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ABSTRACT 
 
This report addresses the task of meshing point clouds by triangulated elevated surfaces referred 
to as TIN surfaces.  It describes the general features of this approach, and refers to prototype TIN 
software employed at NIST for research into the analysis of 3D point data acquired by LADAR 
instrumentation.  Inherent in the TIN approach is the establishment of neighbor relations between 
data points, which provide the basis for various smoothing, filtering and screening procedures. In 
particular, the TIN structure is utilized to define the boundary of a planar point set.  The report 
provides theoretical background for subsequent documentation of experimental results about the 
accuracy of LADAR data and their processing by TIN methods. 
 
 
 
 
Key words: Approximation, data structure, Delaunay triangulation, elevated surfaces, 
interpolation, mesh, planar boundary, point cloud, TIN  
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1. INTRODUCTION 
 
NIST is investigating the utility of LADAR (LAser Detection And Ranging) devices for surface 
recovery with particular emphasis on applications for the construction industry.  Several 
experiments were conducted in order to assess the accuracy of LADAR scans and the associated 
data processing [Cheok et al. 2000, Witzgall and Cheok 2001, Cheok, Leigh, and Ruhkin 2002].  
NIST has developed prototype triangular meshing software in support of that effort.  This report 
aims at providing a general description of the concepts underlying that software. 
  
Contrary to photography, which produces 2D images, LADAR scanning yields collections of 3D 
points or “point clouds”.  Several commonly used software packages permit visualization of the 
3D point data.  These point-by-point displays provide useful images, which can be viewed at 
different angles and from different vantage points with various options for color coding.  While 
valuable for terrain or object visualization, such point-based images are frequently not suitable 
for tasks such as determining volumes or exact dimensions of objects encountered, for instance, 
in object recognition efforts. Such tasks may then call for representations of point clouds by 
surfaces.  In particular, surfaces are indispensable for volume definition and calculation.  Volume 
definition for, say, regularly spaced point clouds may not be based overtly on a particular surface 
but rather on a specific formula, but any such formula can be traced to an underlying surface 
representation. 
    
An important approach to providing such surfaces is known as “meshing” a point cloud.  
Meshing spatial data sets is, therefore, an essential step of many methods for visualization, 
visibility analysis, ground surface modeling, object segmentation and object recognition.  
Meshing also plays a role in several techniques of “registration”, that is, the task of transforming 
the coordinates of data points that were collected from separate vantage points into those of a 
common frame, so as to enable the proper combination of those data sets.   
 
The particular kind of meshing considered in this report is the “Triangulated  Irregular Network” 
or “TIN” [Peucker et al. 1976, 1978].  Since its inception, this technique has become widely 
accepted as a tool for object modeling and data analysis [e.g., Polis et al. 1995]. This 
development accelerated with the advent of LADAR technology, which permits the rapid 
acquisition of large 3D “point clouds”, representing complex scenes such as terrain, structures, 
and various artifacts.  At NIST, the development of TIN methods, and ongoing research into 
their performance, originated with collaborative efforts sponsored by the US Army Corps of 
Engineers [Mandel, Witzgall, and Bernal 1987, Witzgall and Karalus 1996].  This report 
summarizes that development. 
  
TIN methods, as considered in this report and along with most other meshing procedures, are 
based on the “location/elevation” paradigm, where data points are viewed as elevations assigned 
at locations or “footprints”.  The meshing surface is correspondingly envisioned as a “rubber 
sheet” draped over the data points and pulled down over the elevations by gravity, suggestive of 
a tent held up by tent poles.  It is important to realize, that the “elevations” in this context need 
not represent verticality in the real world.  They may, for instance, represent distances in a 
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specific scanning direction (Fig.1.1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1.  A triangulation in a plane perpendicular to the scan direction. 

 
In a natural way, planar meshing of the footprints of a point cloud defines “neighbors” of each 
individual point, namely, those other points in the point cloud which connect to the point via 
edges of the triangular meshing.  Key tasks of editing and statistically analyzing point clouds 
require such a notion of “proximity” in order to capture local trends and variabilities.  
 
An alternate way of defining neighbors would be to associate neighbors according to a limit on 
the distance between their locations.  This would amount to defining neighbors by “closeness” 
instead of proximity.  Problems with this approach would become apparent if there are large 
differences in location density and, therefore, distances to immediate neighbors.  Such 
differences are particularly pronounced if ground-based LADAR is used to scan terrain, and if 
the data points are given in x,y,z-coordinates with z-coordinates representing actual verticality. 
 
One popular distance-based approach is to specify a “regular rectangular” grid in the footprint 
plane, and to collect data points into the “bins” of the grid according to their respective 
footprints, an approach referred to as “binning”.  A related application of grids is to reduce 
irregular point cloud data to regular “gridded” data sets, where elevations are assigned to regular 
grid or “post” points.  Grid–based methods are attractive because of their conceptual simplicity.  
They are particularly intuitive in image processing, where pixels are naturally arranged in a grid.  
Binning is also employed as an optional step in NIST TIN routines. 
 
However, grids are built with respect to two special directions, left/right and down/up, usually 
associated with x, y-coordinates.  Grid-based methods are, therefore, not invariant to rotation of 
the coordinate system.  In some applications, this can cause difficulties with representing lines 
that are at angles with the coordinate axes.  A more significant potential drawback of grid-based 
methods is their aspect of “one-size-fits-all”:  they impose uniform resolution by fixing the size 
of the grid bins.  In other words, their notion of proximity is that of closeness, and grid-based 
methods might, therefore, not be suitable in situations where there are large differences in 
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location density.  In such situations, “adaptive” schemes, which adapt resolution to variations in 
data density, are then called for.  The “quadtree” approach [Samet 1990] extends the grid 
concept hierarchically in order to respond to varying demands for resolution.  It still, however, is 
tied to two particular grid directions with the concomitant difficulties in line representation. 
 
TIN methods, on the other hand, are adaptive as well as rotation invariant.  As pointed out above, 
they provide a very natural and immediate notion of proximity based on edge adjacency in a 
triangular mesh.  In areas of high location density, edges in the mesh tend to be short, and 
neighbors close, whereas, in areas of low location density, edges in the mesh tend to be longer, 
and neighbors further away.  In addition, as TIN methods work directly with irregular data sets, 
they avoid the need to “regularize” such data sets.  Such regularization may result in loss of 
information concerning density patterns, roughness patterns, object edges as well as loss of 
resolution.  Should regularization be indicated, then TIN meshing with subsequent evaluation of 
the meshed surface at grid points provides a robust and efficient alternative to the familiar “kth -
closest points” method for creating gridded data sets. 
 
Real objects are, in general, not “smooth”.  There may be lines, along which they are not 
differentiable, that is, their tangential planes are not uniquely defined, such as along terrain 
“break lines” or “edge lines” of solids.  It is important, that a surface representation of objects 
reflects what will be called “feature lines” in this report.  The TIN technique enables the pre-
specification of known feature lines, which are to be represented as strings of adjacent edges in 
the mesh [Bernal 1988].  Also, post-processing adjustments of a triangulation can improve the 
approximation of the point cloud automatically based on local data patterns. 
  
The utility of TIN methods is restricted by their adoption of the location/elevation or “rubber 
sheet” paradigm, which requires no two different points of the meshed surface have the same 
“footprint.”  In other words, at each location there is a unique elevation.  The term “2.5D” has 
been coined for such surfaces.  Meshing of true 3D surfaces with nooks and undercuts thus 
requires different methods. The most promising approach to fully general 3D triangulated 
meshing is to “tetrahedralize” the points in space. The actual 3D surface meshing procedure then 
amounts to a procedure for determining from the tetrahedralization the boundary surface of the 
3D point set [e.g., Edelsbrunner and Mucke, 1994, Amenta and Bern 1999, Amenta et al. 2000, 
Dey and Giesen 2001].  The strength of the tetrahedralization approach is again the fact that it 
provides a direct and natural neighbor relationship between 3D points.  Tetrahedralization will 
not be discussed in this report.  For NIST research into computational aspects of 
tetrahedralization, the reader may want to consult [Bernal 2001]. 
 
The TIN procedures discussed here are based mainly on the Delaunay triangulation principle, to 
be described in this report.  Such procedures are computationally efficient, being in general of 
complexity  O(nlog n) .  
 
In the following Chapter 2, the basic concepts of triangulations and TIN surfaces used in this 
report will be introduced.  The method for adaptively triangulating a set of data footprints that 
underlies the NIST TIN software is presented in Chapter 3.  Chapter 4 describes several post 
processing options.  They include defining the boundary of the footprint set of a point cloud 
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along with various options for boundary editing, as well as surface adjustments and file editing 
via filters and screens.  Flow tables for three prototype TIN algorithms, TINvolume, TINscreen, 
TINfilter, developed at NIST are provided in Chapter 5, along with an in-depth discussion of 
pertinent data structures.  Also in that Chapter, two alternate philosophies for TIN procedures, 
the “top down” and the “bottom-up” approach are compared.  Chapter 6 examines alternate 
triangulation paradigms such as the “greedy” triangulation and regular rectangular grids.  In 
Chapter 7, finally, relationships between meshing and spheres are explored. 
 
The development of TIN procedures is an on-going effort at NIST as well as in the field of 
computational geometry, in general.  One of the purposes of this report is to identify additional 
development and research that is necessary to support current NIST projects.  Pertinent research 
and development subjects are stated at the end of related sections.  
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owed to TEC collaborators Betty Mandel [Mandel et al. 1987] and Randall Karalus [Witzgall 
and Karalus 1991].  The encouragement and support of Drs. S. Shyam Sunder and William C. 
Stone of NIST’s Building and Fire Laboratory has made it possible to build further on that 
foundation. 
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2. POINT CLOUDS AND ELEVATED SURFACES 
 
A LADAR device gathers 3D data in the form of a 
 

“point cloud”, 
 
that is, a collection of 3D locations represented in an instrument-centered coordinate system. The 
immediate output will typically be in “polar coordinates”, or 
 

“angle, angle, distance”  (φ, θ, r), 
 
where the angles  φ, θ  represent instrument settings, and the distance or “range” r  is measured. 
The polar coordinates are typically converted to “Cartesian coordinates”  (x, y, z)  centered at the 
instrument.  The coordinate z of a point is interpreted as its elevation, and the projection  (x, y)  
as its location or 
 

“footprint”. 
 
In this report, the data points  Pi  are assumed to be given in those coordinates: 
 

Pi = (xi , yi , zi), 
 
with footprints  pi = (xi , yi) . 
 
For the purpose of this report, a particular class of surfaces will be considered.   These surfaces 
are characterized by the following 
 

Single Elevation Property:  No two surface points share the same footprint. 
 
Clearly, not all surfaces have this property.  Surfaces with undercuts, for instance, are excluded.  
A surface with the single elevation property is referred to as an 
 

“elevated surface”,  “parametric surface”,  or  “2.5 D surface”. 
 
Note also that, if the point cloud contains points with identical footprints, points to be called  
 

“duplicate points” 
 

in this report, and if two such duplicate points have different elevations, then it will not be 
possible to pass an elevated surface through those points.  Dealing with such points will be 
discussed in Sections 3.1.1 and 4.4.2. 
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2.1  TRIANGULATED IRREGULAR NETWORKS (TINs) 
 
The methods to be discussed in this report are based on a particular kind of triangular mesh, 
commonly referred to [Peuker et al. 1976, 1978] as a  
 

“Triangulated Irregular Network” or “TIN”. 
 
Here elevated surfaces are constructed with reference to a 
 

“triangulation” 
 
in the footprint plane, usually – but not necessarily – assumed to be horizontal.  Such a 
triangulation covers the footprints by triangles which do not overlap, that is, have no common 
points other than vertices and along edges, where two triangles join.  If elevations zv are specified 
at the vertices  qv = (xv , yv)  of triangles of the TIN, then a 
 

“TIN surface” 
 
is created (Fig. 2.1) that passes through the 3D points  Qv = (xv , yv , zv)   by elevating each planar 
triangle tk with vertices  ( ) ( ) ( )

332211
,,,,, vvvvvv yxyxyx   to the 3D triangle  Tk  with the 

corresponding vertices 
 

( ) ( ) ( )
333222111

,,,,,,,, vvvvvvvvv zyxzyxzyx . 
 

 
 

 
Figure 2.1.  A triangulation of data footprints (TIN) and their TIN surface. 

 
 

The image of “tent poles” of height  zv , supporting the surface at the locations  qv , is 
appropriate.  It also suggests the idea of raising or lowering those tent poles so as to “best” 
represent the points in the point cloud – a procedure to be discussed in Section 4.2. 
 

z
y

x

z
y

x
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So far no assumption has been made about how the footprint points qv = (xv , yv) and their 
corresponding surface vertices Qv = (xv , yv , zv) , which describe the TIN surface, are to be 
chosen.  The typical TIN approach, which is also adopted here, is to assume that – with minor 
exceptions –  
 

triangulations are based on the footprints  pi = (xi , yi) of existing data points 
Pi = (xi ,  yi ,  zi) .   
 

However, it should be realized that other choices of footprints, e.g. post points on a regular grid, 
are possible, provided a method for assigning elevations at these footprint points has been 
specified. 
 
If all data footprints are included in the triangulation, then the term  
 

“full triangulation” 
 

is used as opposed to 
 

“partial triangulation”,  
 

where a selected subset of the data footprints is triangulated.  In surface construction, partial 
triangulations may play a greater role than full triangulations since they permit approximation 
procedures such as those described in Sections 4.2 and 4.3.  Also, computer memory limitations 
may preclude full triangulations. 
 

2.1.1 Delaunay Triangulation 
 
There are many ways of triangulating a set of planar points and, consequently, there are many 
TIN surfaces through the corresponding sets of 3D vertices.  It would therefore be highly 
desirable to identify a triangulation concept that, given a set of vertices, defines triangulations 
that are essentially unique, and that would come close to reproducing the intuitive triangulation 
an analyst would choose. For instance, the occurrence of very long edges and of associated 
“skinny” triangles will, in general, be reduced. Obviously, such triangles would distort the 
appearance of any corresponding TIN surface.  Such a triangulation concept exists, and it is 
based on the following: 
 

Empty Circle Criterion:  No triangulation vertex  pv =  (xv , yv) lies in the 
interior of the circumcircle of any triangle of the triangulation [Delaunay 1934]. 

 
Such triangulations (Fig. 2.2) are widely considered a standard, employing the terms 
 

“Delaunay triangulation” or “Delaunay TIN, 
 
and for the corresponding TIN surface, the term 
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“Delaunay surface”. 

 
In fact, the term “TIN” is often used synonymously with “Delaunay TIN”.  A Delaunay 
triangulation is, in general, uniquely determined by the empty circle criterion, the exception 
being the case in which the circumcircle of one of the triangles contains more than three vertices 
on its periphery.  In that exceptional case, the vertices on the periphery of such a triangle 
determine a convex polygon which can be subdivided by diagonals in different ways into 
triangles, and each of these subdivisions is acceptable within a Delaunay triangulation.  An 
alternate Delaunay criterion based on angles in the triangulation avoids some of those 
ambiguities.  The reader may want to consult the standard textbook by Edelsbrunner [1987]. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.  Two triangulations of the same set of points.  The one on the left is Delaunay. 
 
 
The existence of a Delaunay triangulation follows from its construction as the “dual” of the 
“Voronoi diagram” of a given vertex set (Fig. 2.3).   
 

 
 

Figure 2.3.  Voronoi diagram and its associated Delaunay triangulation. 
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Each vertex of the triangulation is surrounded by a “Voronoi cell”, which consists of all planar 
points that are closer to this vertex than to any other one.  Two vertices are then connected by an 
edge in the associated Delaunay triangulation if, roughly speaking, the cells in which the vertices 
are located border on each other.  Fortune [1987] computes a Voronoi diagram first in order to 
provide an  O (nlog n)  method for Delaunay triangulation. 
 
Statistics for geometrical parameters of Delaunay triangulations have been derived, and 
constitute a generalization of order statistics to two dimensions [Stoyan, Kendall, and Mecke 
1987].  For a survey of Voronoi-Delaunay techniques see, for instance, [Aurenhammer 1991, 
Beichl et al. 1996, Bernal 1993]. 
 

2.1.2  Constrained Delaunay Triangulation 
 
The concept of a Delaunay triangulation permits an important generalization.  Given a set of 
 

“constraint edges”, 
 
namely, a set of straight line segments in the footprint plane, a  
 

“constrained Delaunay triangulation” 
 
is required to have those pre-specified constraint edges as edges of the triangulation.  The 
endpoints of the pre-specified constraint edges are necessarily vertices in the resulting 
constrained triangulation. In addition, there may be other ` 
 

“pre-specified vertices”, 
 
which also are required to be a part of the desired triangulation. 
 
Constraint edges may not “cross” each other, and may not contain pre-specified vertices.  More 
precisely, the specification of constraint edges and additional pre-specified vertices must satisfy 
the following: 
 

Constraint Condition:  If two different constraint edges meet, they must meet at a single 
point, and this point must be an endpoint of both edges.  Additional pre-specified vertices 
may not meet any constraint edge, nor duplicate the footprint of another pre-specified 
vertex. 

 
Given a set of constraint edges, a vertex is considered 
 

“visible” 
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from some specified point, if its view is not obstructed by one of the constraint edges.  
Constrained Delaunay triangulations are then characterized by the following  
 

Constrained Empty Circle Criterion:   No triangulation vertex  pv = (xv , yv)  lies 
in the interior of the circumcircle of any triangle of the triangulation and is also 
visible from the interior of that triangle [Bernal 1988]. 

 
Constrained Delaunay triangulations are again essentially unique.  The only exceptions occur if 
the periphery of the circumcircle of a triangle contains additional vertices that are visible from 
the interior of the triangle. 
 
If there are pronounced valleys or ridge lines in the scene, and if their locations are known, then 
constructing a triangulation in which triangle edges follow these lines, assures that they are 
properly represented by the resulting TIN surface.  Specifying line segments that follow such 
crease lines and constraining triangulations to contain these line segments will serve this 
purpose. 
 

2.2 INTERPOLATING AND APPROXIMATING DATA 
 
There are two paradigms for representing a point cloud by a surface: interpolation and 
approximation.  Interpolation requires that the surface representing the point cloud actually pass 
through every point of the cloud exactly whenever possible.  Approximation, on the other hand, 
does not attempt to reach every point.  Interpolation might be considered the most conservative 
approach to constructing TIN surfaces from given elevation data points.  If, however, the 
purpose of interpolation is to construct a representative surface for a point cloud, caution is 
warranted.  Indeed, in this approach, data points arising from artifacts, process-malfunctions, or 
other outliers are accommodated in the same way as all the other data points.  In addition, 
measurements are   usually subject to noise, that is, random statistical deviations from the “true” 
value. If a point cloud is dense as well as noisy, this may also present a situation in which 
interpolation may not be desirable, unless it has been preceded by screening or editing 
procedures, which amounts to de facto approximation.  Finally, if there are many data points, the 
interpolating TIN surface structure may be too cumbersome to use.  Interpolation is useful when 
the objective is to identify outliers, gauge noise, or implement local filtering procedures as 
discussed in Chapter 3. 
 
Approximation may simply amount to interpolation of a specified subset of a point cloud.  That, 
of course, begs the question of “how good” is such an approximation, or any other 
approximation for that matter.  To gauge the proximity of the surface to the given point cloud a  
 

“measure-of-fit” 
 
is commonly stipulated.  Then it becomes natural to search for “best” approximations, that is, 
approximations which in some way minimize that measure-of-fit.  Having settled on a measure-
of-fit to be minimized, the set of candidate surfaces from which the “best” approximation is to be 
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selected has to be agreed upon, for instance, the set of all TIN surfaces belonging to the same 
footprint triangulation.  This is the approach followed here.  More specifically, the triangulation 
will be a partial triangulation of the footprints of the data cloud.  The footprints entering the 
triangulation will be selected sequentially, as will be described in Chapter 2.  Data points 
corresponding to those footprints are then either (i) interpolated, that is, these data points are 
chosen as the vertices of the TIN surface to be constructed, or (ii) the vertices of the TIN surface 
are chosen at the selected data footprints, but their respective elevations are determined so as 
minimize the specified measure-of-fit, by which the TIN surface approximates the entire point 
cloud.  Those options will be discussed in Section 4.2. 
 
The results of an approximation procedure depend critically on the choice of the measure-of-fit.  
Which of those measures-of-fit will give rise to a desirable approximation by a surface?  How to 
recognize desirable approximations?  Such issues require what might well be the most urgent 
research agenda. 
 

2.2.1 Distance Measures 
 
In this section, several measures-of-fit will be identified.  They belong to a special class of 
measures-of-fit that may be called “distance-based”, and are most commonly applied.  Here, a 
concept of distance measure is chosen which indicates the closeness to the representing surface 
of each point  Pi = (xi , yi , zi)  in the point cloud.  The following are natural choices for that kind 
of distance measure, which need to be explored and evaluated. 
 

• Vertical residual (implemented) 
• Euclidean distance to closest point on surface 
• Deviation in scan direction 

 
The first option is naturally associated with the 2.5D surfaces at issue.  It is based on the notion 
of the 

“ residual”  iii zzr ˆ−=  
 
of the data point Pi = (xi , yi , zi) , where  iẑ  denotes the elevation of the TIN surface at the 

footprint  pi = (xi , yi) .  In other words, the point P̂ i = ( )iii zyx ˆ,,  is the surface point that shares 
a vertical line with the data point pi. The vertical distance determined in this fashion is then given 
by the absolute value or “size” of the residual 
 

iiii zzrd ˆ−== . 
 
At steep areas of the surface, the vertical distance expressed by the residual may send a 
misleading message about the actual proximity of a data point to the approximating surface.  
Using the actual shortest distance to the surface may be expected to result in a more realistic 
approximation.  Similarly, if the scan direction is known or can be estimated, then measuring the 
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distance of a data point from the surface along a ray in that direction appears to be particularly 
attractive because it relates to the physical process of scanning.  
 

2.2.2 Norms for Measures-of-Fit 
 
A measure-of-fit should be a single number “grading” the quality of an approximation.  To arrive 
at such a number, the n individual distances  di of data points  Pi = (xi , yi , zi) , as determined 
according to a suitably chosen common distance measure, have to be combined to arrive at a 
single number.  This is usually accomplished by choosing a 
 

“norm”, 
 
namely, a way of assigning a “length” to a vector satisfying proportionality and “subadditivity”, 
that is, the length of the sum of vectors does not exceed the sum of their respective lengths.  The 
following norms are usually considered. 
 

• “Root-Mean-Square (RMS)”:   ∑ 21
id

n
   

 

• “Average-Size-Deviation (ASD)”:    ∑ id
n
1  

 
• “Maximum Error (MAX)”:     idmax  

 
 
The RMS norm differs only by the factor n  from the so-called “L2 norm”, which is the 
ordinary Euclidean length of a vector.  Similarly, the sum of the absolute values of the 
components of a vector is its  “L1 norm” and relates to the ASD measure, whereas the size of the 
largest component is known as the  “L∞ norm ”. 
 
In principle, any norm could be applied to any of the distance measures for individual points 
described earlier.  In many cases, minimizing the RMS norm amounts to solving the familiar 
least-squares problem and is found in most reported applications.  The RMS norm may be 
adversely affected by outliers.  The ASD norm is more robust, but harder to compute (see 
Section 4.2.2).  The MAX norm was found not to give useful results since it is dominated by 
outliers.  
 
Not all data points may call for the same accuracy of proximity: it may be necessary to have a 
more detailed representation in some areas than in others. The classic way to accommodate such 
differentiation by importance is to stipulate weights  wi > 0  at data points  Pi = (xi, yi, zi) – large 
weights indicating importance – and minimizing, say, one of the following norms 
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• “weighted RMS norm”: 
∑
∑

i

ii

w
dw 2

 

 

• “weighted ASD norm”:    
∑
∑

i

ii

w
dw  

 
of the distances   di   from the respective TIN surfaces.  If  all weights are equal, say,  wi = 1  for 
all  i = 1, … , n , then  ∑wi = n , and the previous definitions of the two norms are obtained.  
Recall that, if the distances are measured vertically, then  di = |ri| , where  ri  denotes the residual 
of the data point  Pi = (xi , yi , zi)  with respect to the surface. 
 
While measures-of-fit are of particular importance for registration purposes, they also play roles 
in the meshing process: 
 

• As post-process statistics, they may be used to indicate how well a TIN surface 
approximates a point cloud. 

 
• They may suggest adjustments to be applied to a TIN surface so as to improve its 

representing a point cloud. 
 
• They may be engaged to guide and/or terminate the adaptive selection process for 

generating a TIN surface. 
 
Most of these possibilities still remain to be examined.  In this work, RMS, ASD, and MAX 
norms of vertical residuals have been implemented for the purpose of statistics to indicate how 
well the mesh represents the underlying point cloud.  For vertical residuals, the RMS adjustment 
has been implemented and examined (Section 4.2.1). 
  
RESEARCH ITEM: Include various measures-of-fit into the meshing process itself, that is, into 
key point selection and ranking. 
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3. COMPUTING TIN SURFACES 
 
The NIST approach to constructing a Delaunay TIN surface, to be described and examined here, 
is to sequentially select data points as vertices of this TIN surface, constructing the 
corresponding intermediate surface each time a new vertex has been added.  Thus each 
additional vertex triggers an update of a previously constructed intermediate TIN surface. 
 
As pointed out in Section 2.1, a partial triangulation, corresponding to a surface which contains 
only a fraction of the vertex pool, is often desired, particularly, if the TIN surface is to 
approximate rather than interpolate a given point cloud.  The above  
 

 “bottom-up”  
 

approach to constructing partial Delaunay triangulations has been chosen for this work.  Here the 
selection of each new vertex is based on properties of the previously constructed intermediate 
TIN surface, a process referred to as “adaptive” selection.  The alternate 
 

“top-down”,  
 

option is to determine a full Delaunay triangulation first, and then adaptively deleting vertices 
until a desired partial triangulation has been reached.  Those two alternatives are compared in 
Section 5.4. 
 

3.1 THE INSERTION METHOD FOR DELAUNAY TINs 
 
The methods implemented in this work use the so-called 
 

“insertion method” 
 
(Lawson [1977]) for Delaunay triangulation.  For another method, see [Fortune 1987].  The 
insertion method can add vertices in any specified sequence.  If a full triangulation is required, 
then the sequence of insertion may, for instance, be as the data points appear on an original input 
file.  Other insertion sequences such as constraint information (Section 2.1.2) may be specified 
as will be described below.  Most importantly, if a partial triangulation is required, insertion 
points can be selected adaptively based on the current intermediate TIN surface in order to 
attempt to optimize the selection.  There are various stopping criteria for the insertion process, in 
case the goal is not the full triangulation.  The insertion process may be terminated if a specified 
number of vertices has been reached. 
 
In the procedures discussed in this report, all data footprints are enclosed in a rectangular 
 

“map” ( ){ }maxminmaxmin ,:, yyyxxxyx ≤≤≤≤ , 
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and after including its four corners, the entire map will be covered by the triangulation.  If there 
are no data points at those corners, a specified common arbitrary value will be assigned. 
 
It should be realized, that the choice of the map area affects what triangulation remains after the 
deletion of the map corners.  If the map area is sufficiently large relative to the extent of the point 
cloud, then the remaining triangles will form the convex hull of the data footprints.  Otherwise, 
some of those triangles will disappear along the boundary. 
 
A first – trivial – Delaunay triangulation can be achieved by splitting the map into two triangles 
along one of its diagonals.  Starting with this triangulation, the insertion method will be applied 
in two phases.  During the first phase, the insertion method is used to construct an 
 

“initial Delaunay triangulation.” 
 

In this phase, the points to be inserted are determined by criteria that are independent of the 
current intermediate TIN surface as will be explained in Section 3.3.  The second phase starts 
with the initial Delaunay triangulation and terminates with  what will be called the 
 

“selected Delaunay triangulation.” 
 
During that second phase, described in Section 3.2, each vertex to be inserted next is selected 
according to an optimization criterion taking into account the current state of the triangulation.  
The two phases thus differ only as to whether insertion points are selected adaptively.  The user 
may also decide to forego adaptive selection altogether, say, if a full triangulation is desired so 
that all possible points are eventually selected anyway.  In this case, there will be no second 
phase, and the initial triangulation is also the complete one. 
 
On the other hand, the user may decide to start adaptive selection immediately with the split map 
as the initial triangulation.  In this case there will be no first phase.  In practice, however, a richer 
initial triangulation is recommended for reasons to be discussed in Sections 3.2 and 3.3.  
 

3.1.1 Inserting a New Vertex  
 
The basic operation of the insertion method is the insertion of a data point  Pi = (xi ,  yi , zi )  into 
the current intermediate TIN surface.  This is accomplished by inserting its footprint point  pi = 
(xi , yi)  into the current Delaunay triangulation.  The insertion proceeds as follows (Fig. 3.1).  A 
triangle  tk containing  pi is determined.  If  pi lies in the interior of this triangle  tk , a new 
triangulation is created by connecting  pi  to the corners of  tk , so that there are now three 
triangles where previously was just triangle  tk  (Fig. 3.1a).  In the unlikely case that  pi  falls on 
an edge of triangle  tk  and if this edge is not part of the boundary of the map, triangle  tk  shares 
that edge with another triangle of the old triangulation.  In this case, a new triangulation is 
created by connecting  pi  to the two opposite corners of the above two triangles, so that now four 
new triangles replace two triangles in the old triangulation (Fig. 3.1b).  If the edge containing  pi 
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is part of the map boundary, then   pi  is connected to the opposite corner of triangle  tk , splitting 
that triangle into only two new ones.  Finally, if  pi  coincides with a vertex of triangle  tk , then a 
duplicate point (Section 2.1) has been encountered.  Only one of those two points may be 
included into the TIN.  Which of those points is retained as a vertex depends on the particular 
implementation.  In most current NIST routines, the point pi will be simply passed over.  
  
 

 
Figure 3.1.  The three cases for inserting a new footprint point. 

 
 

3.1.2 Diagonal Interchanges 
 
The new triangulations generated by the above procedures are, in general, no longer Delaunay 
triangulations.  They will have to be adjusted to meet the empty circle criterion. That adjustment 
takes the form of repeated 
 

“diagonal interchanges” or “diagonal flips”. 
 
Such a diagonal interchange (Fig. 3.2) may be carried 
 

 
Figure 3.2.  Diagonal interchange. 

 
 

c.a. b.

y

x
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out whenever two triangles of a triangulation are adjacent along an edge and together form a 
quadrangle whose two diagonals intersect in its interior.  One of those diagonals is the common 
edge of the above triangles.  By using the other diagonal to divide the quadrangle, two new 
triangles are created in the space of the two old ones and become part of an altered triangulation. 
 
Unless an edge e of any triangle t in the triangulation lies on the map boundary, it will be shared 
by a unique adjacent triangle.  Each such neighboring triangle, furthermore, has a unique vertex v 
which is not an end of edge e.  Here such vertices will be called  
 

“opposite vertices” 
 
of the triangle.  Lawson (1977) has shown that 
 

if the empty circle criterion holds for the opposite vertices of each triangle, then it 
holds universally. 

 
It is also easy to verify that 
 

if an opposite vertex of a triangle t  violates the empty circle criterion, i.e., if that 
vertex lies inside the circumcircle of t, then that vertex together with t defines a 
quadrangle which permits a diagonal interchange. 

 
That diagonal interchange will rectify that particular violation of the Delaunay condition.  The 
readjustment algorithm (Fig. 3.3) then is as follows:  if the 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.3.    Adjustment to achieve a Delaunay triangulation. 
 

 
opposite vertices of the new triangles created by the insertion do not violate the empty circle 
criterion, then the new triangulation is already Delaunay by definition.  Otherwise, select an 
opposite vertex which violates the empty circle criterion, and execute the associated diagonal 
interchange.  This creates new triangles whose opposite vertices may or may not violate the 
empty circle criterion.  In the former case, a beneficial diagonal interchange is again triggered. In 
the latter case, attention shifts to another one of the new triangles. 
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Lawson (1977) has also proved that the adjustment procedure terminates with a Delaunay 
triangulation containing the newly inserted point as a vertex. 
 

3.1.3 Determinant Criteria 
 
The mathematical mechanism for deciding whether a given point   p = (x , y)   lies within the 
circumcircle of a planar triangle is as follows. 
 

Circle Criterion:   Suppose the vertices 
 

p1 = (x1 , y1) ,  p2 = (x2 , y2 ) ,  p3 = (x3 , y3) 
 

 of a triangle are in positive, that is, counterclockwise orientation, that is,  
 

determinant 
111

321

321

yyy
xxx

  >  0 . 

 
 

Then the point   p = (x , y)   lies within the circle through  the vertices   p1 , p2 , p3  ,  if  
 

determinant 

1111

222
3

2
3

2
2

2
2

2
1

2
1

321

321

yxyxyxyx
yyyy
xxxx

++++
  >  0 . 

 
If that determinant vanishes or is negative, then the point   p   lies on the periphery or 
outside, respectively.  

 
 

3.1.4 The Insertion Approach  in the Presence of Constraints 
 
If there are pre-specified constraint edges, the insertion method for constructing a constrained 
Delaunay triangulation (Section 2.1.2) involves now two basic operations:  (i) inserting a vertex, 
and (ii) inserting one of the constraint edges once its endpoints are already present in the current 
triangulation. After either insertion step, the resulting triangulation may need to be adjusted in 
order to reestablish the – constrained – Delaunay property.  The two insertion steps are described 
below.   
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 Inserting a point into the current constrained Delaunay triangulation is identical to the procedure 
described in Section 3.1.1, except that if the point happens to lie on a previously inserted 
constraint edge, the insertion of this point is aborted. The readjustment process also requires a 
slight modification.  If a diagonal interchange is indicated, where the current diagonal is a 
constraint edge, then that diagonal interchange is blocked.  
 
The insertion of a constraint edge e is more involved.  One approach, developed by Bernal 
[1988], is to remove all those previously established edges which are crossed by the new 
constraint edge  e .  This creates a polygon divided into two polygonal parts by the insertion of  
e.  These two portions are then triangulated by inserting edges which generate triangles. New 
triangles are examined for possible Delaunay violations and the corresponding diagonal 
interchanges are carried out until a constrained Delaunay triangulation has been achieved.  NIST 
TIN routines use an alternate approach described in [Bernal 1995], in which edge crossings are 
removed by diagonal interchanges.  A diagonal interchange that reduces the number of edge 
crossings may, however, not exist, and must first be established by a sequence of precursor 
interchanges that keep the number of edge crossings constant.  Possible Delaunay violations are 
removed after the edge e  has been inserted. 
 
That edge insertion process is illustrated in Figs. 3.4 and 3.5.  The edge e to be inserted runs 
from point  p1 to point  p6 as indicated by the dotted line.  Edge e may not be inserted directly, 
because it would cross three established edges.  The goal is to adjust the triangulation by 
diagonal interchanges in order to create a situation in which the edge e can be inserted without 
crossing other edges.  In most such situations, there are obvious interchanges which would 
reduce the number of edge crossings.  However, as the example of Fig. 3.4 shows, there are 
exceptional cases for which such interchanges do not exist at the outset.  In those cases, certain 
precursor interchanges are needed, which keep the number of edge crossings constant but enable 
other interchanges to reduce the number of crossings. In the example, the interchange of 
diagonals  p3 p4 and  p2p5 is such a precursor, creating a triangulation in which there are now two 
diagonal interchanges, each of which would reduce the number of edge crossings.  A resulting 
sequence of interchanges is depicted in Fig. 3.5.  The final exchange involves the edge p2 p5 and 
the new constraint edge  e = p1 p6 .   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4.  Desired  insertion of a constraint edge (dotted line). 

p5 

p1 

p2 

p3 

p4 

p6 
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Figure 3.5.  Sample sequence of diagonal interchanges for edge insertion.  The configuration on 

top  arises from the one in Fig. 3.4 by interchanging the center edge. 
 

 
The edge insertion approach based on diagonal exchanges has the advantage whenever the edge 
to be inserted crosses only a few edges, say, one or two.  If many edges are crossed, a large 
number of diagonal interchanges may be required, and it is expected that the other approach, 
which deletes all crossed edges and re-triangulates the resulting polygons, is to be preferred. 
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3.1.5  Data Point Locating 
 
Insertion of a data footprint   pi = (xi , yi)  into an existing triangulation requires determining a 
triangle that contains that point.  This is a major computational problem as the number of 
triangles in the triangulation may be large so that checking triangles for containment in arbitrary 
sequence would be prohibitive.  In many applications, following method for locating the foot 
print  pi = (xi , yi) of a data point  Pi = (xi , yi , zi)  in a triangle of the initial triangulation is 
practical. 
 

Triangle Stabbing:   Suppose some planar point p* = (x*, y*) is known to lie in 
triangle t*.  Connect the planar points pi and p* by a straight line segment (Fig. 
3.6).  As this line segment leaves the triangle t* it enters a neighboring triangle, 
which is examined as to whether it contains the footprint of interest pi.  If it does, 
the search was successful.  Otherwise, the line segment is followed to the next 
triangle it penetrates, and so on, until the triangle which contains the footprint pi 
has been reached. 

 
If the sequence of data points exhibits a pattern by which footprints tend to follow their 
predecessors closely, then successive data points may frequently occupy the same triangle in the 
first place or, otherwise lie in a triangle close by so that only few triangles need to be stabbed. 
 
 

 
Figure 3.6.  Locating footprint  pi by “stabbing” from located point  p*. 

 
The need to determine the triangles that contain given locations arises in many other applications 
after a triangulation has been determined. The problem of locating a point within a triangulation 
or, more generally, a polygonal subdivision has been examined early on [Lee and Preparata 
1977, Preparata 1981, Kirkpatrick 1983] and is treated in the standard textbook by [Preparata and 
Shamos 1985]. 
 
An alternative to triangle stabbing is to retain the hierarchy of previous triangles [Guibas et al. 
1990] and to utilize that information for locating a given point  p in its triangle. Hash coding 
techniques are also frequently employed [see Heckbert and Garland, 1995].  Imposing a grid and 
linking triangles that intersect each bin is attractive since it is easy to locate a point in a grid cell, 
and the triangle search can then be restricted to the triangles intersecting this cell.  It should be 
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kept in mind, however, that key point selection criteria typically require access to all data points 
located in a particular triangle. 
 
RESEARCH ITEM:  Systematically compare point location algorithms, particularly, for the 
case that the data points do not exhibit a sequential pattern.  In that latter case, rearranging the 
data set by binning as proposed in Section 3.3.2 may establish a suitable pattern. 
 

3.2 SELECTIVE INSERTION CRITERIA FOR APPROXIMATION 
 
The bottom-up approach for adaptively selecting a subset of critical data points with the purpose 
of approximation is at the core of this report. For this reason, phase two of the NIST insertion 
procedure as outlined above will now be described in detail, with additional information 
regarding various options and strategy choices.  The processes involved in phase one, the 
generation of the initial Delaunay triangulation, will be described in Section 3.3.  
 
The starting point for phase two is an initial Delaunay triangulation, with a subset of the original 
data points already selected as vertices.  The remaining data points are then examined with 
respect to the current (constrained) Delaunay triangulation.  In each triangle tk of the 
triangulation, a 
 

“key point” 
 
is selected among the data footprints   pi  which are located in the triangle.  For the purposes of 
this report, only one selection rule will be considered. 
 

Key Point Selection:  Select the point in the triangle for which the size of the 
residuals iii zzr ˆ−=  is largest. 

 
The triangles and their key points are then ranked by a suitable criterion and maintained in a 
sorted heap accordingly.  The highest ranking triangle is located at the top of that list.  The key 
point of this triangle is first in line to be selected as the next critical point to be inserted, unless 
the process is terminated.  The ranking thus determines the sequence in which key points are 
selected as critical points.  Here two alternate criteria for ranking triangles have been 
implemented. 
 

Ranking by Maximum Deviation:  Rank triangles tk  according to the size of the 
residuals  iii zzr ˆ−=   of the respective key points of the triangles. 

 
This ranking criterion is geared towards an aggressive reduction of the maximum residual error.  
The following criterion, however, is more often used in applications of  NIST software. 
 

Ranking by Volume Deviation:  Rank triangles tk according to the product 
( )kii tarea  zz ×− ˆ  of the size of the key residuals and the area of the triangle. 
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The product between size of the residual at the key point of the triangle and its area describes up 
to a factor of 1/3 the volume change that an insertion of the key point would cause, if the current 
Delaunay surface were considered as bounding a volume.  For this reason, the term “ranking by 
volume deviation” was chosen.  When using that criterion, the resulting triangulation tends to be 
more locally homogeneous as to triangle size, because a large triangle may reach top rank – and 
be broken up – even if its associated residual is relatively small. Some experience at NIST 
appears to indicate that the ranking by volume deviation yields better results than ranking by 
maximum deviation, if the given data are to support volume computation. There are other 
applications, where ranking by maximum deviation is preferred.  One such application is to 
identify instances of vegetation such as bushes and trees where ranking by maximum deviation 
causes new vertices to be selected mostly in such areas of high surface variability, namely the 
areas of bushes and trees. 
 
RESEARCH ITEM:  Investigate alternatives to the above key point selection criterion such as 
choosing data points at which the median of the residuals in their respective triangles is assumed.  
 

3.2.1  Data Linking and Triangle Sorting 
 
As pointed out in Section 3.1.5, insertion techniques face a major computational challenge in 
trying to find a triangle tk containing a given footprint point  pi = (xi , yi) .  That computational 
challenge is even more severe for adaptive insertion techniques.  For every triangle, all 
associated data points have to be examined in order to determine the key point of the triangle. 
 
Various measures taken in this work aim to reduce computational effort.  One is the use of linked 
lists, that is, to 
  

link all data points  pi = (xi , yi)  to their respective triangles  tk  in the current 
triangulation. 
 

Linking data points to their triangles serves an additional purpose.  It provides ready access to 
the data points associated with a triangle for gathering statistics about data representation. 
 
The following procedure is therefore used.  Given the initial Delaunay triangulation, data points 
are linked in a single process to triangles containing their respective footprints.  Concurrent with 
that process, the key points are established for those initial triangles.  Subsequently, as new 
triangles are generated and others changed during the insertion process, new and updated 
linkages are continuously required.  This process is computationally expensive if the triangles of 
the emerging triangulation are still large and contain many data points to be linked or re-linked. 
 
The reason for the single process of initial linking of all data points is that it makes it possible to 
take advantage of the fact that the data points are usually not randomly distributed but are part of 
a pattern in which the footprints of subsequent data points tend to follow close to each other, so 
that the point location process is relatively efficient. 
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The next measure to be taken is to 
 

heap-sort the triangles, with their key points attached, according to the ranking 
criterion of choice. 

 
Again, the heap is first constructed after the process of linking the data points to their associated 
initial triangles has been completed and, concurrently, key points have been determined for these 
triangles. Then all initial triangles with associated data points are being sorted into the heap.  As 
new triangles with key points are created during the adaptive phase of the insertion procedure, 
the heap will have to be continually updated. 
 
The selection procedure then reduces to picking the triangle from the top of the heap, inserting 
its key point using the insertion procedure described in Sections 3.1.1 and 3.1.2, and updating the 
linkage structure as well as the heap. 
 

3.2.2 Approximation Statistics 
 
For any TIN surface associated with a partial triangulation created during phase two of the TIN 
calculations – typically the selected Delaunay triangulation but also the adjusted triangulations 
described in Sections 4.1 and 4.2 – the linkage structure, which relates data points to triangles, 
can be used for calculating RMS, ASD, and MAX measures-of-fit as defined in Section 2.2.2.  
Calculating these measures-of-fit requires determining for each data point Pi = (xi , yi , zi)  its 
residual iii zzr ˆ−=  , where  iẑ  denotes the elevation of the TIN surface at the footprint point  pi 
= (xi , yi) .  Determining this residual requires again locating the footprint pi = (xi , yi)  in a 
triangle  tk  of the triangulation.  This task is now obviated by the linkage structure, which lists 
for each triangle its associated data points, enabling the determination of all corresponding 
residuals with respect to the plane through the elevated triangle  Tk . 
 

3.3 CONSTRUCTING AN INITIAL TRIANGULATION 
 
The first step is to construct the trivial Delaunay triangulation of two triangles by splitting the 
rectangular map (Section 3.1). 
 
The next step is to accommodate constraint information (Sections 2.1.2 and 3.1.4) if such is 
present.  The pre-specified points are inserted first, to be followed by the constraint edges. For 
each constraint edge, the endpoints need to be part of the triangulation prior to the insertion of 
the edge itself and have to be inserted if necessary. 
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The computational effort of the linking/selection process is greatest in the early stages of the 
procedure when triangles that need to be re-linked contain many data points.  For this reason it is 
not recommended to start with a sparse initial triangulation compared to the anticipated size of 
the selected triangulation.  An additional reason is that a triangulation represented by only a few 
data points does not provide good guidance for the selection of key points and, subsequently, 
critical points. 
 
This raises the question how to determine those data points which should be included in the 
initial triangulation.  Because of the expense of the point location process, it is important to insert 
those points in a suitable sequence as explained in Section 3.1.5. 
 

3.3.1 Point Selection by Binning 
 
Of the many ways an initial selection of data points can be achieved, the following has been 
implemented. 
 

Selection by Binning:  Divide the map area into an almost square grid of bins.  
In each bin of the grid select the data point Pi whose footprint pi = (xi , yi) lies 
closest to the center of the bin.  
 

The initial triangulation is then constructed by inserting the selected points in the order of their 
bins. 
 
A general strategy for selecting the bin size has not been developed.  That selection is left to the 
user.   The following considerations may guide the selection.   A large bin size will result in a 
sparse initial triangulation, which will not appreciably reduce the computational effort.  On the 
other hand, choosing the bin size too small will result in a dense initial triangulation with 
increased costs of linking and sorting (see Section 3.2.1).  If a partial triangulation is desired, 
then the loss of accuracy due to starting with a triangulation that is too sparse to provide good 
guidance for the adaptive selection of vertices is to be balanced against starting with a 
triangulation that is at too advanced a state to realize the advantages of adaptive vertex selection.   
In a subsequent report [Cheok and Witzgall 2004], an experiment with varying bin sizes will be 
described. 
 
In this work, bin size is set by specifying the number of bins per row.  The number of bins per 
column is then automatically chosen so as to make the individual bins as square as possible. As 
each data point  Pi  = (xi , yi , zi)  is read, the bin in which its footprint location resides is found by 
dividing  the coordinates by their respective bin size and then rounding the results to the smallest 
integer that is not exceeded.  This procedure is combined with the search for the data point 
closest to the center of the bin.  A pointer to this data point – if the bin is not empty – is stored in 
a 2-dimensional array. 
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3.3.2 Data Rearrangement by Bins 
 
The binning procedure described in the previous section may become memory intensive if many 
bins are specified.  In fact, in some binning applications, there may be many more bins than data 
points. In the context of generating initial triangulations and for other binning applications, the 
setting up of a 2-dimensional array of bins can be avoided by preprocessing the data set. 
 
To this end, the data points are read in the original sequence, the two bin numbers are determined 
as outlined previously, and a new file is created which adjoins those two bin numbers to each 
data line.  This expanded data file is then sorted by those bin numbers as first and second keys.  
In a final step, the bin numbers are deleted.  The resulting file has thus been re-arranged in such a 
way, that the points of each bin follow each other in sequence before points in the subsequent bin 
are listed.  As the re-arranged file is read, it is easy to sense when the points in a bin have been 
exhausted, and the next bin is entered.  The points in each occupied bin may thus be processed 
according to any desired criterion as, for instance, closeness to the bin center.  The procedure 
readily extends to binning in three dimensions, where memory problems tend to be more severe 
than in two dimensions. 
 
Re-arranging a data file by bins may also impose a sequential pattern of the kind that is 
advantageous in the context of data linking as described in Sections 3.3.1 and 3.3.2.
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4. POST PROCESSING ISSSUES 
 
After a selected Delaunay triangulation has been established, several post processing tasks may 
then be carried out. 
 
First, artificial elevations may have been assigned at the map corners.  In that case, the map 
corners and their adjacent triangles may need to be deleted.  More generally, triangles may cover 
no-data areas such as the inevitable occlusions or “shadows”, associated any line-of-sight 
instrument.  It may then be desirable to identify and delete such triangles.  Those processes are 
part of the general task of defining the boundary of a planar data set.  That task is often 
considered a trivial aspect of data preparation, expected to have been completed before any 
technical data analysis were to be undertaken.  Increasingly, however, defining data boundaries 
has been recognized as a fundamental problem of computational geometry [Edelsbrunner, 
Kirkpatrick, and Seidel, 1983].  For instance, – as pointed out in the Introduction – the general 
problem of meshing to create a general 3D surface may be considered as the task of bordering a 
3D point cloud.   Bordering 2D data points will be discussed in Section 4.1 and its subsections. 
 
Second, once a specified partial triangulation has been reached, it may be desired to improve the 
quality of the approximation of the given point cloud by the corresponding TIN surface as 
measured by a specified measure-of-fit of the entire point cloud.  The measures-of-fit considered 
here are the two norm-based measures, RMS and ASD, of vertical residuals in a 2.5D 
environment.  Such “elevation adjustments” will be discussed in Section 4.2 and its subsections. 
 
Third, as detailed in Section 4.3, there are situations in which the entire set of data points 
indicates that a given partial triangulation does not reflect some of the realities of the point cloud, 
and that “triangulation adjustments” are called for.  Such triangulation adjustments proceed by 
diagonal flips whenever the corresponding surface modification results in an improved measure-
of-fit. 
 
Fourth, TIN surfaces based on full triangulations may be used for smoothing and removal of 
outliers of point clouds.  “Filtering” adjusts the elevations of TIN vertices based on the 
elevations of their respective neighbors, “Screening” removes outliers as indicated by 
neighboring elevations.  These editing procedures are discussed in Section 4.4. 
 

4.1 BOUNDARY  DELINEATION 
 
In the context of this report, the delineation of the footprint region is a primary task.  The 
approach taken is to distinguish 
 

“relevant triangles” 
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among the footprint triangles tk of  the TIN.  All other triangles are then removed, leaving the set 
of relevant triangles as a first instance of a footprint region. The latter may exhibit various 
undesirable features, which may require subsequent editing to be discussed later.  
 
The first question is how to determine whether a triangle is indeed relevant.  In general, triangles 
connected to map corners are not relevant.  Also, triangles which cover shadows are typically 
characterized by very long edges or, alternatively, by circumcircles of large diameters. The latter 
option relates to the concept of  “α -shapes” [Edelsbrunner, Kirkpatrick, and Seidel, 1983]. 
 
The following choices are therefore offered for designating relevant triangles or, equivalently, 
deleting irrelevant ones: 
 

• all triangles are relevant 
• only triangles meeting map corners are deleted 
• triangles containing map corners or with edges longer than a specified edge length are 

deleted 
• triangles containing map corners or with circumcircles of a diameter larger than a 

specified diameter are deleted.  
 

4.1.2 Boundary Editing  
 
The boundaries of TINs delineated by deleting irrelevant triangles using any of the above basic 
criteria, however, are typically very irregular (Fig. 4.1).   
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Figure 4.1.   Boundary irregularities. 
 
 
There may be  
 

“boundary spikes”, 
 
that is, consecutive boundary edges which form an overly acute angle.  Another problem is the 
occurrence of 
 

“multiple boundary points”. 
 
Here four or more boundary edges, instead of the usual two, are incident to the same boundary 
vertex. Triangles may have been deleted in the interior of a contiguous set of triangles, thus 
forming a 
  

“hole” 
 

=  Multiple boundary point 
 
=  Boundary 
 
= Relevant triangle 
 
= Irrelevant triangle  

Hole 

Island

Boundary Spike 
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in the triangulation.  Such a hole may represent a legitimate feature if, for instance, the deleted 
triangles describe an occlusion or some other kind of “no-data” area.  It may, however, be 
desirable to fill in holes with only a very small number of deleted triangles. Conversely, it may 
not be desirable to have small clusters of triangles isolated from the bulk of TIN triangles.  
Consider two triangles in the TIN to be “connected” if there exists a chain of triangles, any two 
subsequent ones sharing an edge, which connects the two original triangles.  Consider a subset of 
TIN triangles a “connected component” if any two of its triangles are connected by a triangle 
chain, and if the set cannot be enlarged without losing connectivity.  In many cases, the TIN 
triangles form one large connected component, comprising the bulk of the triangles, with isolated 
small clusters, referred to as  
 

“islands”, 
 
forming the remaining connected components.  In that case, it is an option to consider only 
triangles in that main component as relevant.  Alternatively, one may want to delete islands 
consisting of fewer than a specified number of triangles.  Note that two connected components 
may still touch each other at isolated vertices.  These vertices are necessarily multiple boundary 
points. 
 
For those occurrences, NIST implemented the following editing options, which either add to or 
subtract from the set of relevant triangles. 
 

• Delete a boundary spike with an angle smaller than a specified lower bound by deleting 
the corresponding relevant triangle; 

• Disconnect multiple boundary points by deleting triangles from the side that forms the 
smallest angle; 

• Fill holes, if they contain no more irrelevant triangles than a specified lower bound, by 
re-classifying those triangles as relevant; 

• Either eliminate islands by restricting relevant triangles to the largest connected 
component, or delete islands if they consist of fewer than a specified number of triangles 
by marking those triangles as irrelevant. 

 
The above operations are not independent in that each corrective action, except the last one, may 
cause the need for additional corrective measures, and it also may render some measures 
unnecessary.  For instance, filling the hole at the lower end of Fig. 4.1 will also result in the 
removal of a multiple boundary vertex. Disconnecting a multiple boundary vertex such as the 
one in the upper portion of Fig. 4.1 may – under different circumstances – generate an acute 
boundary spike.  Boundary editing procedures should, therefore, be applied repeatedly. 
 
RESEARCH  ITEM:  Determine preferred order of executing the above editing operations. 
 



 33

4.2 ELEVATION ADJUSTMENTS 
 
A first approach to improving the approximation of a particular point cloud is to adjust the 
elevations at the TIN vertices once a partial triangulation has been constructed having used the 
procedures outlined in Chapter 3, and afterwards, the procedures outlined in Section 4.1.  The 
task considered now is to adjust the elevations at the vertices of the triangulation so as to 
minimize either RMS or ASD.  These optimization processes are referred to respectively as 
either 
 

• RMS elevation adjustment, or 
• ASD elevation adjustment. 

 
It is important to realize, that it is the approximating TIN surface and not the underlying point 
cloud that is adjusted by changing the elevations at the vertices of the TIN surface. Any original 
data point, which gave rise to an adjusted vertex, remains a member of the point cloud, with its 
given elevation unchanged, and still contributes, like any other data point, to the calculation of 
the measure-of-fit upon which the approximation is based. 
 
As the construction procedures of the previous chapters are assumed, each TIN vertex 
corresponds to a given data point. For an actual elevation adjustment to occur at a vertex v, there 
needs to be at least one data point nearby, which is not a vertex but has a footprint that lies in a 
triangle adjacent to vertex v, but not on an edge opposite to v in that triangle.  Unless there exists 
such a data point nearby, the optimal elevation of the TIN vertex will always be the elevation of 
the associated original data point.  In particular, if the triangulation is a full triangulation with all 
data points used as vertices, then elevation adjustments are moot. 
 
In more general situations, not part of this work, the vertices of a specified TIN surface may not 
correspond directly to data points of the point cloud which is to be approximated.  The footprints 
of the TIN surface may, for instance, form a regular grid, whereas the data points are irregularly 
spaced.  Techniques similar to the elevation adjustments discussed below can be used in order to 
optimize elevations for the vertices of that surface. 
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4.2.1 The RMS Elevation Adjustment 
 
The RMS adjustment amounts to solving a standard “least squares problem” for which many 
highly developed algorithms are available. The current implementation relies on a simple 
iterative scheme.  Note that a change of elevation at a vertex v of the TIN surface affects the 
surface only above the area formed by the triangles adjacent to vertex v.  This suggests adjusting 
the elevation at this vertex so that the resulting surface change minimizes the RMS above that 
area.  Carrying out such adjustments in turn for every vertex constitutes an iteration step.  For 
infinitely many steps, the vertex elevations will converge to limits which define the unique 
“best” TIN surface over the given fixed triangulation and with respect to the RMS norm of 
vertical residuals.  The convergence follows from the fact that the method can be viewed as the 
minimization of a positive definite quadratic form by, in turn, minimizing each variable by itself 
while keeping the other variables fixed.  Such a process is well known to converge. 
 
For practical purposes, the process is terminated after (i) a preset number of iterations have been 
reached, or (ii) all individual elevation adjustments during an iteration step have remained below 
a specified tolerance. 
 
All methods for minimizing straight RMS also work for weighted RMS with only minor 
modifications. 
 

4.2.2 The ASD Elevation Adjustment 
 
The ASD elevation adjustment differs from the RMS elevation adjustment described above only 
in that the ASD norm replaces the RMS norm.  The aim is thus to minimize 
 

∑ irn
1 , 

 
where  ri  is again the vertical residual of the point  (xi , yi , zi)  with respect to the TIN surface.  
Finding that optimal ASD adjustment is, however, more involved.   It is an example of a “linear 
programming problem” [see, for instance, Gass 1985]. While there are powerful computer codes 
available for solving general linear programming problems, the approach pursued in the special 
case at issue here is to use a sequence of weighted least squares minimizations.  The underlying 
idea is based on the observation, that if one were to have advance knowledge of the optimal ASD 
adjustment and its respective residuals ri , then its value could be actually restated as a weighted 
sum of least squares: 
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where, in the summation on the right , the terms with  ri = 0  have been removed in order to 
avoid division by zero. 
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The ASD-optimal TIN surface and its corresponding residuals are, of course, not known in 
advance.  However, those residuals may be estimated using a straight RMS adjustment to begin 
with, then repeating the RMS adjustment with weights 
 

i
i r

w ~
1

= , 

 
where the ir~  are the residuals with respect to that weighted RMS optimization.  Again, care must 
be taken to avoid divisions by zero, say, by setting a lower limit for the size of those residuals 
from which weights are derived, and using a constant positive weight for data points with smaller 
residuals. 
 
The TIN surface resulting from the RMS adjustment with the above weights then gives rise to a 
new and, hopefully, better set of weights for a subsequent weighted RMS adjustment.  This 
process is then repeated, with suitable adjustments of the minimum size limits for those 
residuals.  The iteration is stopped, if the ASD value no longer improves within a specified 
tolerance.  The theoretical foundation of this iteration algorithm is not yet fully established.  For 
an experimental examination see [Bernal and Witzgall 1999]. 
 
DEVELOPMENT ITEM:  Complete ASD elevation adjustment option. 
 

4.3 TRIANGULATION ADJUSTMENTS 
 
There are situations in which Delaunay triangulations may not be desirable.  This occurs, for 
instance, if – in terrain parlance – an edge of a Delaunay triangle crosses a valley or tunnels 
through a ridge (Fig. 4.2).  If the course of the valley or of the ridge is known, then it may be 
described by a sequence of straight line segments in the footprint plane, and the Delaunay 
triangulation may be constrained (see Section 2.1.2) to contain those segments as edges.  
Otherwise, such problems remain mostly undetected, unless there are sufficiently many data 
points in the region of the affected triangles.  For such cases, the following procedure for 
adjusting the triangulation has been developed. 
 
Whenever, a strictly convex quadrangle consisting of two adjacent triangles is encountered, it 
can be checked, whether interchanging the diagonals (Fig. 4.2) improves a measure-of-fit (RMS 
or ASD) within the quadrangle.  The sequence in which the adjustments are carried out matters.  
In the NIST implementation, the diagonal interchanges with the biggest improvements are 
carried out first. 
 
RESEARCH ITEM:  Investigate the interplay between elevation adjustments and triangulation 
adjustments.  Should triangulation adjustments precede elevation adjustments or vice versa?  
Should elevation adjustments be repeated after triangulation adjustments? 



 36

 

 

 

 

 

 
         a.  Does not retain valley line                 b.  Retains valley line 
 
 

Figure 4.2.  Adjusting triangles crossing valley. 

 

4.4 FILTERING AND SCREENING 
 
This section, as the previous ones, addresses post-processing procedures, that is, procedures to be 
executed after a triangulation has been achieved and its boundary has been defined.  The 
adjustments described in the previous sections essentially reacted to information represented by 
data points not included as vertices of the TIN surface.  In other words, they were geared to 
partial triangulations (Section 2.1).  The procedures addressed in this section, in contrast, are 
designed for full triangulations, and they are based on the neighbor concept.  Also, their purpose 
is to edit a data file rather than to adjust a TIN surface.    
 
The procedures are based on the resulting neighbor relations between the vertices of full 
triangulations, namely, 
 

data points  Pi = ( xi , yi , zi )  and   Pj = ( xj , yj , zj )  are neighbors if footprints  
pi = ( xi , yi )  and  pj =  ( xj , yj ) are connected by an edge in the full  
triangulation. 

 
 
Two classes of editing procedures will be discussed, and are being referred to as 
 

“filtering” and  “screening”. 
 
Filtering adjusts individual data points in order to align them with their respective neighbors.  
Screening aims at removing undesirable data points such as “outliers”, which are out of line 
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compared to the elevations of its neighbors.  Screening is provided by the NIST routine 
TINscreen, filtering, by the NIST routine TINfilter. 
 
In those procedures, the data adjustment is recorded but not finalized until the adjustment 
process in completed.  This ensures that each individual adjustment will be guided by the 
original coordinates of the neighboring points.  An alternate approach would be to edit the data 
“on the fly”, so that the editing of each data point is affected by the previous editing of the 
neighboring data points.  This approach is not discussed in this report. 
 
DEVELOPMENT  ITEM:  The process of screening typically needs to be repeated several 
times for the same point cloud.  Rather than rerunning TINscreen and thus re-creating the 
triangulation from scratch, the necessary deletions of vertices should be carried out by adjusting 
the current triangulation, if desired, and repeat the screening process within a single run of the 
program. 
   

4.4.1 Planarity Preservation 
 
Gaussian and median filters are frequently implemented by adjusting the elevation zi of a data 
point Pi = (xi , yi , zi)  to the mean or median, respectively, of surrounding elevations while 
keeping the coordinates  xi and  yi unchanged.  Such filters work if the set of neighbor locations is 
symmetrically arranged around the location of the data point to be filtered as, for instance, for 
gridded data points not on the boundary of the grid.  In the absence of symmetry, filtering may 
be counterproductive in that it spoils rather than improves the smoothness with which a point 
cloud surrounds the surface of an object.  If the point to be filtered and its surrounding points lie 
on a plane, Gaussian filters, for instance, do not preserve that fact if they only adjust the 
elevation of the data point.  In this report, a filtering procedure is called 
 

“planarity preserving” 
 
if, in the case that a data point and all his neighbors lie on a single plane, so does the adjusted 
data point. 
  
In order to construct planarity preserving elevation filters, the following approach was taken.  A 
plane was fit to the point under consideration and its triangulation neighbors.  The elevation at 
this point is then adjusted so it belongs to that plane.  This extends the definition of Gaussian and 
median filters to the case of irregular surroundings.  If the plane is chosen to minimize the RMS 
of the residuals, a Gaussian filter results.  Similarly, if the plane minimizes the ASD of the 
residuals, a median filter is produced.  Screening is also based on deviations from a locally fitted 
plane.  Failure to do so might result in unnecessary removal of data points. 
 
DEVELOPMENT ITEM: Include planarity preservation into current version of TINscreen. 
Also, TINscreen is currently based only on ASD, and does not provide an RMS option. 
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4.4.2 Screening for Duplicate Points 
 
Duplicate points were defined in the opening section of Chapter 2 as data points with identical 
footprints.  Since no two duplicate points can be vertices in a TIN surface, a full triangulation 
does not necessarily represent all data points in a point cloud.  However, only vertices are subject 
to filtering or screening.  Other data points are not affected.  In the case of screening, it may 
happen that a particular TIN vertex is not an outlier and is therefore retained, but another data 
point, which shares its footprint, is an outlier and should be deleted.  This necessary deletion, 
however, is not carried out because the data point is not a vertex.  Similarly, the elevation of a 
vertex is adjusted during the filtering process, but its duplicate data points – if they exist – retain 
their elevations even if those elevations are out-of-line.  For these reason, the editing routines 
TINscreen and TINfilter should not be used in the presence of large numbers of duplicate points.  
Possible remedies are 
 

• extend the editing to duplicate points which are not vertices; 
• examine series of respective duplicate points and select a representative vertex prior to 

editing as an option to be incorporated into the editing routines; 
• implement a stand-alone screening routine for the purpose of selectively removing 

duplicate points. 
 

The difficulty with the first option is to decide whether or to which extent those additional data 
points should be counted as surroundings in the filtering/screening process of neighboring 
vertices.   
 
DEVELOPMENT  ITEM:  Implement screening procedures for duplicate points.
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5. IMPLEMENTATION ISSUES 

5.1 SCHEMATIC DESCRIPTIONS OF TIN ROUTINES 
 
Three TIN routines, 
 

TINvolume, TINscreen, TINfilter 
 

are described in tabular form in this section.  The TINvolume  routine is dedicated to determining 
a TIN surface as set forth in Chapter 3 with the options of footprint delineation and elevation- 
triangulation adjustments described in Chapter 4.  The output options are a regular gridded 
sampling of the TIN surface, a VRML representation of the TIN surface in 3D as well as a 2D 
line representation of the triangulation in ADDWAMS format.  It also determines cut/fill 
volumes for specified elevation levels.  For a description of the procedure for volume 
determination, the reader is referred to the subsequent report [Cheok and Witzgall 2003].  
TINscreen  and  TINfilter  implement the file editing procedures outlined in Section 4.4.  The 
latter provides options for both Gaussian and median filters.  
 
 

Table 5.1.  TINvolume routine. 
 

Step Description Comments 

Read input files • x, y, z elevation data 
• map corners 
• pre-specified vertices (optional).  

These points are required by the 
user to occur among the  TIN 
vertices. 

Specify limit on number of TIN vertices  
Specify process options • ranking strategy:  max size/ max volume 

• triangle relevance threshold 
Specify RMS vertex adjustment • number of passes 

• termination tolerance 

Input 

Specify output • names of output files 
• output format:  VRML, etc. 

Split map into initial two triangles • enter map corners if necessary 
Enter pre-specified points and constraint 
edges (both optional) 

 
Initial triangulation 

Insert points from pre-binning • bin points are closest to bin centers 
Linking Link data points to triangles and identify 

their key points 
• linked lists connect data points located 

in the same triangle 
• key points are determined concurrently. 

Ranking Heap-sort triangles by key point rank • rank by size of residual 
• rank by area-weighted residual 
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Step Description Comments 

Insert highest ranking key point  

Make triangulation Delaunay again using 

diagonal flips 

 

Main iteration 
-  while number of 

vertices ≤ specified 
limit 

Re-linking / re-ranking • the linking structure is reset for the new 
triangles. 

• new key points are determined 
concurrently 

• the triangles are re-sorted in accordance 
with ranking strategy 

Determine “relevant” triangles to constitute 
the “footprint region” of the TIN surface 

• delete triangles by edges lengths 
• delete by circum-diameters 

Delineate footprint 
region 

Apply boundary editing • remove multiple vertices 
• remove boundary spikes 
• remove “holes”  
• remove “islands” 

Adjust Elevations Adjust elevations at TIN points so as to 
minimize RMS or ASD. 

•  

Error Statistics MAX, RMS, ASD errors • comparing surface against data points 
Volume 
-   for  specified 

elevation level 

Calculate cut/fill volumes by prismodial 
decomposition 

 

 
 
The TINscreen routine is based on a full triangulation, that is, it first interpolates all possible data 
points by a TIN surface.  It then finds for each TIN vertex v the median of the elevations of the 
neighboring vertices, that is, the vertices connected to vertex v by an edge.  If the elevation z at 
vertex v falls outside either a specified upper or lower tolerance bound around the median value, 
then the data point is considered an outlier and is eliminated.  The flow of the routine is exhibited 
in Table 5.2. 
 

Table 5.2.  TINscreen  routine. 
 

Step Description Comments 
Read input files • x, y, z elevation data 

• map corners 
Specify upper/lower outlier tolerances  

Input 

Specify output • screened point cloud 
Insertion method Enter data points in any order  
Identify outliers 
-  for each TIN vertex 

Find median of elevations of neighboring 
TIN vertices and determine whether TIN 
vertex is outlier 

• A TIN vertex is an outlier if it exceeds 
the specified upper  tolerance above the 
median, or the lower tolerance below the 
median. 

Eliminate outliers Construct screened  x,y,z-file • order of data points is preserved 
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The TINfilter  routine is based on a full triangulation, that is, it first interpolates all possible data 
points by a TIN surface.  For each vertex v, it fits a plane through points adjacent to v, and finds 
a filtered elevation for which the vertex is reduced to that plane.  Those filtered elevations are 
saved until the end when all elevations are replaced by their respective filtered elevations.  A 
choice of Gauss and median filters is offered. 
 
 

Table 5.3.  TINfilter  routine 
 

Step Description Comments 
Read input files • x, y, z data points 

• map corners 
Select type of filter • Gauss 

• Median 

Input 

Specify output • name of filtered output file 
Triangulation Insertion method  

Fit filtering plane to vertices 
determined by adjacency 

• L2 (Gauss) 
• L1 (median) 

Determine elevation ẑ .  The vertex 
(x, y, ẑ ) lies on filtering plane 

 

Get filtered elevation 
-  for each elevation 

Save the determined filtered 
elevation 

 

Reset to filtered elevation  ẑ  
- for each vertex 

Construct filtered  x,y,z-file  

 

5.2  DATA STRUCTURES 
 

Key questions about algorithm design center on the “data structures” on which they are based.  
The issue is what kind of arrays (or files) need to be available in order to execute, and also what 
information is to be provided, and in what form, as the result of an algorithm.  Typically, 
memory requirements and speed of execution have to be balanced against each other. 
 
In this section, some commonly used data structures are discussed.  Memory requirements are 
assessed and compared using estimates of the number of triangles and edges as a function of the 
number of vertices.  Such estimates are derived in Section 5.2.1 below. 
 
Many applications need the data structures that enable the convenient retrieval of the adjacency 
relationships between vertices, edges and triangles.  In fact, the insertion method for creating 
TIN surfaces discussed in Chapter 3 requires such adjacency information for each of the 
intermediate surfaces as they are formed. In many applications such as “Geographic Information 
Systems”, attributes need to be associated with vertices, triangles and edges, and should be 
readily accessible.  Examples are elevation, color, shading, or bounding of particular areas, just 
to name a few.  The following discussion will focus on data structures meeting those 
requirements, which will be formalized in Section 5.2.3. 
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5.2.1  Estimating the Number of Triangles and Edges 
 
In this work, it was found convenient to work with 
 

“directed edges” or “half-edges”, 
 
in other words, to distinguish between the edge leading from, say, vertex  v1 to vertex  v2 , and 
the edge leading in the opposite direction from vertex  v2 to vertex  v1.  In the sense of edges used 
above, they both occupy the “same” undirected edge, and are referred to as 
 

“mirrors” 
 
of each other.   Directed edges distinguish between their origin and their destination.  Those roles 
are reversed for their respective mirror edges.  Also, each half-edge belongs to a unique triangle 
that lies to the left of the half-edge and contains its origin and destination as vertices.  On the 
other hand, each triangle contains three half-edges, which succeed each other so that the 
destination of any one of the three half-edges coincides with the origin of the next. 
 
In order to assess the memory requirements of triangulation data structures, it is convenient to 
use the following 
 

Rule of Thumb for the Number of Triangles:  The number of triangles in a 
triangulation is approximately twice the number of vertices, and the number of 
half-edges is approximately six times the number of vertices: 
 

#triangles  ≈  2× #vertices;     #half-edges ≈  6× #vertices . 
 
For a proof, consider Euler’s relation for a convex polytope: 
  

#faces + #vertices = #edges + 2. 
 
Interpreting a contiguous triangulation as the image of such a 3D polytope with the “outside” of 
the triangulation as well as possible “holes” counted as faces along with the triangles, the 
relationship, 
 

1 + #holes + #triangles + #vertices = #edges + 2, 
 
results.  Replacing the number of edges by the number of half-edges in the above relation, yields, 
 

2 + 2× #holes + 2× #triangles + 2× #vertices  =  #half-edges + 4 . 
 
 In general, each half-edge belongs to a triangle.  Exceptions are the “boundary edges” along the 
outside and also along the holes of the triangulation.  On the other hand, each triangle has three 
edges.  Thus 
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#half-edges = 3×triangles + #boundary edges . 
 
The above two relations provide two linear equations for two unknowns, namely, the number of 
triangles and the number of edges, leading to the solution 
 

#triangles = 2×#vertices + 2×holes - #boundary edges – 2, 
#half-edges = 6×#vertices + 6×holes - 2×  #boundary edges – 6. 

 
Since the number boundary edges and holes tends to be small compared to the number of 
vertices, the above rule of thumb for estimating the number of triangles follows. 
 

5.2.2  Some Conventional Data Structures for Irregular Data 
 
At the most basic level, any irregular 2D triangulation is defined by listing the triangles as given 
by the coordinates of their respective vertices.  In essence, one has a sequence of triangles and/or 
other information items, each featuring a triangle identifier followed by the x, y-coordinates of 
the triangle vertices in some suitable arrangement.  
 

x1(t),  y1(t),  x2(t),  y2(t),  x3(t),  y3(t),   t = 1, … , #triangles . 
 
In order to avoid listing vertex coordinates repeatedly – a vertex typically belongs to several 
triangles – a separate list of vertex coordinates is typically used. Conveniently, this list also 
includes the  z-coordinates of the vertices, so that the following data structure results: 

 
x(v), y(v), z(v),  v = 1, … , #vertices,    v1(t), v2(t), v3(t),   t = 1, … , #triangles. 

 
Here vertex numbers substitute for the coordinate triples of the previous data structure. These 
vertex numbers provide a table look-up for the coordinates of the corresponding vertices.  The 
ADDWAMS format used in ESRI’s ARCINFO1 system is typical for this approach, which can 
clearly be appended to describe the 3D triangles of a TIN surface.  The device of a separate 
vertex list is employed by the VRML data structure.  Both the ADDWAMS and the VRML data 
structures are devised for more general constructs than triangles.  The key information item is a 
“line” of consecutive contiguous straight line segments defined as sequences of points.  Polygons 
are represented as lines whose last point duplicates the first point. Thus four points are required 
to describe a triangle. 
  
The sequence in which the vertices of a triangle are listed defines the “orientation” of the triangle 
and thus the direction of its surface normal.  By general convention, 
 
                                                 
1 Certain trade names and company products are mentioned in the text or identified in an illustration.  In no case 
does such an identification imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the products are necessarily the best available for the purpose. 
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a triangle in the plane is “positively oriented” if its vertices are numbered in 
counterclockwise rotation. 

 
As to the surface normal of a triangle in general spatial position, 
 

a  normal vector is perpendicular to the plane of the triangle, and oriented so that 
its vertices appear in clockwise order when viewed in the direction of the normal. 

 
In particular, any normal of a positively, i.e. counterclockwise oriented, triangle is parallel to the 
z-axis of the coordinate system, since viewing in that direction means viewing the plane from 
below, and the vertices of the triangle are then seen in clockwise orientation.  As the triangles of 
the underlying triangulation are positively oriented, all surface normals of a TIN surface have a 
positive z-component.  Of course, normals cannot be zero, and are often understood to be of 
length one. 
 
Related to the data structures discussed above is the following 
 

“triangle-based data structure”: 
  

x(v) , y(v) , z(v) , trefv(v) ,    v = 1, … , #vertices, 
    v1(t) , v2(t) , v3(t) , t1(t) , t2(t) , t3(t) ,    t = 1, … , #triangles. 

   
This data structure is used in several TIN routines developed at NIST.  Again, the vertices  v1(t) , 
v2(t) , v3(t)  are positively oriented.  The triangles t1(t) , t2(t) , t3(t)  are the triangles – at most 
three – which are adjacent along the edges of triangle  t.  If there are fewer than three, suitable 
default markers have to be employed.  The position of the adjacent triangles should relate to the 
sequence of vertices of the triangle t.  For instance, triangle t1(t)  may be chosen to meet the edge 
with the ends  v3(t) , v1(t) .  The remaining adjacent triangles are then chosen accordingly. 
 
The look-up function  trefv(v) , listed above as part of the triangle-based data structure, furnishes 
a triangle of which  v  is one of its vertices.  Should the vertex v lie on the boundary of the map, 
then the triangle  trefv(v)  should border boundary, more precisely, the half-edge of this triangle 
originating at vertex  v  should be a boundary edge.  The function  trefv(v)  enables the following 
key task of characterizing the star of a vertex in the triangulation. 
 

Star Sweep:  For vertex  v , determine, in positive rotation, the triangles  ts , 
half-edges  hs , or vertices  vs such that  ts and  vs are adjacent to vertex  v , 
and  hs originates at vertex  v. 

 
One of the advantages of the above triangle based data structure is its moderate memory 
requirement: 
 

6×#triangles + 4×#vertices = 16×#vertices. 
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In Section 5.2.3, it will be formally established that the triangle based data structure is rich 
enough to support triangulation algorithms. 
  
The following 
 

“edge-based data structure” 
 
is essentially the one used for the implementation of the TIN routines described in this report.  
This data structure introduces a separate list structure for half-edges h, and directly establishes 
the arrays 
   

vdesh(h) = destination of half-edge  h 
tlefh(h)  =  triangle to the left of half-edge h. 

 
The core of the data structure then consists of the following lists: 
 

vertex list: x(v), y(v), z(v),              v = 1, … , #vertices 
edge list: vdesh(h), tlefh(h),       h = 1, … , #half-edges 
triangle list: hedgit(i, t), i = 1, 2, 3,             t  = 1, … , #triangles, 

 
The edge list functions describe the destination vertex and the triangle to the left. The triangle 
lists provide the three half-edges of the triangle, that is, the three half-edges for which the 
triangle is adjacent to their left.  Two more functions, 
 

hmirh(h) = “mirror” of half-edge h, 
hrefv(v) =  “reference” half-edge originating at vertex v, 

 
are required for the manipulations necessary for adaptively generating TINs, but need not be 
represented by individual arrays.  As to the function hmirh(h), the half-edges can be numbered in 
such a way that each half-edge is next to its mirror: each half-edge with an odd number precedes 
its mirror, and each half-edge with an even number follows its mirror.  The mirror of any half-
edge is thus readily determined.  The function hrefv(v) assigns to each vertex v a half-edge, 
which originates at v, and which will be referred to as its “reference edge”.  This assignment is 
not unique, and in general there is no particular preference as to which of the originating half-
edges to select.  The exceptions are the vertices on the boundary of the map. Then it is 
convenient to select as the reference edge the one whose mirror represents a boundary edge.  The 
purpose of the reference edge is to enable the sequential identification of the triangles which 
contain vertex v.  For instance, a first such triangle is the triangle tlefh(hrefv(v)).  Again, no 
separate array is needed, if the half-edges are numbered in such a fashion that the pairs of 
mirrored half-edges are in the same sequence as the vertices for which they are the reference 
edges.  
 
Using the rule of thumb given in Section 5.2.1, the memory requirement for the edge-based data 
structure is estimated at 
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3× #vertices + 2×#half-edges + 3×#triangles = 21×#vertices . 
 
The edge-based data structure requires nearly half again as much memory space as the triangle-
based data structure. 
 

5.2.3  Conditions for Search-Free Data Structures 
 
At the beginning of Section 5.2, the need for convenient access to attributes and adjacency 
relationships was pointed out.  In this section, the goal is to formalize those requirements by 
introducing the concept of a 
 

“search-free”  
  
data structure for 2D triangulations.  The focus of this exposition will be on search-free data 
structures. 
 
To start with, the notion of “convenient access” needs to be clarified.  Here, it means that either 
an explicit listing – an array in the computer program – of the desired item is available, or the 
item can be retrieved by a accessing a suitable combination of such lists – in a sense, a 
concatenation of functions – or failing all of those provisions, a search of a number of items 
accessed by the previous two means.  That number, however, should be predetermined, in other 
words, independent of the task at hand, and could therefore be hard-coded in a computer 
program.  In the language used in formulating the two conditions below:  the computational 
effort of accessing certain information should not depend on the parameters of a particular task. 
The first condition for a search-free data structure is to ensure that it provides for the assignment 
and ready retrieval of attributes. 
 

Attribute Access Condition:  A search-free TIN data structure should provide 
list structures for vertices, edges and triangles, respectively, so that the 
computational effort of retrieving an attribute of any vertex, edge or triangle 
should not depend on the parameters of a particular TIN application.  

 
Next, the retrieval of adjacency relationships needs to be defined.  The second condition for a 
search-free data structure identifies the look-up tasks involved in establishing adjacencies. 
 

Adjacency Access Condition:  A search-free TIN data structure should provide 
list functions such that the following tasks require efforts that do not depend on 
the parameters of a particular TIN application.  For each 
1. vertex  v , find a triangle  trefv(v)  of which  v  is a vertex; 
2. vertex  v , find a half-edge  hrefv(v)  which originates at vertex  v ; 
3. vertex  v , find a half-edge  htrmv(v)  which terminates at vertex v ; 
4. half-edge  h , find its unique origin vertex  vorgh(h) ; 
5. half-edge  h , find its unique destination vertex vdesh(h) ; 
6. half-edge  h , find its mirror  hmirh(h) ; 
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7. half-edge  h , find the unique triangle  tlefh(h)  to its left; 
8. half-edge h , find its unique successor  hsuch(h)  in its triangle; 
9. half-edge h , find its unique predecessor  hpreh(h)  in its triangle; 
10. triangle  t , find its three vertices  vertit(i,t), i = 1, 2, 3,  in positive order;  
11. triangle  t , find its three half-edges hedgit(i, t), i = 1, 2, 3,  in successive order; 
12. triangle  t , find its three adjacent triangles  tadjit(i, t), i = 1, 2, 3. 

 
 
The above listed tasks of adjacency determination are not independent.  For instance, tasks 2 and 
3 for vertex v can be accomplished by finding triangle  t = treft(v), and then examining the half-
edges  h(i) = hedgit(t), i = 1, 2, 3,  as to whether  vorgh(h(i)) = v  or vdesh(h(t) = v , 
respectively.  Either of the first three look-ups will enable the star sweep task mentioned in the 
previous section. 
 
Note that access condition 11 as well as either task 4 or 5 are also invoked.  In fact, if those 
adjacencies are retrievable, then any of the first three conditions implies the remaining two. The 
procedures do require search, but that search is limited to three steps independently of the 
application at hand.  In the same vein, if the mirror mapping of condition 6 is available, then 
conditions 4 and 5 as well as 8 and 9 are pairwise equivalent.  Thus if either vorgh(h) or 
vdesh(h), can be retrieved, then condition 10 follows from condition 11. 
 
It will now be shown that, in particular, 
 

the triangle-based data structure can be interpreted as being search-free. 
  
As a first step, attribute access is to be verified.  Direct lists are provided for both triangles and 
vertices.  Thus any desired attributes of those items will be directly accessible.  Edges are not 
listed directly, but edge attributes can be attached to the triangle list, since every one of three 
half-edges belongs to a unique triangle.  Thus the index pairs 
 

(t , 1) , (t , 2) , (t , 3) ,     t = 1, …, #triangles , 
 
are the half-edges with the respective origins  v1(t) , v2(t) , v3(t)  and corresponding destinations  
v2(t) , v3(t) , v1(t) .  They account for all the half-edges, as all triangles t are considered, and thus 
permit storing attributes in a corresponding 2-dimensional array.  This establishes the attribute 
access condition. 
 
The above convention immediately yields for the half-edge  (t , i)  the relationship 
 

vorgh(t , i) = vi(t),  i = 1, 2, 3 , 
 

and the analogous expression for  vdesh(t , i).  This accounts for adjacency access conditions 4 
and 5.  Since the vertices vi(t)  are listed in positive orientation, 

 
tlefh(t , i) =  t ,   i = 1, 2, 3 , 
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accounting for condition 7.  This then establishes conditions 8 and 9 as 
 

hsuch(t , 1) = (t , 2) ,  hsuch(t , 2) = (t , 3) ,  hsuch(t , 3) = (t , 1) , 
   
and  hpreh(t , i)  is analogously defined.  As to adjacency access condition 6, recall that the 
triangles in the triangle-based data structure have been arranged so that triangle  ti(t)  lies to the 
right of the half-edge  (t , i).  The mirror hmirh(t , i)  to half-edge  (t , i)  can then be found by 
searching among the three half-edges of triangle  ti(t)  for the half-edge that originates at the 
destination of   (t , i).   Conditions 10, 11, and 12 are again trivially satisfied.  As mentioned 
before, anyone of the first three adjacency access condition will imply the remaining two, 
provided several other conditions hold.  Since all but the first three conditions have been 
verified, and since the function  trefv(v)  is explicitly provided,  the full complement of adjacency 
access conditions has been verified.     
 
The edge-based data structure of Section 5.2.2 is also readily seen to be search-free.  For 
instance, the retrieval of the vertices  v1(t) , v2(t) , v3(t) of the triangle t as well of its adjacent 
triangles  t1(t) , t2(t)  , t3(t) , based on its edges 
 

h1(t) = hfirt(t) ,  h2(t) = hsuch(h1(t))  ,  h3(t) = hsuch(h2(t)) , 
 
is demonstrated below: 
 

v1(t) = hdesh(h1(t))  , v2(t) = hdesh(h2(t)) ,  v3(t) = hdesh(h3(t)) , 
t1(t) = tlefh(h1(t)) ,  t2(t) = tlefh(h2(t)) ,  t3(t) = tlefh(h3(t)) . 

 

5.3 EXACT ARITHMETIC 
 
The calculations based on the data structures described above need to maintain the combinatorial 
integrity of such data structures.  Otherwise the NIST programs will crash.  However, floating 
point arithmetic, with its built in rounding or truncating mechanisms, does not maintain 
combinatorial integrity.  One of the problems is the inability to consistently recognize whether 
three points 
 

pi = ( xi , yi ),  i = 1, 2, 3, 
 
are in line.  A criterion for this is that the 

determinant 
111

321

321

yyy
xxx

  =  0 . 

 
However, even if the points are in line, evaluation of this determinant with floating point 
arithmetic may result in a small non-zero value due to round-off.  A tolerance δ > 0, is frequently 
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specified below which absolute values are considered not to differ significantly from zero.  If 
such a “zero tolerance” is chosen too small, it may not be realized that the three points are, in 
fact, in line.  On the other hand, if the zero tolerance is chosen too large, say, in the course of 
applying the insertion method, inserting a data point close to an edge of the triangulation may 
result in a triangle of negative orientation due to round-off, as in the following example. 
 
Consider four vertices of a current triangulation, indexed for convenience from 1 to  4, 
 

p1 = (0 , 1) ,  p2 = (2 , 1.000001) ,  p3 = (1 , 0),  p4 = (11 , 1.000007) . 
 
Assume that the triangles 
 

t1 = (p1 , p2 , p3) ,    t2 = (p2 , p1 , p4) 
 
are part of the current triangulation.  Obviously, they are adjacent to each other along the edge  
(p1 , p2) .  Assume further that the point 
 

p0 = (1 , 1) 
 
is to be inserted, and that a zero tolerance 
 

δ  =  0.000002 
 
has been specified.  Note that the determinants which indicate the orientation of the triangles t1 
and t2 are both significantly positive, as they should be: 
 

determinant 
111

000001.101
210

  =  2.000001 > δ , 

 

determinant  
111

000007.1000001.11
1120

 =   0.000003  >  δ . 

 
 
 
 
 
 
Observe then that the determinant 
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determinant
111

000001.111
210

  = 0.000001 < δ . 

 
is within zero tolerance, so that point  p0 is to be considered to lie on the edge  (p1 , p2), 
separating triangles t1 and t2.  In this case, the first step of inserting p0 creates (Section 3.1.1) four 
new triangles, 
 

t3 = (p3 , p0 , p1) ,  t4 = (p3 , p2 , p0) ,  t5 = (p4 , p0 , p2) ,  t6  = (p4 , p1 , p0) , 
 
where the triangles t3 and t4 split the triangle t1, the triangles t5 and  t6, the triangle t2.  The 
triangle t6, however, is now significantly negatively oriented: 
 

determinant
111

000001.11000007.1
2111

  =  -0.000003  <  -δ . 

 
In order to avoid round-off and tolerance selection problems, NIST transforms point cloud data 
into integers by rounding to a fixed number of digits after the decimal point.  The resulting 
coordinates are then multiplied by a common power of 10 in order to transform them into 
integers.  Integer arithmetic is then used to process the determinants arising in the examination of 
the various criteria required by the respective algorithms.  This is possible since the determinants 
in question can be evaluated without recourse to division. 
 
In almost all practical applications, however, the word length of single precision integer 
arithmetic will be insufficient.  Double precision floating point arithmetic applied to integers 
represented as floating point numbers will sometimes be applicable.  NIST has chosen the route 
of implementing multi-precision integer arithmetic.  The most promising way to use this high 
level tool is to employ it to resolve zero/non-zero questions only if results calculated in floating 
point arithmetic are close to zero. 
 

5.4  “BOTTOM-UP” VERSUS “TOP-DOWN” 
 
The issue of “top-down” versus “bottom-up” arises if a partial triangulation is desired.  This 
issue is to be distinguished from the question of which triangulation algorithm is more efficient 
when computing the full Delaunay triangulation of a planar point set.  An efficient algorithm is, 
for instance, the sweep line algorithm by [Fortune 1987].  This method starts with sorting by one 
planar variable – an  O(n log n)  effort – and requires only linear, i.e.,  O(n) , effort thereafter. 
The insertion method stands to be less efficient, even when implemented without added adaptive 
selection procedures, because it requires locating each new insertion in a triangle of a current 
triangulation (Section 3.1.5).  However, the authors do not know of a systematic computational 
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comparison between those methods.  Moreover, much depends on the data, whose inherent 
patterns may favor one method over the other. 
 
What matters, however, is the fact that methods which do not involve adaptive selection 
processes are more efficient provided the goal is to find a full triangulation.  The top-down 
approach takes advantage of this edge in efficiency.  It generates the full triangulation first and, 
should a partial triangulation be required, it reduces the triangulation by adaptively selecting 
vertices of the triangulation for deletion and subsequent restoration of the Delaunay 
triangulation.  Frequently, the purpose of determining a partial triangulation is to reduce or “thin” 
the point cloud in order to reduce the computational effort of follow-on analyses.  In this case, a 
commonly used criterion is to delete a vertex if the surface patch formed by the triangles 
adjacent to the vertex is close to planar [Kragovi and Tartalja 1996].   The rationale is that the 
deletion of such a vertex affects the surface in only a minor way.  Most commercial 
implementations of TIN methods follow the top-down approach. 

 
Nevertheless, if the partial triangulation represents only a minor portion of the full data set, say, 
50 % or less, then the authors expect – without actual evidence – that the “bottom-up” adaptive 
approach is computationally comparable to an adaptive top-down approach, in particular, if the 
point cloud follows some sequential pattern (Section 3.1.5). 
 
What about memory requirements?  Suppose the top-down approach is based on the sweep line 
algorithm.  The sorted file is used as input, with each point being processed as a vertex upon 
being read.  Only the data structure which represents the triangulation per se needs to be stored.  
According to the estimate developed in Section 5.2.2 for the triangle-based data structure, the 
total memory requirement amounts to 
 

15 n,    n = #data points. 
 
On the other hand, the bottom-up approach using the insertion method with point-to-triangle 
linking (Section 3.2.1) has an immediate memory requirement of 4n, because it needs to store the 
entire point cloud with its three coordinates plus the array that links the data points.  In addition, 
the data structures for the intermediate final triangulations have to be accommodated as the 
algorithms progresses, leading up to the final partial triangulation of m vertices.  The total 
memory requirement of the bottom-up approach may thus be estimated at 
 

4 n + 15 m ,    n = #data points,    m = #vertices. 
 

This suggests that a bottom-up approach requires less memory for partial triangulations of about 
70 % or less of full triangulations.  For partial triangulations of 25 %, the memory requirement is 
cut in half.  The above analysis is, of course, based on assumptions that may not hold for 
individual implementations, but should nevertheless indicate a general trend. 
 
There is demand for partial triangulations of low percentage.  Meaningful data reduction would 
be for 50 % or less.  Experimental assessment of volume determination to be reported in [Cheok 
and Witzgall 2004] found optimal accuracy to occur for partial triangulations at 30 %.  It is not 
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known, whether this represents a general phenomenon; one would expect it to depend on the 
noise level of the data.  Partial triangulations are also required for the elevation and triangulation 
adjustments described in Chapter 4.  Here the data points that have not been selected as vertices 
guide the adjustments.  It is recommended for those adjustments that there should be at least one 
of those non-vertex data points per triangle on average.  As there are roughly twice as many 
triangles as vertices in a triangulation (Section 5.2.1), this amounts to n – m = 2 m or 3 m = n, 
where again n is the number of all data points with m the number of vertices in the partial 
triangulation.  In other words, if adjustments are required, then partial triangulations of no more 
than 33 % of full triangulations are called for, and this represents an upper limit. 
 
To sum up, there are strong indications that, for partial triangulations of 50 % or less, the bottom-
up approach with adaptive selection processes is computationally less costly than the top-down 
approach, and there is demand for such partial triangulations.  More importantly, the bottom-up 
approach holds the promise of more adaptive options since the full data set is always accessible 
to guide the triangulation process. 
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6.  ALTERNATE TRIANGULATIONS 
 
There are many different triangulation procedures in use, and not all of them are Delaunay based, 
For instance, the area covered by the triangulation may by consecutively expanded [Silva and 
Mitchell 1998].  In this report, only two alternate paradigms are discussed, the greedy 
triangulation and the triangulation of regular grids. 
 

6.1 GREEDY TRIANGULATION 
 
The concept of the 
 

“greedy triangulation” 
 
has played a role [e.g., Duppe and Gottschalk 1970, Lloyd 1977, Lingas 1986, Goldman, 1989] 
and is occasionally useful.  It was inspired in part by the idea of an “optimal” triangulation which 
minimizes total edge length.  In this vein, the pairs of points   pi = (xi , yi),  pj = (xj , yj)  of a 
planar point set  are sorted by increasing distance from each other.  For a first edge, connect the 
points closest to each other by a straight line segment.  Then connect the next closest pair, and 
continue in this fashion, but ignore those pairs of points whose connecting line segment would 
cross previously established edges.  This process terminates when there are no pairs left which 
are eligible to be connected.  At this point, the convex hull of the planar point set has been 
partitioned into the triangles of the greedy triangulation.  The greedy triangulation is similar and, 
in some cases, identical to the Delaunay triangulation.   A simple example of points for which 
the two triangulations differ is given in Fig. 6.1. 

 
Figure 6.1.  Shortest distance and Delaunay triangulations may differ. 

 

Shortest DistanceTriangulation Delaunay  Triangulation 
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Not counting the considerable effort involved in avoiding crossovers, the triangulation procedure 
based on sorting edges by length is of complexity O(n2 log n) ,  where  n  denotes the number of 
points to be triangulated.  Efforts have been made to make greedy triangulation more efficient 
[Levcopoulos and Lingas 1992, Dickerson et al. 1997].  It may also be more efficient to proceed 
along the lines of the insertion method (see Chapter 3) using, instead of the empty circle 
criterion, the following  
 

Shorter Diagonal Criterion: For any two adjacent triangles that form a convex 
quadrangle, a diagonal of equal or shorter length than the other diagonal of this 
quadrangle is an edge in the triangulation. 
 

Again, the efficiency of this method depends on the efficiency with which a data point can be 
located in a triangle of the intermediate triangulation.  An advantage of the insertion approach to 
constructing the shortest distance triangulation is that it may be terminated with a partial 
triangulation, and that it is therefore amenable to adaptive techniques.  The shorter diagonal 
criterion has been used, for instance, as part of a triangulation method based on sweeping the 
plane in a radial fashion [Mirante and Weingarten 1982]. 
 
While the greedy triangulation must satisfy the shorter diagonal criterion, it is not necessarily 
determined by it.  Figure 6.2 provides an example of two different triangulations of the same 
point set, both of which satisfy the shorter diagonal criterion, but only the triangulation on the 
right is greedy. Indeed, the diagonal  (p1, p4) is shorter than the diagonal  (p3, p5) , so the former 
will be selected before the latter in the greedy process. 

 
Figure 6.2.  The triangulation on the right is greedy, the one on the left is not. 
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6.2 GRIDDED DATA SETS 
 
In many applications, point data are provided as elevations over a regular rectangular grid.  That 
is, the footprints ( xi , yj ) of a point cloud are grid points, regularly spaced in x and y, 
respectively, with a single elevation  zij  assigned to each grid point.  Numerous methods are 
available to approximate irregular point clouds by such gridded data sets.  They will not be 
discussed here.  It should be pointed out, however, that meshing an irregular data set, and then 
sampling the surface elevations at the grid coordinates, is a fast and oscillation-free procedure for 
extracting a gridded data set from an irregular point cloud.  Many methods, also, are in use for 
constructing a 2.5D surface from such a gridded data set:  bilinear and bicubic interpolation in 
each grid cell are popular options, as are various splining procedures.  All these procedures may 
be based on an extremely simple data structure.  Indeed, the number of rows and columns, the 
two cell sizes in x and y, and the “Southwest” corner of the full grid rectangle are sufficient to 
retrieve the value of the coordinates  xi , yj  from their respective row and column numbers.  
These coordinates need, therefore, not be stored.  This leaves the elevations  zij, which may be 
listed in conventional matrix formats. 
 

 
Figure 6.3.  Triangulation of a gridded data set. 

 
The triangulation shown in Fig. 6.3 suggests itself and is widely used.  The compactness of the 
data structure that suffices to encode a gridded data set and its regular triangulation is the key 
advantage of a gridded data set.  General display packages may require representation in a more 
complex triangulated data structure. The computational effort of restructuring the information in 
terms of, say, the data structures discussed in Section 5.2.2 is minimal because it can be based on 
straightforward index manipulations.  However, the decisive advantage of the compact data 
structure is lost. 
 
Gridded data sets are often incomplete, having so-called  
 

“no-data values” 
 
attached to grid locations for which no data are available.  If they occur in small isolated clusters, 
then it is recommended to use local interpolation schemes to assign values to grid locations, 
thereby completing the grid. In this fashion the regularity of the data structure is preserved.  
Four-way interpolation, illustrated in Fig. 6.4, is typical.  A more expensive approach is to treat 
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the data as an irregular data set and create a meshed surface, which then defines elevations at the 
missing grid points.  Greedy triangulation has a role there. 
 

Figure 6.4.  Four-way interpolation to no-data values for a gridded data set. 
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7. MESHING OVER SPHERES 
 
Some LADARs produce a panoramic data set, that is, their point clouds are arranged by polar 
coordinates, and are thus more naturally associated with locations on a sphere than with locations 
on a footprint plane.  In particular, the transformation to x, y, z-coordinates with the usual 
interpretation of z representing actual vertical elevation and of x and y varying over a horizontal 
footprint plane, often leads to unrealistic neighbor specifications.  This problem is in part 
remedied by stipulating a single “scan direction” with a footprint plane perpendicular to it, so 
that “elevation” is defined in that scan direction.  This device, however, limits viewing angles 
and is certainly not feasible for panoramic views.  In this chapter, methods are examined that 
project footprints onto spheres. 
 

7.1 THE ROLE OF CONVEX HULLS 
 
Of particular interest in this section are finite sets of 3D points located on a sphere, 
 

 {Pi , P2 , … , Pn} . 
 

The convex hull of such a spherical point set is a convex polytope with the above points Pi as its 
vertices and with facets that are generally triangles.  For a facet not to be a triangle as, for 
instance, the facets of a cube, then that facet may be partitioned – in several ways – into triangles 
by drawing diagonals.  A convex hull of points that lie on a sphere thus gives rise to a 
 

“convex  triangulation” 
 
of the sphere.  This triangulation is unique if no two edge-adjacent triangles are coplanar. 
 

7.1.1 Connection to Delaunay Triangulation 
 
It is well known that Delaunay triangulations in a plane correspond to convex triangulations on a 
sphere.  To establish this correspondence, the sphere is placed on a horizontal plane.  Let  P0 
denote the top point or “North Pole” of the sphere.  A projection of the sphere – leaving out P0 – 
onto the plane may be defined as follows.  If P ≠ P0   is a point on the sphere, then the line 
through  P0  and  P  intersects the plane at the point  p ,  which is the projection of the  point  P  
on the sphere. Note that the projection can be reversed:  if  p  is a point in the plane, then the line 
through  p  and  P0  intersects the sphere in the previous point  P  (Fig. 7.1). 
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Figure 7.1.  Projecting a triangle on a sphere into a plane. 

 
 
The connection with the Delaunay triangulation is as follows.   Given a set of n points Pi ≠ P0 , 
on the sphere, consider the triangulation of the sphere determined by the convex hull of the 
North Pole P0 together with the points  Pi.  This convex hull defines a triangulation of the sphere.  
It can be shown that the projection defined above carries that triangulation of the sphere into a 
triangulation of the projections pi in the plane.  This planar triangulation is Delaunay, because the 
projection carries circles on the sphere onto circles in the plane.  Conversely, the triangles of the 
Delaunay triangulation are, in reverse, projected onto triangles of a convex hull of points on the 
sphere. 
 

7.1.2 Center Projections – Footprints on a Sphere 
 
The use of x, y, z – coordinates with x and y the coordinates of a horizontal plane, and z 
indicating vertical elevation, as described in the main body of the report, is frequently not 
advantageous.  The direction from the instrument to the object may be a better choice as a 
“vertical” direction since the range is measured in this direction, and deviations in this direction 
from the object surface due to noise are a more natural error measure. 
 
However, the instrument direction varies as each range measurement has its own bearing.  As 
mentioned at the beginning of the chapter, the assumption of a fixed instrument direction may be 
an acceptable approximation in some applications, but it does not work for the panoramic scans, 
say, by a rotational LADAR.  For those data, the concept of a footprint plane needs to be 
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abandoned in favor of a “footprint sphere” centered at the instrument, if the advantages of 
meshing in the instrument direction are to be maintained. 
 

Figure 7.2.  Center projection of data points onto a sphere centered at the instrument. 
 
 
In this and the subsequent section, the term “sphere” will always refer to a sphere of radius 1 
centered at the instrument, which is also the origin of any frame in which the original data points 
are collected (Fig. 7.2).  These points Pi are expressed either in a Cartesian  x, y, z-coordinate 
system or in a  “polar” r, φ, θ-coordinate system: 
 

Pi = (xi , yi , zi) = (ri , φi , θi). 
 
The footprint pi of that data point Pi with respect to the sphere is the intersection of the sphere 
and the ray that starts at the origin and passes through the point Pi : 
 

pi = (φi , θi) = (ξi , ηi , ζi), 
 
Where,  
 

ξi = cos φi cos θi = 
222
iii

i

zyx
x

++
, 

ηi = sin φi cos θi = 
222
iii

i

zyx
y

++
, 

P = (x, y, z) 

P = (x, h, z ) 
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ζi = sin θi = 
222
iii

i

zyx
z

++
, 

 
so that 
 

222
iii ζηξ ++  = 1 . 

 
Instead of meshing by triangulating footprints of data points in an x,y-plane, footprints of data 
points  Pi  are triangulated on the surface of the sphere.  Such an  
 

“origin-centered triangulation” 
 
of a given set of spherical footprint points pi consists of the flat triangles whose vertices are 
spherical footprint points and which are facets – or which partition polygonal facets of more than 
three vertices – of the convex hull of the footprints and the origin  0.  More precisely, there are 
two cases to consider, depending on whether the origin lies in the interior – the fully panoramic 
case – or on the boundary of the convex hull.  In the former case, all triangles which partition the 
convex hull constitute a triangulation.  In the latter case, the origin may be a vertex, lie on an 
edge, or in the interior of a facet.  Then triangles which cover facets containing the origin are 
excluded from the triangulation. 
 
Just as in the case of a footprint plane, the triangles of the triangulation have to be positively 
oriented.  Three points  p1 = (ξ1 , η1 , ζ1) ,  p2 = (ξ2 , η2 , ζ1) ,  p3 = (ξ3 , η3 , ζ3)  on the sphere are 
 

“positively oriented” 
 
if the tetrahedron  (0, p1, p2, p3)  is positively oriented, that is, it has a positive volume.  In terms 
of determinants one then has 
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   >  0       or, equivalently,       determinant
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  <  0 . 

 
Consider the “spherical quadrangle” arising from two adjacent positively-oriented spherical 
triangles 
 

( p1 , p2 , p3 ) ,  ( p2 , p1 , p4 ) . 
 
Then the “complementary” triangles (Fig. 7.3) 
 

( p1 , p4 , p3 ) ,  ( p2 , p3 , p4 ) 
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are again positively oriented. 
 

 
 

Figure 7.3.   Four spherical points may be represented in two ways as adjacent triangles. 
 
 
The two adjacent, positively-oriented, spherical triangles at left in Fig. 7.3, 
 

( p1 , p2 , p3 ) ,  ( p2 , p1 , p4 ) . 
 
 
 are part of the boundary of a convex hull if and only if 
 
 

determinant   
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  ≤   0 . 

 
 
It can be shown that if the above determinant is negative, then the complementary configuration, 
shown at left in Fig. 7.3, gives rise to a positive determinant.  This suggests the kind of “diagonal 
flipping” analogous to the insertion method for Delaunay triangulations for constructing origin-
centered spherical triangulations. 
 
An analog to data sets defined on a planar grid exists on the sphere with rows of points of equal 
latitude in equiangular position, and with columns of points of equal longitude, stepping with 
equal latitudinal increments.  The corresponding spherical triangulation depicted in Fig. 7.4 
describes a convex polytope and therefore a center-oriented triangulation.  Such a triangulation 
can again be presented by an extremely compact data structure. 
 

p1 

p2 

p3 

p4 p1 

p2 

p3 

p4 



 62

 
 

Figure 7.4.  A regular center-oriented triangulation of the sphere. 
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