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Abstract
This paper discusses a fiducial approach for constructing uncertainty intervals for the distance
between k normal means and the origin. When k = 2 this distance is equivalent to the
magnitude of a complex-valued quantity. A simulation study was conducted to assess the
frequentist performance of the proposed fiducial intervals and to compare their performance
with the methods from the Guide to the Expression of Uncertainty in Measurement and from
Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’—Propagation
of Distributions using a Monte Carlo Method. Our results indicate that the fiducial intervals
generally outperform the GUM and GUM Supplement 1 methods with respect to frequentist
coverage probabilities. Computer programs for calculating the fiducial intervals, written using
open-source software, are listed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The recent draft of Supplement 1 [1] to the Guide to
the Expression of Uncertainty in Measurement (GUM) has
generated much interest within the metrology community.
Supplement 1 is intended to provide an alternative method
to the GUM approach for propagation of uncertainties when
the GUMmethod does not lead to satisfactory approximations.
Many authors have written papers on both methodology and
applications related to Supplement 1 in measurement journals.
For example, see the papers, and cited references listed therein,
in a special issue, volume 43(4), of Metrologia.

In a typical measurement equation, the measurand is
modelled as a function of one or more input quantities. Based
on the measurement equation, the Supplement 1 method
obtains a probability density function (pdf) for the measurand
by propagating the pdfs of the input quantities. The resulting
pdf describes one’s knowledge of the measurand given the
observed data and assumptions made in assigning the joint
pdf of the input quantities used in propagation. Since the joint
probability distribution for the input quantities is generally an
approximation, and since the measurement equation itself is
an idealization of reality, the derived pdf for the measurand
should be interpreted as approximate as well.

In many standard situations, the pdf for the measurand
obtained using the Supplement 1 method is identical to
the posterior distribution for the measurand of a Bayesian
analysis with non-informative improper priors [2]. Strictly
speaking, however, the method of Supplement 1 is not
equivalent to the standard Bayesian approach based on
the use of Bayes Theorem. This standard Bayesian
approach, unlike the Supplement 1 method, requires the
specification of prior distributions for all parameters in the
measurement equation, including themeasurand, see [3] for an
example.

Another approach that associates a distribution with a
measurand is fiducial inference. In this approach, a probability
distribution, called the fiducial distribution, for the measurand
conditional on the data is obtained based on the structural
equation that relates the measurements to model parameters
and error processes whose distributions are fully known.
Statistical procedures based on fiducial inference have been
developed for various applications in metrology, for example,
see [4–8].

The Supplement 1 and fiducial methods will produce
different results in general. However, for measurements
assumed to be from univariate normal distributions, many
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uncertainty intervals obtainedusing these twomethods are very
similar, if not identical. For example, in the case of a random
sample from a normal distribution with mean μ and variance
σ 2 (N(μ, σ 2)), the uncertainty intervals for μ calculated by
both methods are the same. Both intervals are derived from
the same probability distribution for μ, which is a scaled and
shifted t distribution.

Althoughneither the Supplement 1method nor the fiducial
method is based on a frequentist view of inference, it is
of interest to examine the ‘long-run success rate’ or the
frequentist coverage of the uncertainty intervals produced by
these methods. Hannig et al [9] showed that the fiducial
intervals have correct asymptotic frequentist coverage under
certain conditions that are almost always met in practical
applications. Many simulation studies reported in the literature
also appear to support the claim that coverage probability of
fiducial intervals for various applications are sufficiently close
to their stated value. This frequentist property also holds for
those of the Supplement 1 intervals that are equivalent to the
corresponding fiducial intervals.

Hannig et al [9] discussed an example where the
conditions for correct asymptotic frequentist coverage of a
straightforward fiducial interval are not met. The example
is as follows. SupposeXi1, . . . , Xin are random samples from
N(μi, σ 2), i = 1, . . . , k. Let

θ2 =
k∑

i=1
μ2i . (1)

Then the fiducial intervals for θ based on the scaled and shifted
t probability distributions ofμi have unsatisfactory frequentist
performance when θ is small compared with σ . Since
the Supplement 1 interval is identical to the straightforward
fiducial interval for θ in this example, it also suffers the
poor frequentist performance when θ is small. Hall [10]
used a simpler version (k = 2 and known σ ) of this
example to demonstrate the poor frequentist performance of
the Supplement 1 intervals and questioned the widely held
view that the Supplement 1 method should be used to validate
the GUM method. Hannig et al [9] also proposed a fiducial
interval for θ that does not suffer poor frequentist performance
when θ is small. This fiducial interval is based on a new set
of structural equations, which is different from the usual one
based on the scaled and shifted t distributions. In this paper
we discuss the development of this fiducial interval for θ in
detail.

The rest of the paper is organized as follows. Section 2
briefly reviews the uncertainty intervals for θ based on the
scaled and shifted t density function of each μi and points
out why these intervals have poor frequentist performance
when θ is small. In section 3 we go through the detailed
derivation of an alternative fiducial interval for θ and outline
a procedure for calculating the interval. Section 4 describes
a simulation study, similar to the one given by Hall [10],
to examine the long-run success rate of the uncertainty
intervals for θ . We conclude with some summary remarks in
section 5.

2. Straightforward fiducial/Supplement 1 intervals

Let

X̄i = 1

n

n∑
j=1

Xij (2)

and

S2w = 1

k(n − 1)
k∑

i=1

n∑
j=1

(Xij − X̄i)
2. (3)

Then X̄i is normally distributed with mean μi and variance
σ 2/n, we write X̄i ∼ N(μi, σ 2/n). Also, k(n − 1)S2w/σ 2 ∼
χ2(k(n−1)). We use χ2(ν) to denote the χ2 distribution with
ν degrees of freedom. With these distributional properties, we
can write

X̄i = μi +
σ√
n
Zi, i = 1, . . . , k

S2w = σ 2 W

k(n − 1) ,
(4)

where Zi , i = 1, . . . , k, are independent standard normal
random deviates and W ∼ χ2(k(n − 1)). By solving the
above structural equations, a fiducial quantity (FQ) for μi can
be obtained as

μ̃i = x̄i − sw√
n
Ti,

where x̄i and sw are the realized values of X̄i and Sw,
respectively, andTi ∼ t (k(n−1)), a t distributionwith k(n−1)
degrees of freedom. The fiducial distribution of μi , which is
the distribution of μ̃i , is a scaled and shifted t distribution. An
FQ for θ is then given by

θ̃ =
√√√√ k∑

i=1

(
x̄i − sw√

n
Ti

)2
. (5)

The FQ in (5) enables us to generate realizations from the
fiducial distribution of θ . Once the realizations are obtained,
we can use them to construct the fiducial interval for θ . For
example, an equal tail, 95% fiducial interval for θ is given by
(θ̃0.025, θ̃0.975), where θ̃β is the β quantile of the realizations.
The uncertainty intervals for θ based on the Supplement 1
method are identical to the fiducial intervals based on the FQ
in (5).

In (5), Ti takes, at random, a range of positive and negative
values. However, the realizations generated based on (5) are
always positive. Consequently, the lower bound of the fiducial
interval for θ will be positive and hence may not cover θ when
θ is close to 0. This explains the poor frequentist performance
of the intervals when θ is small.

3. Alternative fiducial intervals

To develop an alternative fiducial interval for θ that does not
suffer poor frequentist performance, we need to utilize some
results from a non-central χ2 distribution. If Z1, . . ., Zk

are independent standard normal random variables then the
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distribution of
∑k

i=1 Z2i is a χ2 with k degrees of freedom. If
δi , i = 1, . . . , k, are constants, then the distribution of

k∑
i=1

(Zi + δi)
2

is called a non-central χ2 with k degrees of freedom and the
non-centrality parameter λ = ∑k

i=1 δ2i [11, p 130]. We use
the symbol χ2(k, λ) to denote this non-central χ2 distribution.
Note that χ2(k) is equivalent to χ2(k, 0).

Let

S2h =
k∑

i=1
X̄2

i =
k∑

i=1

(
μi +

σ√
n
Zi

)2
, (6)

where Z1, . . ., Zk are independent standard normal random
variables. We observe that S2h is independent of S

2
w defined in

(3), and

nS2h

σ 2
=

k∑
i=1

(√
nμi

σ
+ Zi

)2
∼ χ2(k, λ),

with the non-centrality parameter

λ =
k∑

i=1

(√
nμi

σ

)2
= nθ2

σ 2
,

where θ is given in (1). Since the parameter of interest θ

appears in the non-centrality parameter of the distribution of
S2h, we need to develop a structural equation that relates S

2
h to λ.

Let X ∼ χ2(k, λ) and

Fk(x, λ) = P(X � x).

That is, Fk(x, λ) is the cumulative distribution function of
χ2(k, λ). If Fk(x, λ) = u, 0 � u � 1, we define two inverse
functions of Fk(x, λ). The first one is F−1

k (u, λ) = x when
Fk(x, λ) is viewed as a function of x (withλfixed). The second
one is Gk(u, x) = λ when Fk(x, λ) is viewed as a function of
λ (with x fixed). Let

U = Fk

(
nS2h

σ 2
,
nθ2

σ 2

)
. (7)

Then

P[U � u] = P

[
Fk

(
nS2h

σ 2
,
nθ2

σ 2

)
� u

]

= P

[
nS2h

σ 2
� F−1

k

(
u,

nθ2

σ 2

)]

= Fk

(
F−1

k

(
u,

nθ2

σ 2

)
,
nθ2

σ 2

)
= u.

That is, U is a uniform random variable over the interval
(0, 1). The above result is generally known as probability
integral transform [12, p 202], which states that if X is
a random variable with continuous cumulative distribution
function FX(x), then U = FX(X) is a uniform random

variable over the interval (0, 1). For the above application,
X = nS2h/σ

2.
From (7), by using the definition of the second inverse of

Fk(x, λ), we have

nθ2

σ 2
= Gk

(
U,

nS2h

σ 2

)
. (8)

This relates themodel parameters (θ, σ ) to observable statistic
Sh and U whose distribution (uniform) is fully known.
Together with the structural equation for σ 2 in (4), i.e.

σ 2 = S2w

W/[k(n − 1)]
we obtain the following FQ for θ

θ̃∗ = σ̃√
n

√
Gk

(
U,

ns2h

σ̃ 2

)
= sw√

nW/[k(n − 1)]

×
√

Gk

(
U,

ns2h

s2w/(W/[k(n − 1)])
)

. (9)

A single realization of θ̃∗ may be generated as follows.

1. Generate U0 ∼ uniform(0, 1) andW0 ∼ χ2(k(n − 1)).
2. Evaluate

λ0 = Gk

(
U0,

ns2h

s2w/(W0/[k(n − 1)])
)

,

which is equivalent to obtaining λ0 such that

Fk

(
ns2h

s2w/(W0/[k(n − 1)]) , λ0

)
= U0. (10)

The existence of a single solution λ0 is guaranteed since
Fk(x, λ) is a decreasing function of λ. Also if

Fk

(
ns2h

s2w/(W0/[k(n − 1)]) , 0
)

� U0

then λ0 = 0 by definition. See figure 1 for an illustration.
3. Calculate

θ̃∗ = sw

√
λ0√

nW0/[k(n − 1)] .

A program for generating realizations of θ̃∗, based on R
software [13], is listed in the appendix.

Note that θ̃∗ can have zero as its realization since λ0 can
be zero. The smaller the value of sh is, the more likely it is that

Fk

(
ns2h

s2w/(W/[k(n − 1)]) , 0
)

� U

and hence λ0 = 0. We use the example in [10] to illustrate the
difference between the fiducial distributions based on FQs in
(5) and (9). In this example, the measurand is the magnitude
of a complex-valued quantity:

Γ = 	1 + i	2.
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Figure 1. A plot of Fk(x, λ) as a function of λ with x fixed. The
maximum of Fk(x, λ) is Fk(x, 0). If U0 � Fk(x, 0) then λ0 = 0. If
U0 < Fk(x, 0) a solution λ0 is found such that Fk(x, λ0) = U0.

That is, the measurand is

|Γ| =
√

	21 + 	22 .

Also, measurements X1 and X2, which estimate 	1 and
	2, respectively, are available. In addition, we assume
X1 ∼ N(	1, σ 2/n) and X2 ∼ N(	2, σ 2/n) with known
σ . Comparing this example with the general case discussed
above, we have k = 2. Suppose σ/

√
n = 1 and x21 + x22 =

0.3 (arbitrary units). Figure 2 displays the fiducial density
functions of |Γ|; the dashed line is the density function using
10 000 realizations generated from the FQ in (5), and the
solid line is based on the FQ in (9). Both density functions
are computed using the kernel density estimation method
[14]. Some statistics for both densities are listed in table 1.
These two density functions are very different when x21 + x22
is small.

Next, suppose σ/
√

n = 1 and x21 + x22 = 20 (arbitrary
units). Figure 3 displays the fiducial density functions of
|Γ| based on the FQs in (5) and (9). In this case, they are
more similar. The equal tails, 95% fiducial intervals for |Γ|
are (2.685, 6.584) and (2.377, 6.345) based on densities 1
(dashed line) and 2 (solid line), respectively.

4. Performance evaluation

We conduct a simulation study to evaluate the frequentist
performance of the uncertainty intervals for θ discussed above.
We also include the GUM intervals (see [10]) in the study. For
given k and n, it can be shown that the coverage probabilities
of the intervals for θ depend only on θ/σ . We only consider
k = 2 here results for other values of k are similar. Three
values of n are used: 1, 5 and 20. When n = 1, the degrees of
freedom for S2w is 0, we assume σ is known in this case as in the

0 1 2 3 4

0
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2
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4

|Γ|

de
ns

ity

Figure 2. Density functions for |	| when σ/
√

n = 1 and
x21 + x22 = 0.3 using the Supplement 1 (dashed line) and the fiducial
(solid line) methods.

Table 1. Statistics for two density functions in figure 2.

Density Mean St. dev. 2.5% Tile 97.5% Tile

Dashed 1.358 0.706 0.244 2.958
Solid 0.182 0.521 0.000 1.961
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Figure 3. Density functions for |	| when σ/
√

n = 1 and
x21 + x22 = 20 using the Supplement 1 (dashed line) and the fiducial
(solid line) methods.

simulation reported by Hall [10]. Values of θ/σ used are 0.1,
0.2, 0.5, 1, 2 and 5. Table 2 displays the number of successes
out of 1000 for the nominally 95% GUM, Supplement 1, and
fiducial intervals on θ for various combinations of n and θ/σ .
It also displays the mean values of the estimates of θ/σ . The
estimates of θ/σ are the midpoint of the GUM interval and the
means of the Supplement 1 and fiducial density functions of
θ/σ . Both the Supplement 1 and fiducial procedures are based
on 10 000 Monte Carlo samples.
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Table 2. The number of successes (a) out of 1000 for uncertainty
intervals on θ , and the mean value (b) of the estimate of θ/σ based
on the GUM, Supplement 1, and fiducial procedures when k = 2.

n θ/σ GUM Sup. 1 Fiducial

1 0.1 881a 0 946
1.27b 1.78 0.90

0.2 909 0 954
1.26 1.77 0.89

0.5 937 771 945
1.32 1.82 0.96

1.0 955 917 955
1.54 1.98 1.19

2.0 967 950 949
2.29 2.57 2.01

5.0 942 941 938
5.13 5.23 5.02

5 0.1 853 114 951
0.56 0.84 0.40

0.2 876 659 952
0.58 0.85 0.42

0.5 895 895 935
0.74 0.96 0.58

1.0 904 938 947
1.11 1.26 0.97

2.0 895 949 943
2.04 2.11 1.96

5.0 894 946 949
5.01 5.04 4.99

20 0.1 912 683 957
0.30 0.41 0.22

0.2 925 880 936
0.34 0.44 0.26

0.5 949 958 950
0.55 0.61 0.48

1.0 941 961 953
1.02 1.05 0.99

2.0 924 945 947
2.02 2.03 2.01

5.0 917 946 944
5.00 5.01 5.00

Table 2 indicates that the Supplement 1 intervals have
insufficient frequentist coverage when θ/σ is small. The
GUM intervals also have insufficient frequentist coverage
in most cases. One could argue that θ/σ , the signal-
to-noise ratio, would not be small in most metrological
applications, and we believe that is a valid point. However,
for few cases where θ/σ is small, the fiducial procedure
can be recommended for constructing uncertainty intervals
for θ .

The mean value of the estimate of θ/σ reveals that when
θ/σ is small, both the Supplement 1 and fiducial density
functions of θ/σ are highly skewed. As θ/σ increases, the
density functions become more symmetric and are centred
around the nominal value of θ/σ .

5. Conclusion

In this paper we have discussed a fiducial solution for

constructing the uncertainty interval on
√

μ21 + · · · + μ2k , where
μi are the means of the k normal distributions with common
variance σ 2. This fiducial interval maintains the nominal

frequentist coverage in all situations, while the Supplement 1
interval suffers poor frequentist performancewhen all of theμi

are small relative to their corresponding σi . This issue could be
mitigated by appropriately increasing the number n of repeat
measurements of the input quantities in the measurement
equation since σi = σ/

√
n where σ is the standard deviation

associated with individual measurements. However this is not
always possible due to cost constraints. What is noteworthy
is the fact that, when the signal-to-noise ratio is low and for
a given level of resources, the fiducial approach gives tighter
uncertainty intervals while maintaining the coverage rate close
to the advertised value.

In conclusion, while the Supplement 1 method performs
adequately in many instances, it can have difficulties
maintaining the claimed coverage rates, especially when
the measurand is not a one-to-one function of the input

quantities, such as θ =
√∑k

i=1 μ2i . In such cases,
the frequentist performance of the Supplement 1 intervals
should be examined and alternative procedures may be
considered.

Appendix

We list an R function fnc that generates realizations from the
fiducial distribution of θ based on the FQ in (9).

fnc = function(SH, SW, k, n, dfW=k*(n-1),
nrun=10000) {

# generate realizations from the
# distribution of FQ in (9)
#
if (dfW <= 0) Wx = rep(SW, nrun)
else Wx = SW/(rchisq(nrun, dfW)/dfW)
Vx = n*SH/Wx
Ux = runif(nrun)
Zmat = cbind(Ux, Vx)
qout = apply(Zmat, 1, lambda, k=k)
qout = sqrt(qout*Wx/n)
qout

}

lambda = function(uin, k) {
if (pchisq(uin[2], k) <= uin[1]) out = 0
else {

out = NA
if ((pchisq(uin[2], k) - uin[1])*

(pchisq(uin[2], k, maxpt) -
uin[1]) < 0) {
tmp = uniroot(function(arg, xin, k)

pchisq(xin[2], k, arg) -
xin[1], c(0, 1400),
tol=0.0001, xin=uin, k=k)

out = tmp$root
}

}
out

}
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The function fnc has six mandatory and optional
arguments:

1. Value of
∑k

i=1 x̄2i .
2. Value of

∑k
i=1

∑n
j=1(xij − x̄i )

2/(k(n − 1)).
3. Number of groups.
4. Number of observations within each group.
5. Degrees of freedom forS2w and the default value is k(n−1).
Use a non-positive number for infinity.

6. Number of fiducial samples desired. The default is 10 000.

The function also calls another function lambda to solve for
λ0 in equation (10). The output contains the desired number of
samples from the fiducial distribution of θ . With this function,
the following commands may be used to generate 10 000
realizations for the example in section 3 with x21 + x22 = 0.3
and σ = 1:

> fs = fnc(0.3, 1, 2, 1)

and calculate a 95% fiducial interval for |	|
> quantile(fs, c(0.025, 0.975), na.rm=T)

2.5% 97.5%
0.000000 1.961182
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