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Abstract. Recently, content based 3D shape retrieval has been an active
area of research. Benchmarking allows researchers to evaluate the quality
of results of different 3D shape retrieval approaches. Here, we propose
a new publicly available 3D shape benchmark to advance the state of
art in 3D shape retrieval. We provide a review of previous and recent
benchmarking efforts and then discuss some of the issues and problems
involved in developing a benchmark. A detailed description of the new
shape benchmark is provided including some of the salient features of
this benchmark. In this benchmark, the 3D models are classified mainly
according to visual shape similarity but in contrast to other benchmarks,
the geometric structure of each model is modified and normalized, with
each class in the benchmark sharing the equal number of models to reduce
the possible bias in evaluation results. In the end we evaluate several
representative algorithms for 3D shape searching on the new benchmark,
and a comparison experiment between different shape benchmarks is also
conducted to show the reliability of the new benchmark.

1 Introduction

With the increasing number of 3D models created and available on the Inter-
net, many domains have their own 3D repositories such as the national design
repository for CAD models [1], Protein Data Bank for biological macromolecules
[2],CAESAR for Anthropometry [3], the AIM@SHAPE shape repository [4] and
the INRIA-GAMMA 3D Database [5] for research purposes, etc.

Effectively searching a 3D repository for 3D shapes which are similar to a
given 3D query model has become an important area of research. Traditional
text based search engines are widely used in many 3D repositories to retrieve 3D
shapes. Those text based search strategies only allow users to search 3D models
by inputting keywords, file type, file size or by just browsing the thumbnail of
3D models, which may not meet all the demands. Because a text based method
requires manually annotating the shapes which may introduce imprecision, it
might not be able to properly represent the shape information. Furthermore,
annotating a huge number of 3D models by hand is inefficient, inaccurate and
impractical. In addition, the annotation of shapes is incomplete or not available
in many cases. thus, a number of 3D shapes based search engines have been
investigated to address this problem [6], [7], [8], [9], [10], etc.
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Shape based search methods do not require any manual annotation. The only
thing they require is the shape descriptor which can automatically extract shape
features and properly represent the shape information. It has been reported
that the performances of shape based searching methods outperform text based
methods [11]. For more about shape based searching algorithms, we refer readers
to several surveys [12], [13], [14].

With a number of shape based retrieval methods appearing in the current
literature, the question now is how to evaluate shape retrieval algorithms ratio-
nally with high confidence. Benchmarking is one answer to this question. Just
like the methods used for evaluating text based [15], image based [16], [17], video
based [18] and music based retrieval methods [19], [20], under a shape bench-
mark, different shape based retrieval algorithms are compared and evaluated in
the same experimental environment by the same measurement tools from differ-
ent aspects. Comparable results are then obtained and conclusions about their
performance are drawn. By doing this, one then gets a good understanding of
each algorithm and can judge which algorithm should be applied in a specific
circumstance.

In section 2, the related work of previous benchmarks is briefly reviewed; in
section 3, we discuss the construction of the benchmark; in section 4, we discuss
the evaluation measures used; in section 5, the experiment results of different
algorithms on the new benchmark are reported and analyzed; in section 6, the
reliability of the new shape benchmark is discussed, and finally conclusions are
drawn in section 7.

2 Related Work

The SHape REtrieval Contest (SHREC) [21] is organized every year since 2006
by Network of Excellence AIM@SHAPE to evaluate the effectiveness of 3D shape
retrieval algorithms. Many tools are also provided to compare and evaluate 3D
retrieval methods. In 2006, one track was conducted to retrieve 3D mesh models
on the PSB [22]. From 2007, several tracks were conducted which focused on
specialized problems: the watertight models track, the partial matching track,
the CAD models track, the protein models track, the 3D face models track,
the track on stability of watertight models, the track on the classification of
watertight models and the generic models track [23], [21].

The Princeton Shape Benchmark (PSB) is a publicly available database of 3D
polygonal models with a set of software tools that are widely used by researchers
to report their shape matching results and compare them to the results of other
algorithms [24].The Purdue engineering shape benchmark (ESB) [25] is a public
3D shape database for evaluating shape retrieval algorithms mainly in the me-
chanical engineering domain. The McGill 3D shape benchmark [26] provides a
3D shape repository which includes a number of models with articulating parts.
Other current shape benchmarks were introduced and analyzed in [24].

Although previous shape benchmarks have provided valuable contributions
to the evaluation of shape matching algorithms, there are some limitations to
evaluate general purpose shape matching algorithms.



A New Shape Benchmark for 3D Object Retrieval 383

– Domain dependent benchmarks like the ESB and the McGill benchmark can
only be used to evaluate retrieval algorithms in their respective domains.

– A number of classes in the PSB (basic classification) contain too few models.
Actually, a benchmark database must have a reasonable number of models in
each of its classes; five or ten is too few to get a statistically sound evaluation
[27]. Take the base classification in the PSB as an example, in the training
set there are 90 classes, 55 of which have no more than 10 models; 27 of
which have no more than 5 models; in the testing set there are 92 classes,
59 of which have no more then 10 models; 28 of which have no more then 5
models.

– Unequal number of 3D models in each class could cause bias when using
the benchmark to evaluate different shape retrieval algorithms. Some au-
thors [28] reported their results on the PSB and concluded that the quality
of the retrieval results depends on the size of the query model’s class, and
the higher the cardinality of a class the more significant the results will be
(table 4 in [28]). Similar results were also reported in table 5 of [24], table 3
of [29]. Sometimes it is hard to decide which factor affects the results, the dis-
criminative power of the algorithm on different model classes or the number
of models in these classes. For example, suppose there are two algorithms
A and B, and there are two kinds of 3D models: 5 birds and 30 cars; we
want to evaluate the discrimination ability of the two algorithms; and fur-
ther assume that algorithm A is good at discriminating birds and algorithm
B is good at discriminating cars. Then the result of evaluation based on the
given 3D models would favor B due to the unequal number of models in the
two classes. Due to this reason, in SHREC 2007 watertight models track, all
classes in the database were made up of the same number of objects to keep
the generality of each query [23].

– In addition, models in some benchmarks have mesh errors like inconsistent
normal, degenerated surfaces, duplicate surfaces, intersecting surfaces that
do not enclose a volume, etc.

To overcome some limitations of the current benchmarks, we propose a new
shape benchmark with a set of tools for direct comparison and analysis of general
purpose shape matching algorithms.

3 Benchmark Design Principle

There are two main steps to benchmark a shape database, the first of which is
to get enough 3D shape models. All the 3D models in the new shape benchmark
were acquired by the web crawler Methabot [30] from major 3D repositories on
the Internet. We have obtained permission to freely redistribute all these models
only for research purposes. The other step is to classify the 3D shape models
into a ground truth database; we discuss it below in detail.

As in the shape retrieval problem, we retrieve 3D objects solely according to
their shape information other than their color, texture, etc., so in the benchmark,
we use ASCII Object File Format (*.OFF) to represent the shape information of
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Fig. 1. Normalization procedure (left), a model with inconsistent normal orientation
in some benchmarks (middle), and the same model with consistent normal orientation
in the new benchmark (right)

each model, which consists of polygons, that is, the coordinates of points and the
edges that connect these points. This shape format has benefits of simplicity and
it only contains shape information, which allows us to concentrate on shape itself.

3D models downloaded from websites are in arbitrary position, scale and
orientation, and some of them have many types of mesh errors [31]. Shapes
should be invariant to rotation, translation and scaling, which require the process
of pose normalization before many shape descriptors can be applied to extract
shape features. Unfortunately, few previous shape benchmarks have done this
simple but important step. For this purpose, in the benchmark database, every
model is normalized: all the polygons are triangulated, scaled to the same size,
translated to the center of mass, and rotated to the principle axes. Figure 1
(left side) gives an example of the normalization procedure. We partially solve
some mesh errors like the inconsistent normal orientation problem. In figure 1,
the model in the middle was taken from some benchmarks. It has inconsistent
orientation of polygons on the same surface, (dark area and white area appear
on the same surface). The model on the right side of figure 1 shows the model in
our new shape benchmark with consistent orientation of polygons on the same
surface.

3.1 Building a Ground Truth for the Benchmark

The purpose of benchmarking is to establish a known and validated ground truth
to compare different shape matching algorithms and evaluate new methods by
standard tools in a standard way. Building a ground truth database is an im-
portant step of establishing a benchmark. A good ground truth database should
meet several criteria [32], like having a reasonable number of models, being sta-
ble in order to evaluate different methods with relatively high confidence, and
having certain generalization ability to evaluate new methods.

To get a ground truth dataset, in text retrieval research, TREC [15] uses
pooling assessment [32] . In image retrieval research, as there is no automatic
way to determine the relevance of an image in the database for a given query
image [33], the IAPR benchmark [16] was established by manually classifying
images into categories. In image processing research, the Berkeley segmentation
dataset and benchmark [34] assumes that the human segmented images provide
valid ground truth boundaries, and all images are segmented and evaluated by a
group of people. In shape retrieval research, the PSB manually partitioned the
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Table 1. 40 classes used in the new Shape benchmark

1 Bird 2 Fish 3 NonFlyingInsect 4 FlyingInsect
5 Biped 6 Quadruped 7 ApartmentHouse 8 Skyscraper
9 SingleHouse 10 Bottle 11 Cup 12 Glasses
13 HandGun 14 SubmachineGun 15 MusicalInstrument 16 Mug
17 FloorLamp 18 DeskLamp 19 Sword 20 Cellphone
21 DeskPhone 22 Monitor 23 Bed 24 NonWheelChair
25 WheelChair 26 Sofa 27 RectangleTable 28 RoundTable
29 Bookshelf 30 HomePlant 31 Tree 32 Biplane
33 Helicopter 34 Monoplane 35 Rocket 36 Ship
37 Motorcycle 38 Car 39 MilitaryVehicle 40 Bicycle

models of the benchmark database primarily based on semantic and functional
concepts and secondarily based on shape attributes.

As there is no standard measure of difference or similarity between two shapes,
in the new shape benchmark, two researchers were assigned as assessors to man-
ually classify objects into ground truth categories. When there are disagreements
on which category some objects should belong, another researcher was assigned
as the third assessor to make the final decision. This classification work is purely
according to shape similarity, that is, geometric similarity and topology similar-
ity. Each model was input to a 3D viewer, the assessor rendered it in several
viewpoints to make a final judgment towards shape similarity.

The assessors were told to assume that, within the same class, the shape of the
objects should be with high similarity to each other, while, between classes, the
objects should have distinctive shape differences. In this benchmark, we equalize
each class and make them contain the same numbers of 3D models (20 models).
Here are two main reasons for this: to avoid possible bias of evaluation, as it is
discussed in section 2; and some evaluation measures are unstable due to few
models in a class [35].

Table 1 shows the 40 classes used in the new shape benchmark and each class
contains 20 models which are common in daily life.

4 Evaluation Measures

The procedure of information retrieval evaluation is straightforward. In response
to a given set of users’ queries, an algorithm searches the benchmark database
and returns an ordered list of responses called the ranked list(s). The evaluation
of the algorithm then is transformed to the evaluation of the quality of the ranked
list(s). As different evaluation metrics measure different aspects of shape retrieval
behavior, in order to make a thorough evaluation of a 3D shape retrieval algo-
rithm with high confidence, we employ a number of common evaluation measures
used in the information retrieval community: Precision-Recall curve [36]; Aver-
age Precision(AP) and Mean Average Precision(MAP) [37]; E-Measures [36];
Cumulated gain based measurements [38]; Nearest Neighbor (NN), First-Tier
(Tier1) and Second-Tier (Tier2) [24].
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5 Comparison Experiments and Discussion

In this section, in order to examine how the benchmark reveals features of dif-
ferent shape matching algorithms, we include several kinds of algorithms to
compare on the new benchmark. Moreover, comparison experiments are con-
ducted on both the entire benchmark and a specific class of the benchmark to
get comprehensive understanding of shape matching algorithms.

First we classify algorithms into several categories according to the kind of
features the algorithms need and the way how these algorithms extract shape
features.

– View-based algorithm: Light Field Descriptor(LFD) [39]; Depth Buffer-Based
(DepthBuffer) [40]; Silhouette-Based(SIL) [40].

– Statistic-based algorithm: D2 Shape Distributions(D2) [41]; AAD Shape Dis-
tributions (AAD) [42]; Linearly Parameterized Statistics(PS) [43].

– Ray-based algorithm: Ray-based with Spherical Harmonic representation
(RSH) [40].

– Multiple descriptors: Hybrid Descriptors(Hybrid) [44]; Multiple Resolution
Surflet-Pair-Relation Histograms(RSPRH) [45]; Exponentially decaying
Euclidean distance transform(EDT) [40].

Now we perform comparison experiments on the whole benchmark using the
evaluation measurements described in Section 5. Figure 2 shows the precision
recall curves, the mean DCG curves and other measure score results of the 10
algorithms, respectively. Our main findings from the experiments are as follows:

– View-based methods have obtained considerable results on the whole bench-
mark. We conjecture the reasons for this are that: they extract high level
features of a 3D shape and the ground truth database was established mainly
according to visual similarity of shapes. The idea of view-based shape de-
scriptors is that two similar shapes should look similar in different view-
points. This corresponds directly with the way in which human beings judge
shape similarity.

– Multiple descriptors also get very good results. In figure 2 (left), with the
increasing recall value (bigger than 0.2), the performance of the hybrid de-
scriptor outperforms the light field descriptor. We think the reason might be
that the descriptor takes strength of each single shape descriptor, extracts
and integrates the most important features at both high and low level.

– The performance of statistic-based methods is not so good compared to other
kinds of algorithms. One of the possible reasons might be that, statistical
features alone are not capable enough to discriminate shapes with high ac-
curacy, and that these statistical features are relatively low level features.
Therefore, new and more powerful statistic features should be explored and
created to get better retrieval performance.

Comparison results on individual classes of the benchmark. In this
subsection, we perform comparison experiments on every individual class given
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Fig. 2. The precision-recall curve on whole benchmark (top left), the mean DCG curve
on whole benchmark (top right), other comparison results on the whole benchmark
(bottom left) and the MAP scores of the evaluated algorithms on each individual class
of the proposed benchmark (bottom right)

in Table 1, and explore how different algorithms perform on a specific kind of 3D
objects. The Mean Average Precision (MAP) is used to evaluate the performance
of each algorithm on the 40 individual classes of the benchmark. Figure 2(bottom
right) shows the MAP evaluation results of the ten algorithms on each individual
shape class of the new benchmark. Our main findings from the experiments on
individual classes are as follows:

– Most algorithms do especially well in geometrically simple structure models,
for example, Fish, Glasses, and Sword.

– The performance of different shape matching algorithms on a specific class
can vary a lot. Also, a shape matching algorithm will get quite different
evaluation scores on different classes. The reason might be that, due to the
characteristics of a shape matching algorithm, it is easy for the shape match-
ing algorithm to extract the feature for certain classes of objects, while this
is not easy for some other classes of objects.

So, besides comparing the results on the whole benchmark, it is helpful to
further discover the nature of a shape matching algorithm on each single class.
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6 The Reliability of the New Shape Benchmark

In this section, we explore the reliability of the new proposed benchmark by
testing the effect of class set size on retrieval error. Voorhees and Buckley [46]
proposed a method to estimate the reliability of retrieval experiments by com-
puting the probability of making wrong decisions between two retrieval systems
over two retrieval experiments. They also showed how the topic set sizes affect
the reliability of retrieval experiments. A theoretical justification of this method
has been discussed by Lin and Hauptmann [47].

We use this method to conduct an experiment and test the reliability of the
new shape benchmark. The procedure of computing error rates was described in
[46]. Here we summarize the procedure as follows:

– Randomly split the benchmark database into two equal sets, each set con-
taining 20 classes.

– Use the MAP score of the 10 algorithms described in the last section, so that
the number of algorithm pairs run in the benchmark is C2

10 = 45. Randomly
take several classes (from 2 classes up to 20 ) each time from one set and
compute the MAP of every algorithm on these chosen classes. The same
procedure is done on the other set.

– The difference between two algorithms’ MAP is categorized into one of
19 bins ranging from 0.00 to 0.20 with 0.01 increment (i.e. (0.00, 0.01],
(0.00, 0.01],...,(0.19, 0.20]).

– Based on step 2, count the number of swaps for all pairs of algorithms and
the number of MAP differences on that bin. For example, a swap occurs
when in one set the MAP of algorithm A is bigger than that of B, while in
the other set, the MAP of A is smaller than that of B. Count it when the
size of differences between two algorithms’ MAP is in a certain bin.

– Compute error rate at each bin by dividing the number of swaps by the total
number of MAP difference on that bin.

– For each bin of MAP difference, draw the error rates for the number of classes
from 1 to 20, go over every bin and repeat the procedure.

– Estimate the error rates of the whole benchmark by extrapolating the error
rates using the number of classes up to half of the benchmark.

Figure 3 (top left) shows the estimated error rates with the number of classes
up to 40. From this figure, we can see that: for each curve, the error rate decreases
with the increasing class set size, and for each class set size, the error rate
decreases with the increasing size of difference of MAP scores. By looking at
curves whose error rates do not exceed a certain value (e.g. 5%), we can estimate
how much MAP difference is needed to conclude that retrieval algorithm A is
better than retrieval algorithm B with 95% confidence. When the class set size
increases from 15 to 40, the error rates are stably converging to zero. Especially,
when the number of class is 40, it needs less than 0.03 difference in MAP scores
to guarantee that the error rate is below 5%.
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Fig. 3. Extrapolated error rates vs. class set sizes up to the whole benchmarks

We also conduct the same experiments on other different shape benchmarks:
the base training database in PSB(90 classes) (Figure 3 (bottom right)) [6], the
CCCC shape benchmark(55 classes) (Figure 3 (bottom left)) [7], and the Na-
tional Taiwan University(NTU)’s shape benchmark (47 classified classes)
(Figure 3 (top right)) [8]. We do not include the Utrecht University’s shape
benchmark because it contains too few (five) classified classes in the databases.

From the experiment results on other shape benchmarks, we can see that:
to guarantee that the error rate is below 5% on the whole database, the NTU
shape benchmark needs at least 0.07 difference in MAP scores, the CCCC shape
benchmark needs at least 0.06 difference in MAP scores, and the Princeton
shape benchmark needs at least 0.04 difference in MAP scores. At class set size
of 40, which is also class set size of the new proposed shape benchmark, to
guarantee that the error rate is below 5%, the NTU shape benchmark needs
at least 0.07 difference in MAP scores, the CCCC shape benchmark needs at
least 0.08 difference in MAP scores, and the PSB needs at least 0.07 difference
in MAP scores. This indicates that the number of classes of the new proposed
shape benchmark is large enough to get a sufficiently low error rate compared
to other shape benchmarks.

From the above discussion, the experiment can be considered as a strong evi-
dence to support the reliability of the new benchmark to evaluate shape retrieval
algorithms.
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7 Conclusion

We have established a new publicly available 3D shape benchmark with a suite
of standard tools for evaluating generic purpose shape retrieval algorithms (the
benchmark website is http://www.itl.nist.gov/iad/vug/sharp/benchmark). Sev-
eral retrieval algorithms are evaluated from several aspects on this new bench-
mark by various measurements, and the reliability of the new shape benchmark
is discussed. This reliable shape benchmark provides a new perspective to eval-
uate shape retrieval algorithms. It has several merits: high reliability (in terms
of error rate) to evaluate 3D shape retrieval algorithms, sufficient number of
good quality models as the basis of the shape benchmark, equal size of classes
to minimize the bias of evaluation.
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