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Climate change monitoring requires decades-long time-series radiometric mea-

surements using multiple optical sensors in multiple platforms covering the

globe. The problem of achieving traceability to SI units for these measurements

is discussed. A major challenge is to determine the result of a measurement and its

associated uncertainty using various calibration and validation processes. These

processes are plagued by systematic (non-statistical) uncertainties that are not well

understood. In particular, different, but in principle equivalent, SI traceable

measurements may differ by more than would be expected from the uncertainties

associated with the individual measurements.We propose amethodology based on

the International Organization for Standardization (ISO) Guide to the Expression

of Uncertainty in Measurement (GUM) for the analysis of uncertainties in such

measurements along with consistency checking. This allows the measurement

result and its associated uncertainty to evolve as new knowledge is gained from

additional experiments, and it promotes greater caution in drawing conclusions in

view of the sparse measurements. We use data from ongoing total solar irradiance

measurements from various instruments in orbit to illustrate the principles.

1. Introduction

Amajor challenge for the international remote sensing community is to provide data

that can be used to monitor climate change and to quantify changes whether natural

or human induced. In 2005 the Group on Earth Observations (GEO), a voluntary

partnership of governments and international organizations, established the Global

Earth Observation System of Systems (GEOSS 2007). The main aim of GEOSS is to
realize comprehensive and accurate Earth observations for GEO. The international

remote sensing community is stated to play an important role in providing radio-

metric data to satisfy the requirements for climate changemonitoring. Plans are under

way to connect and share data from many satellite platforms around the world. In

such an endeavour, data accuracy assessment tools are to be uniformly adopted and
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implemented. As such, the traceability of all remote sensing measurements to inter-

nationally accepted standards and units (SI) becomes very important. The SI units are

adopted and recommended by the General Conference of Weights and Measures

(CGPM) and maintained across the world through the National Metrology Institutes

(NMIs). SI traceability is defined as the property of a measurement result related to
stated references in SI units through an unbroken chain of comparisons all having

stated uncertainties (BIPM 2004) and ‘it is essential that they (the measuring instru-

ments) should be periodically calibrated against more accurate standards’. However,

in the arena of remote sensing data, there is no uniformity in uncertainty analysis,

especially in establishing an unbroken chain of comparisons for SI traceability so far.

The major reason is that the satellite sensors upon launching into orbit cannot be

recalibrated because of a lack of proven onboard or on-orbit SI traceable standards of

the required accuracy for calibrations. Furthermore, it is impractical to recalibrate
periodically any of the instruments against standards on Earth once they are in orbit.

Often procedures adopted to resolve the calibration issues require assumptions in

formulating the measurement equations that are fraught with unknown uncertainties.

In this paper, we address the following questions: what is the methodology for

evaluating the common reference value (CRV) of all measurements and its uncer-

tainty when different sensors in different platforms provide the data? What metrolo-

gical principles would best be applied in assigning a consistent value and associated

measurement uncertainty to the CRV? What are the guidelines for expressing uncer-
tainty in time series measurements that span decades over multiple sensor lifetimes

and/or different sensors in different satellite platforms?

In §2, the background literature and definitions are reviewed, focusing on the

problems in achieving the SI traceability for on-orbit sensor radiometric data. In §3,

a methodology is proposed for the evaluation of uncertainties and their propagation

based on the metrological principles and the International Organization for

Standardization (ISO) Guide to the Expression of Uncertainty in Measurement

(GUM). In §§4 and 5 the methodology is applied to the problem of arriving at the
CRV and an estimate of its uncertainty for solar constant measurement data from

different sensors.

2. Background and definitions

Radiance and reflectance are the basic quantities measured by Earth-viewing optical

sensors in space and the data on various climate variables are deduced from these

measurements by applicable physics models. There have been two workshops on
climate change monitoring that dealt with the uncertainty requirements for these

measurements and strategies to achieve those requirements (Ohring et al. 2002,

2007). The requirements deal with accuracy and stability as the two components of

uncertainty in the sensor data. Accuracy refers to the closeness of agreement between

a measured value and a true value (ISO 2008). The requirement on accuracy can be

translated directly into a requirement on the standard uncertainty of the combined

result. Stability is the ability of the instrument to maintain its metrological character-

istics invariant with time (ISO 2008). In the short term most sensors are stable but
eventually they degrade and drift significantly over the lifetime of the sensor. To

monitor the sensor responsivity drift and account for the degradation that may be

spectrally dependent is a daunting task, especially to meet the climate data quality

requirements (measurement uncertainty).
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The language pertinent to this paper is based on the ISO GUM (ISO 1995) and is

given in table 1. It should be noted that the uncertainties due to systematic biases are

all grouped as uncertainty evaluations of Type B.

Absolute cryogenic radiometers are used in NMIs to achieve the lowest uncertainty
measurements of optical power as they measure it directly in terms of the electrical

watt, which is an SI unit that can be measured routinely to low uncertainties. The

optical power measurements may be used to measure irradiance with the use of

precision apertures that define the amount of power collected. Provided that the

aperture area is known and that systematic effects such as diffraction and scattering

of light are taken into account, the uncertainty in the irradiance measurement can, in

principle, be as low as the underlying power measurement. Low-uncertainty radiance

responsivity measurements are in turn made using special facilities that generate
Lambertian (uniform) sources using spectrally tuneable lasers (Brown et al. 2000).

However, the use of such techniques in space is an expensive proposition and so far

most Earth-observing sensors that measure radiance have calibrations that are made

traceable to SI units through pre-launch calibration activities and post-launch mon-

itoring to account for any changes in sensor responsivity. One of the strong recom-

mendations of the recent workshops (Ohring et al. 2002, 2007) is to have all sensor

data SI traceable. This will allow uniform implementation of algorithms to account

for sensor degradation utilizing intercomparisons with other satellites and indepen-
dent ground and air-borne measurements. However, intercomparisons by themselves

will not lead to a correction of the individual results but may expose the need to

increase uncertainties unless there is a way to reconcile the observed differences

between the instruments. Thus, intercomparisons with benchmark sensors in space

would be the ideal choice to reduce growth of uncertainty. Benchmark sensors, such

as the Atmospheric Infrared Sounder (AIRS), the Moderate Resolution Imaging

Spectroradiometer (MODIS) and the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS), are those that have undergone pre-launch calibrations with SI traceable
standards and use on-board and in-orbit calibration strategies to further improve

accuracy and maintain SI traceability.

Even benchmark sensors may not agree with each other when intercompared.

Pollock et al. (2003) pointed out that the use of a single SI measurement for SI

Table 1. Language of GUM for statistical analysis of data.

Quantity Symbols and definitions

Measurand Y, state-of-knowledge distribution of the quantity subject to the
measurement

Result of measurement y, best estimate (expected value) of Y
Types of uncertainty
evaluation

Type A (statistical) and Type B (non-statistical)

Standard uncertainty u(y)
Expanded uncertainty U ¼ k � u(y) defines interval [y � k � u(y)], which includes a large

fraction of values that could reasonably be attributed to the
measurand. Here k is the coverage factor. Fraction included will
be 95% for k ¼ 2 or 99% for k ¼ 3 for a normal distribution

Bias Constant deviation, offset, or scaling in a result of measurement
Consistency of results Absence of significant difference between results
Common Reference
Value (CRV)

Result of measurement when different independent SI traceable
measurements are combined (defined in this paper)

Uncertainty analysis of remote optical sensor data 869
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traceability may not be valid because of possibly unaccounted uncertainties in the

methodology or in the measurement itself. They advocate the use of data from at least

another independent SI measurement to validate the former SI traceable measure-

ment. They discussed at length the problems that can arise using a single SI measure-

ment for SI traceability using as an example the solar irradiance measurements made
from independent SI traceable sensor platforms.

As part of a National Research Council (NRC) study of this problem, one recom-

mendation of the space studies board is to perhaps do away with SI traceability and

change the calibration paradigm from radiance to reflectance (Committee on Earth

Studies 2000) for the solar reflective region of the spectrum. Reflectance is a relative,

not an absolute, calibration and as such does not need reference to SI units. However,

reflectance can be converted to SI units if solar irradiance measurements could be

pinned down to the required accuracy. Therefore, reflectivity may be another choice
for the calibration in this spectral region, but there is considerable doubt about the

stability of the on-board diffusers used as reference standards. However, the use of the

Moon as a reference standard is being actively considered as theMoon is very stable in

this regard (Kieffer 1997). In any case, the intercomparisons of different sensors using

this method may also disagree with each other, and the evaluation of uncertainty in

the calibration, especially for generating and integrating long time-series climate data

sets from different sensors, poses the same problems.

To address this issue of SI traceability, metrological principles for designing experi-
ments and analysing the uncertainty in measurements would be of great help. The

main premise of this approach is that the value of the parameter being measured is

known only to the extent of the knowledge gained by the measured data. Unknown

systematic uncertainties are to be investigated and they can only be eliminated or

accounted for by improving the knowledge base. One way to achieve this is by using

multiple measurements made through independent experiments. The CRV with an

associated uncertainty can then be obtained using that data base. Here expert judge-

ment plays a role. In other words, the CRV and its associated uncertainty will improve
in accuracy as more independent experiments are performed and improved methods

are used. However, all data are considered valuable and should be part of the data

base unless proven otherwise. Application of this principle for the creation of climate

data sets on various parameters would lead to more realistic uncertainties and con-

tribute immensely in the design of experiments to improve the accuracy of climate

measurements. The general principles of this metrological model of analysing mea-

surements and evaluating uncertainties are discussed in the next section.

3. Uncertainty analysis of time series data

In remote sensing, especially for weather and climate monitoring, the data are

obtained from satellite sensors in space as time series. The task is then to combine

the results from different satellites for a point in time into one value with an associated

uncertainty by propagating all knowledge about the measurement situation and the

available data. For the discussion we use the total solar irradiance (TSI) data, which

can be treated as a simple time series; the concept can be extended to more complex
data as well.

At a particular point in time, there may be one, two, three or more satellite sensors

making measurements of a common measurand Y (quantity to be measured; ISO

2008). We consolidate the results so that we have estimates for the same measurand
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with associated uncertainties at a number of specific points in time. Each of the n

satellite sensors provides a consolidated result xi with standard uncertainty u(xi),

giving n results x1, . . ., xn, with standard uncertainties u(x1), . . ., u(xn). The problem

then is how to determine the best estimate of y and standard uncertainty u(y) for the

state-of-knowledge distribution of the CRV Y at that particular point in time.
The first step is to choose a model to combine the values. A generally accepted

method to do this is the weighted mean

Y ¼
Pn
i¼1

bi � Xi

Pn
i¼1

bi

(1)

where Y is a quantity describing the state of knowledge about the CRV, and Xi are

quantities describing the state of knowledge about the individual satellite results.

Each result xi and standard uncertainty u(xi) are regarded as the expected value and

standard deviation of a state of knowledge distribution for Xi, respectively. The

constant weighting factors, bi, have no uncertainty. As we have no basis to assign

different weights, we choose all weighting factors to be one (bi¼ 1). Then equation (1)

reduces to the arithmetic mean:

Y ¼ 1

n
�
Xn
i¼1

Xi (2)

Equation (2) gives the best estimate of the common reference value as y¼ (1/n)
P

xi. If

we regard all Xi as statistically independent then we can calculate the uncertainty
associated with the best estimate of the CRV (y) following the standard GUM

approach as

u2ðyÞ ¼ 1

n2
�
Xn
i¼1

u2ðxiÞ (3)

This gives us a method for calculating y and u(y) for the specific points in time.

The next question is whether equations (2) and (3) give us a reasonable uncertainty

and whether we used all available information about the measurement situation.

Suppose xi and u(xi) represent our state of knowledge from each sensor, then the

only information we have not used so far is that all sensors were measuring the same

measurand at a specific point in time. If we assume that the sensors are perfect, we

would expect all results from all sensors for a specific point in time to be equal, that is:

y ¼ x1 ¼ . . . ¼ xn (4)

For real sensors we cannot expect to realize this ideal equality. However, unless

something is amiss, we should expect the results to be consistent. In particular, we

would expect the results x1, . . ., xn to be consistent with the best estimate of the CRV y.

In this context consistency means that there is no significant difference between y and

any of the results x1, . . ., xn. Let us define a state of knowledge variable:

Ei ¼ Xi � Y (5)

where Ei is the difference between the CRVY and the sensor resultXi for i¼ 1, 2, . . ., n.

Let us use the symbols ei and u(ei) for the expected value and standard uncertainty ofEi,

Uncertainty analysis of remote optical sensor data 871
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respectively. We can now derive a consistency criterion from the state-of-knowledge

distribution of Ei in equation (5). We can say that the difference ei ¼ xi – y is not

significantly different from zero if its absolute value is smaller than some chosen

multiple k of the standard uncertainty u(ei) associated with the difference, that is:

jeij � k � uðeiÞ (6)

where the standard uncertainty u(ei) associated with ei is

u2ðeiÞ ¼ ðn� 1Þ2
n2

� u2ðxiÞ þ 1

n2
�
X
j�i

u2ðxjÞ (7)

if all Xi are statistically independent.

The criterion defined by equation (6) shows whether the differences between the

results x1, . . ., xn and the best estimate of the CRV y agree with the uncertainties u(x1),

. . ., u(xn) and u(y). Although this criterion (equation (6)) looks similar to the statistical
t-test, the interpretation is very different. Instead of a confidence interval, an

expanded uncertainty interval representing the state of knowledge about Ei is con-

structed from the expected value and the associated standard uncertainty. If Ei were

normally distributed, then a coverage factor k ¼ 2 would represent an interval [ei –
k u(ei), ei þ k u(ei)], which contains about 95% of the possible values that are

compatible with the knowledge represented by Ei. Given k, simple interval logic can

be used to compare this interval with zero. A difference ei ¼ xi – y is significant if the

interval does not include the value zero. As a consequence, if the assumption of
insignificant difference is not compatible with this interval, then the consistency

check fails.

If the criterion in equation (6) is not satisfied for one ormore of the results x1, . . ., xn
then these results are inconsistent and as a consequence it is illogical to combine these

results. In general, inconsistencies should be resolved by investigating the details of

the measurement process. In remote sensing measurements this is particularly chal-

lenging because we have little, if any, opportunity to retrieve satellite-based sensors

for further investigation. In the absence of more information, we have no other choice
but to empirically enlarge the uncertainties u(x1), . . ., u(xn) associated with the

individual results x1, . . ., xn if we want consistent results. The enlargement of

uncertainties is tantamount to recognition that some as yet not understood effects

are causing the divergence of the multiple results of the same quantity. Therefore, we

modify equation (2) to account for additional deviations related to the results:

Y ¼ 1

n
�
Xn
i¼1

ðXi þ �XiÞ (8)

where �Xi is a state of knowledge variable representing the possible deviation of the

sensor result Xi from the value of the measurand.

We also need to modify equations (5) and (7) to incorporate the additional quan-

tities �Xi; thus,

Ei ¼ ðXi þ �XiÞ � Y (9)

The standard uncertainty u(ei) of Ei determined from equation (9) is

872 R. V. Datla et al.
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u2ðeiÞ ¼ 1

n2
� ðn� 1Þ2u2ð�xiÞ þ

X
j�i

u2ð�xjÞ þ ðn� 1Þ2u2ðxiÞþ
X
j�i

u2ðxjÞ
" #

(10)

In case we observe inconsistencies between the results, either the best estimates or their

associated uncertainties may prove to be not completely reliable. As we have no basis

to correct any of the results x1, . . ., xn, the expected value E(�Xi) of each �Xi is set as

zero. Similarly, we have no basis to judge the uncertainty of the results x1, . . ., xn. We

therefore assign the same standard uncertainty to all the deviations �Xi.

�xi ¼ Eð�XiÞ ¼ 0

uð�xiÞ ¼ uð�xÞ
����
i¼1...n

(11)

Combining equations (10) and (11) we have:

uðeiÞ ¼ 1

n
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � nÞ � u2ð�xÞ þ ðn� 1Þ2u2ðxiÞ þ

X
j�i

u2ðxjÞ
s

(12)

We can use expert judgement to find a reasonable uncertainty u(�xi). The minimum
value for u(�x) to obtain consistency is:

uð�xÞ � max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n� 1
� xi � y

k

� �2
� 1

n2
� ðn� 1Þ2u2ðxiÞ þ

X
j�i

u2ðxjÞ
 !" #vuut

������
j¼1...n

2
64

3
75
(13)

(Kessel et al. 2008). In the absence of additional knowledge we can use the lower

bound uncertainty given by equation (13).

In cases where the original uncertainty of the contributing results varies signifi-

cantly, we can use weighting factors based on the given uncertainties (bi ¼ 1/u2(xi) in

equation (1)). However, in cases such as the total solar irradiance data that are

significantly inconsistent, the added u(�x) dominates the uncertainties associated

with the best estimate of the CRV y and the weighting factors will iterate to one.

Therefore, we choose all weighting factors to be one from the start. In the following
section, we analyse data from satellite sensors measuring the TSI to illustrate these

principles.

4. Application to remote sensing data for TSI

As an example, the above-atmosphere TSI data from several satellites over the past

several decades are examined and analysed. The available data are shown in figure 1

(NGDC 2007). The instruments that provided the data are active cavity radiometers
that measure optical power in equivalent units of electrical power in watts and thus

provide inherently SI traceable measurements. The data presented are corrected for

known systematic biases such as in-orbit sensor degradation and are normalized to a

sensor–solar distance of one astronomical unit (1 AU). As we can see, the difference

between the data from each sensor is larger than the estimated uncertainty of each

instrument. Therefore, the data indicate the presence of unknown systematic biases

that should be investigated and corrected to improve the CRV. In figure 1, the

Uncertainty analysis of remote optical sensor data 873
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National Aeronautics and Space Administration (NASA) NIMBUS satellite pro-

vided the data from an on-board active cavity radiometer designated ERB (Earth

Radiation Budget) for the period 1978 to 1993. The data from 1980 to 1989 shown as

ACRIM 1 (Active Cavity Radiometer Irradiance Monitor) were obtained from the

active cavity radiometer onboard the Solar Maximum Mission (SMM) satellite. The

data labelled NOAA9 and NOAA10 are from ACRIM-type radiometers from the
National Oceanic and Atmospheric Administration (NOAA) polar satellites. The

data shown from 1984 to the present designated as ERBE are from the NASA

Earth Radiation Budget Satellite (ERBS). The data designated ACRIM II and

ACRIM III are from Upper Atmospheric Research Satellite (UARS) and

ACRIMSAT missions, respectively. The data designated as VIRGO are from two

types of absolute radiometers on the European Space Agency (ESA)/NASA Solar and

Heliospheric Observatory (SOHO), which are called DIARAD and PMO6V. Finally,

the data designated TIM are from the Solar Radiation and Climate Experiment
(SORCE).

Figure 2 shows the data from different radiometers for the overlapping time period

from 2003 to the middle of 2007 on an expanded scale for illustrating the principles of

determining the CRV. The data are from the radiometers ACRIM III, DIADRAD,

PMO6V and TIM. To compare observations of the Sun made at different times, the

data were interpolated onto a common time-scale and averaged over a period of

approximately 15 days. A simple upper-bound estimate of the additional uncertainty

associated with sampling errors coupled with the short-term solar variability was
calculated and summed in quadrature (see uncertainty bars of figure 2) with the stated

uncertainties as follows. After interpolation, the standard deviation of the difference

Figure 1. Top-of-atmosphere Total Solar Irradiance (TSI) data measured by various satellites
from 1975 to 2005.
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between each sensor and a reference (arbitrarily chosen as ACRIM) was computed.

For TIM, PMO6 and DIARAD the standard deviation of the corresponding differ-

ence was taken as the additional uncertainty. For the ACRIM sensor the minimum of

the other three standard deviations was used. The added component of uncertainty

was small compared with the differences between sensors and, with the exception of

the TIM sensor, was small compared to the stated instrument uncertainty.
To illustrate the calculations we use the following results from the four satellite

sensors for a particular point in time in figure 2 (see figure 3).

x1 ¼ 1366:6Wm�2; uðx1Þ ¼ 1:4Wm�2

x2 ¼ 1367:0Wm�2; uðx2Þ ¼ 1:6Wm�2

x3 ¼ 1365:70Wm�2; uðx3Þ ¼ 0:82Wm�2

x4 ¼ 1361:31Wm�2; uðx4Þ ¼ 0:21Wm�2

The calculation of the arithmetic mean (equation (2)) gives y¼ 1365.15Wm-2 with an

associated standard uncertainty u(y)¼ 0.57Wm-2. The calculation of the consistency

check (equations (5) and (7)) leads to:

je1j ¼ 1:4Wm�2;Uðe1Þ ¼ 2:3Wm�2; kp95 ¼ 2; check passed

je2j ¼ 1:8Wm�2;Uðe2Þ ¼ 2:5Wm�2; kp95 ¼ 2; check passed

je3j ¼ 0:5Wm�2;Uðe3Þ ¼ 1:6Wm�2; kp95 ¼ 2; check passed

je4j ¼ 3:8Wm�2;Uðe4Þ ¼ 1:2Wm�2; kp95 ¼ 2; check failed

DIARAD
PMO6V
TIM

1360

1362

1364

1366

1368

1370

2003 2004 2005 2006 2007

TSI Instrument Comparison

ACRIM3

T
SI

 in
 W

m
–2

Year

Figure 2. Available Total Solar Irradiance (TSI) data plotted for the overlapping time series
of 2003 to 2007 from four satellite sensors. Uncertainty bars represent the combined standard
uncertainty.
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The consistency check can easily be evaluated based on figure 4. It failed for at least

one contributing result and therefore �Xi is added to each result Xi with an expected

value zero and standard uncertainty u(�x).
The lower bound can be calculated with equation (13) to give u(�x) ¼ 2.1 W m-2.

Based on the whole time series, the uncertainty for the possible deviation of the
sensors was set to u(�x) ¼ 2.2 W m-2, which is the smallest value with two significant

digits for which all values of the time series became consistent.

Including the new value for u(�x) in equation (2) leads to a larger uncertainty for the
contributing value from the sensors (see figure 5) and a final result y ¼ 1365.2 W m-2

and u(y) ¼ 1.2 W m-2.
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Figure 3. Total Solar Irradiance (TSI) for each satellite sensor data Xi and mean value Y
without adding uncertainty. Uncertainty bars represent the expanded uncertainty (k ¼ 2).
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Figure 4. Difference between satellite sensor to sensor data and mean value Ei ¼ Xi – Y based
on the original values without adding uncertainty. Uncertainty bars represent the expanded
uncertainty (k ¼ 2).
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The recalculation of the consistency check leads to (see figure 6):

je1j ¼ 1:4Wm�2;Uðe1Þ ¼ 4:4Wm�2; kp95 ¼ 2; check passed

je2j ¼ 1:8Wm�2;Uðe2Þ ¼ 4:6Wm�2; kp95 ¼ 2; check passed

je3j ¼ 0:5Wm�2;Uðe3Þ ¼ 4:1Wm�2; kp95 ¼ 2; check passed

je4j ¼ 3:8Wm�2;Uðe4Þ ¼ 4:0Wm�2; kp95 ¼ 2; check passed
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Figure 5. Total Solar Irradiance (TSI) for each satellite sensor data Xi and mean value Y
including additional uncertainty u(�x) to ensure consistency. Uncertainty bars represent the
expanded uncertainty (k ¼ 2).
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Figure 6. Difference between satellite sensor data andmean valueEi¼ (Xiþ �X) –Y including
additional uncertainty to ensure consistency. Uncertainty bars represent the expanded uncer-
tainty (k ¼ 2).
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The new uncertainty of the arithmetic mean is consistent with all contributing results.

The calculation was repeated for all data points of the time series. Figure 7 shows the

results after adding an additional uncertainty to the data at each point in time. After

adding an additional �Xi component, the uncertainties for all data points are very

similar, varying from 1.24 to 1.26 W m-2. In this case it is possible to use the same
value for the uncertainty of the whole data series. We chose the largest uncertainty

value in the series rounded to two digits as the final value for all data points and this

leads to u(yj)¼ 1.3Wm-2 andU(yj)¼ 2.5Wm-2, kp95¼ 2 for j¼ 1, 2, . . .,m ifm is the

number of results in the data series. Themaximum difference between the individually

calculated uncertainty and the chosen value for the whole data series is about 4.8% of

the value.

The resulting uncertainty bands surrounding the mean are significantly larger than

would be the case without the added uncertainty component. From 2003 to 2007 the
solar irradiance shows a steady decrease from 1365 to 1364 W m-2 with a standard

uncertainty of 1.3Wm-2 in the absolute value at any given time. This barely meets the

climate change science programme accuracy goal of 1.5 W m-2 (Ohring et al. 2002).

Future satellite missions should aim to achieve much higher accuracies as that is the

best way to ensure that small changes in solar output can be tracked over the long

term. It also provides an independent means to validate the corrections that account

for instrument drift, which is thought to be well understood.

5. Discussion

To look into the possible causes for the discrepancy between various TSI sensors, in

2006 NASA held a workshop at the National Institute of Standards and Technology
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Year

Figure 7. The CRV for the time series after adding an additional uncertainty for each sensor
to make the data consistent. Symbols are the data collected for a given instrument. The solid
lines represent the arithmetic mean and its expanded uncertainty (k ¼ 2).

878 R. V. Datla et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
e
s
s
e
l
,
 
R
u
e
d
i
g
e
r
]
 
A
t
:
 
2
0
:
3
5
 
2
6
 
F
e
b
r
u
a
r
y
 
2
0
1
0



(NIST) and brought all the principal scientists of the TSI measurements together for

discussions on the topic. The workshop report identified possible causes such as

unaccounted diffraction losses and problems of measuring aperture diameters accu-

rately that are to be investigated further (Butler et al. 2007). The report identified plans

to intercompare replicas of the radiometers with NIST SI traceable standards in the
irradiance mode to quantify unknown biases in the calibration of these radiometers.

Such an undertaking will reveal unknown biases that can be corrected in the sensor

data. Then the analysis presented in this paper can be repeated to determine the new

CRV time series and associated uncertainty using the more realistic assumption that

biases are not negligible. Further investigation into any remaining discrepancies and

iteration of this process should move the measurements closer to the climate change

accuracy requirements.

The sensor data analysed in this paper were for overlapping periods of time series to
determine the CRV and its uncertainty. This methodology is applicable to the inter-

calibration of satellite sensors based on the benchmark SI traceable CRV time series

for the overlapping sensor data. For the use of the Simultaneous Nadir Overpass

(SNO) technique (Cao et al. 2005), this methodology can be adopted to generate

common reference values and uncertainties between non-SI traceable sensors wher-

ever possible and then transfer calibration from an SI traceable overpass to all the

sensors in the intercomparison. For example, NASA research satellites such as

MODIS and SeaWiFS provide benchmark CRV time series that can transfer calibra-
tion to NOAA and EUMETSAT operational satellites that are by themselves inter-

calibrated by the SNO technique. Themain guiding principle is that all sensor data are

to be analysed with equal weight unless proven scientifically otherwise. If scientific

judgement indicates the presence of unknown systematic uncertainties, research

should be undertaken to identify and correct the data and improve the CRV and its

uncertainty. This can be done iteratively until the required levels of uncertainty

bounds are achieved on the CRV. However, long time-series will have gaps in over-

lapping sensors. The extension of the methodology discussed in this paper on how to
bridge the gaps if at least one sensor provides data without interruption will be the

subject of a future publication.

6. Summary

Satellite time-series data require at least two independent methods to determine the

CRV and its uncertainty. A CRV and the associated uncertainty can be obtained by

simply combining the data from each sensor if the analysis shows few outliers.
However, if the sensor data differ from one sensor to another by more than the

individual sensor uncertainties, adding an uncertain influence to the sensor data

using the methodology based on the ISO GUM described in this paper will be more

appropriate. This approach quantifies the uncertainty more realistically and helps to

investigate and seek corrections and improve the accuracy of the data. As an illustra-

tion of this methodology, the TSI data from different satellite sensor data are

analysed. It is shown quantitatively that unknown systematic uncertainties contribute

significantly to the overall uncertainty of the SI traceable CRV time series. Current
research undertaken with NASA, NIST and other agencies to identify and correct the

unknown systematic uncertainties will help to improve the accuracy of the data, and

the methodology given in this paper can be repeated to evaluate corresponding CRV

time series and its uncertainty as new knowledge about the possible deviations or data
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from future missions become available. This allows for continuous improvement of

the measurements and the interpretation of the sensor data. A CRV and its uncer-

tainty is a dynamic quantity that represents the current state of knowledge at the time

it is calculated.
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