator.
However for higher excited states, this leads to hypergeo-
metric functions with high indices and thereby to an exces-
sive number of terms. For example, the calculation of A60
for the 8D state using a Sturmian basis set leads to *105

terms in intermediate steps. As this trend continues for
higher n, a calculation with this method for highly excited
Rydberg states seems intractable.

To solve this problem and to be able to calculate the A60
coefficient for Rydberg states, we employ a numerically
determined, accurate basis set of wave functions for the
Coulomb Green function. This also makes it possible to do
the integration in the virtual photon energy analytically,
making it easier to deal with the numerous poles along the
virtual photon energy integration contour (the origin of the
poles is due to spontaneous decays to lower levels). Strictly

speaking, the complete self-energy radiative correction to a
reference level is a complex quantity, EQED ? EQED – iG/2.
As the poles lead to an imaginary part, they contribute to the
spontaneous radiative decay G. A principal-value prescrip-
tion thus has to be used for the photon energy integrations,
and it can be implemented in a very straightforward way us-
ing the analytic photon energy integration [22]. In a numer-
ical integration, this would have to be implemented by
subtracting the poles. Since the poles become more numer-
ous for higher n states, the subtraction becomes more de-
manding.

Table 1. Calculated values for the A60 coefficient.

n A60 for l = n – 2, j = l – 1/2 A60 for l = n – 1, j = l – 1/2
9 7.018 373(5)�10–5 3.860 349(5)�10–5

10 3.655 111(5)�10–5 2.158 923(5)�10–5

11 2.008 438(5)�10–5 1.259 580(5)�10–5

12 1.019 187(5)�10–5 0.759 620(5)�10–5

13 0.679 575(5)�10–5 0.469 973(5)�10–5

14 0.410 825(50�10–5 0.296 641(5)�10–5

15 0.252 108(5)�10–5 0.189 309(5)�10–5

16 0.155 786(5)�10–5 0.121 749(5)�10–5

n A60 for l = n – 2, j = l + 1/2 A60 for l = n – 1, j = l + 1/2
9 28.939 225(5)�10–5 14.918 400(5)�10–5

10 16.589 245(5)�10–5 9.141 150(5)�10–5

11 10.111 871(5)�10–5 5.882 197(5)�10–5

12 6.331 080(5)�10–5 3.940 256(5)�10–5

13 4.318 998(5)�10–5 2.729 475(5)�10–5

14 2.979 937(5)�10–5 1.945 279(5)�10–5

15 2.116 050(5)�10–5 2.420 631(5)�10–5

16 1.540 181(5)�10–5 1.059 674(5)�10–5

Note: The numbers in parentheses are standard uncertainties in the last figure.

Table 2. Transition frequencies between the highest j-states with n = 14 and
n = 15 in hydrogenlike helium and hydrogenlike neon.

Term 4He+ n (THz) 20He9+ n (THz)

EDM 8.652 370 766 008(58) 216.335 625 574 6(14)
ERR 0.000 000 000 000 0.000 000 0001
EQED –0.000 000 001 894 –0.000 001 184 1
Total 8.652 370 764 114(58) 216.335 624 390 7(14)

Note: The accuracy of the predicted frequencies is limited by the accuracy with
which the Rydberg constant is currently known.A measurement of a transition fre-
quency to an accuracy better than indicated in the table would lead to an improved
determination of the Rydberg constant.

Table 3. Sources and estimated relative standard uncertainties in
the theoretical value of the transition frequency between the high-
est j states with n = 14 and n = 15 in hydrogenlike helium and
hydrogenlike neon.

Source He+ Ne9+

Rydberg constant 6.6�10–12 6.6�10–12

Fine-structure constant 7.0�10–16 1.7�10–14

Electron–nucleus mass ratio 5.8�10–14 1.2�10–14

ae 5.1�10–20 1.3�10–18

Theory: ERR higher orders 6.2�10–17 2.4�10–14

Theory: EQED A81 coefficient 1.7�10–18 1.6�10–14

Theory: EQED B60 coefficient 8.6�10–18 5.4�10–15
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The problem with this approach is that a numerical radial
integral over the complete radial basis set remains to be
evaluated. Therefore, a numerical lattice method has been
used [23]. By putting the atom in a box large enough to in-
clude the Rydberg state radial wave function and by discre-
tising space, the Hamiltonian becomes a matrix, and
therefore the complete basis set becomes finite and discrete.
Thus, besides a finite and discrete bound state spectrum, this
approach also yields a finite pseudo-spectrum of continuum
states, which we represent in extended precision arithmetic.
The results of a calculation of A60, using this method for
states with n = 9 to n = 16, are given in Table 1.

As mentioned earlier, we concentrate on the real part of the
energy shift, but the imaginary part can also have an influ-
ence on the frequencies measured in an experiment. The dom-
inant decay for the highest l value of state n, which we
consider here, is an electric dipole (E1) decay to the highest-l
value of the state n – 1. The nonrelativistic expression for this
decay rate has been examined in [24] and also in [25] as the
nonrelativistic limit of the imaginary part of the level shift. It
is possible that this decay rate can introduce asymmetries into
the line shape and the transition frequencies. Fortunately,
these effects are small and of the order a(Za)2 � EQED, as
has been shown by Low [26]. Should an analysis of these cor-
rections become necessary, they can be calculated and deter-
mined for the systems chosen for the experiments, taking into
account details of the experimental setup.

We have evaluated the final expressions for the energy
shifts and for the transition frequencies in Table 2 using the
values of the constants from CODATA 2006 [3]. We
thereby make a theoretical prediction for the transition be-
tween the state with n = 14, l = 13, j = 27/2 and the state
with n = 15, l = 14, j = 29/2 for hydrogenlike He+ and
Ne9+. The neon nuclear mass m(20Ne9+) is taken from a
measurement [27], corrected for the mass of the electrons
and their binding energies. The standard uncertainty of each
contribution is given in brackets if it is not negligible.

In Table 3 we list all major sources of uncertainty and
give estimates of their size. Again, we see that the Rydberg
constant is the largest source of uncertainty, confirming that
an experimental determination of a transition frequency to
better accuracy could enhance the level of accuracy of this
fundamental constant. . This is in contrast to the 1S–2S tran-
sition, where the relative uncertainty from the two-photon
B60 term is already of relative order of 10–12 due to a dis-
agreement between different calculations and due to the
(possibly large) numerical values of the unknown, B72, B71,
and B70 terms (which are nonvanishing for S states). These
give the higher-order two-loop binding corrections.

3. Conclusion

By using Rydberg states of hydrogenlike ions with a me-
dium nuclear charge number (e.g., neon with Z = 10), a
number of problems associated with either higher-order
binding corrections to QED interactions or the nuclear size
effect in Lamb shift predictions can essentially be avoided.
The higher-order QED binding corrections for Rydberg
states are smaller by a factor of about 106 compared with S
states, which provides significant advantages from a theoret-
ical point of view. A suitable combination of n and Z has to
be found so that the transition frequency lies in the optical
or near-infrared regime. The range of such values is shown
in Fig. 2. Low-Z ions seem to be the most favorable systems
for a frequency comb measurement, while in heavier ions
with larger Z some perturbations are smaller. So using
many different combinations of n and Z may be useful for
experimental checks and optimization. An approach based
on highly-excited states might lead to a new determination
of the Rydberg constant, based on a combination of theory
and experiment. With the new values for the A60 coefficients
presented here in Table 1, the diversity of transitions avail-
able for the project is enlarged in comparison to the pre-
vious proposal [4].

Fig. 2. Graph showing values of Z and approximate n that give a specified value of the frequency for transitions between states with prin-
cipal quantum number n and n – 1 in a hydrogen-like ion with nuclear charge Z. Frequencies in the near infrared and visible range are
indicated in color. Reprinted with permission from ref. 4. Copyright 2008 American Physical Society.
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1. T.W. Hänsch. Rev. Mod. Phys. 78, 1297 (2006). doi:10.

1103/RevModPhys.78.1297.
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