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A method for calibrating the stiffness of atomic force microscope (AFM) cantilevers is
demonstrated using an array of uniform microfabricated reference cantilevers. A series of
force-displacement curves was obtained using a commercial AFM test cantilever on the reference
cantilever array, and the data were analyzed using an implied Euler-Bernoulli model to extract the
test cantilever spring constant from linear regression fitting. The method offers a factor of 5
improvement over the precision of the usual reference cantilever calibration method and, when
combined with the Systéme International traceability potential of the cantilever array, can provide
very accurate spring constant calibrations. © 2007 American Institute of Physics.

[DOL: 10.1063/1.2764372]

The accurate measurement of spring constants for
atomic force microscope (AFM) cantilevers is important for
a variety of AFM applications, and for more than a decade, a
number of techniques have been proposed and refined to
estimate normal cantilever stiffness.'™” The use of a refer-
ence cantilever’™® as a calibration artifact is especially attrac-
tive as it can be used for many different types of cantilevers
including both triangular and rectangular cantilevers, coated
cantilevers, and colloid probes: it does not require an accu-
rate knowledge of the cantilever dimensions or material
properties and the range of force application is only limited
by the availability of suitable (similar spring constant) refer-
ence cantilevers. Two problems that limit the accuracy and
precision of the reference cantilever calibration method are
the lack of accurate (Systéme International or SI traceable)
standard cantilevers and the limited repeatability of the usual
single point reference calibration procedure,6 currently esti-
mated as +10% —+30%."° Recently, an experimental refer-
ence cantilever array that offers the potential to be an SI
traceable force transfer artifact'' through calibration by an
electrostatic force balance (EFB) has been produced.]2 In the
present article we describe a method for using such a canti-
lever array to calibrate the spring constant of an unknown
AFM cantilever more precisely.

The basic principle of calibrating the normal spring con-
stant of an unknown test cantilever using a calibrated refer-
ence cantilever is depicted in Fig. 1. The calibration is per-
formed by measuring the deflection of the test cantilever as it
is pressed against a known reference force (the reference
cantilever deflected a known amount at a specific location on
the reference cantilever beam). For optical lever type AFM’s,
this is practically accomplished by making two force-
displacement measurements: one on a rigid surface (well ap-
proximated by a stiff, smooth, bulk Si surface) and the sec-
ond on a known location on the reference cantilever.
Essentially, the first measurement establishes the relationship
between photodiode (detector) voltage and piezoelectric dis-
placement actuator motion in the z direction through the test
cantilever deflection. The second measurement relates this
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motion to the deflection of the test cantilever on the refer-
ence cantilever. Typical approach force curves obtained on
both a stiff surface and a reference cantilever are shown in
Fig. 2 and consist of the approach to surface (a), snap-on (b),
and compliance (c) regions in which the tip of the cantilever
is moving with the surface it is contacting. The test cantile-
ver displacements on the stiff surface and reference cantile-
ver can be obtained from the slopes (S, V/nm) of the com-
pliance regions of the force curves for the respective surfaces
(a linear regression fit for data within the compliance region
is used to determine these values). Correcting for the off-end
loading of the reference cantilever, we can use the compli-
ance slopes to obtain the test cantilever spring constant

through Hooke’s law and the Euler-Bernoulli beam
equation ~ as
kiest = kref(L_ d103d> (i — 1 |cos? 0, (1)
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FIG. 1. Schematic diagram of the AFM configuration used for measuring
the spring constant of an unknown test cantilever using a calibrated refer-
ence cantilever.
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FIG. 2. Force-displacement curve examples (approach only) for a test can-
tilever contacting a stiff surface (bulk Si) and a reference cantilever

where k. and L represent the spring constant and length of
the reference cantilever and d,,,4 is the off-end loading dis-
tance from the actual point of contact on the reference can-
tilever to its free end. The cos® @ term is a geometric correc-
tion for the tilt angle of the test cantilever. In the case of the
11° tilt for our AFM, there is less than a 4% correction
(cos? #=0.9636). Thus we can obtain an estimate of the test
cantilever spring constant through the ratio of compliance
slopes without explicit measurement of the photodiode or
actuator responses.

All exPeriments were carried out on a Digital
Instruments Nanoscope [Ila AFM. The test cantilever used
was a Veeco DNP type triangular cantilever (“D” =long, thin
legged), which was calibrated independently via a five bead
Cleveland added mass calibration with off-load correction,l’9
giving a normal spring constant of 0.079+0.005 N/m.

The experimental reference cantilever array (Fig. 3) was
microfabricated from a Si (100) silicon-on-insulator (SOI)
wafer in such a way as to provide a high degree of dimen-
sional control, pattern registration, and uniformity.” Each
array consisted of seven cantilevers of identical thicknesses
(1.4 um) and widths (50 wm) and varying from
300 to 600 um in length. They were considered as uniform
rectangular Euler-Bernoulli beams. Nominal spring con-
stants, estimated from dimensional and resonance frequency
measurements and material properties, varied from
0.203 to 0.207 N/m, depending on the length of the cantile-
ver selected. The values agreed well with the ke L3 behav-
ior implicit in Euler-Bernoulli beam theory for uniform rect-
angular cantilevers, as well as with the indelpendent
calibration of an identical cantilever array by EFB.'

Using the commercial test cantilever, a series of eight
(repeat) pairs of force-displacement curve measurements (Si
substrate and reference cantilever) were conducted on each
reference cantilever with the results summarized in Table I.
The estimated spring constant for the test cantilever ranged
from 0.077 to 0.091 (average of 0.085) with a relative stan-
dard deviation (all data) of approximately +10%. The larger
uncertainty for the shorter cantilevers is attributed to relative
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FIG. 3. Scanning electron micrograph of the experimental reference canti-
lever array. The cantilevers are nominally 1.4 um thick and 50 um wide
and vary in length from 300 to 600 pm.

placement uncertainty (d),,q) Which contributes geometri-
cally (to the third power) to the error.

Data taken using a range of reference spring constants
provide an opportunity to estimate the spring constant of the
test cantilever in a more precise way. Equation (1) can be
rewritten in terms of the off-end-load correction term \ and a
compliance slope ratio parameter « as

_ )\kref
a= B

()
Kiest

where

Sy -l L\
a:[(Lﬂ—l)cos2 0] andh:(—) .
Sref L_dload

If we then plot the experimental dependent variable «
versus the independent variable Nk, we should get a straight
line with slope 1/k. In some ways this is analogous to the
Cleveland method' in which different masses are added to
the cantilever and the spring constant is extracted from the
slope of the plotted data. In our case, we use different stiff-
ness springs. The same data used to generate Table I are
plotted in Fig. 4 as a vs Nkt The slope of the linear regres-
sion best fit provides a k. of 0.085 N/m. Statistical analysis

TABLE 1. Test cantilever calibration series on individual reference
cantilevers

Array cantilever Single point reference

property calibration
L Kot Kiest +] sd rsd
(pm) (N/m) (N/m) (N/m) (%)
300 0.207 0.091 0.012 13
350 0.130 0.077 0.011 14
400 0.088 0.081 0.005 6
450 0.061 0.084 0.008 9
500 0.045 0.085 0.008 9
550 0.034 0.086 0.004 5
600 0.026 0.089 0.006 6
Average
0.085

sd=standard deviation
rsd=relative standard deviation
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FIG. 4. (Color online) Reference cantilever array plot for a DNP-D test
cantilever. Repeatabilities (+2 standard deviations) are compared to a single
reference cantilever method and an added mass method.

of the linear regression provides an uncertainty (standard er-
ror) of the slope of only +2%. This uncertainty in the deter-
mination of kg is a substantial improvement over both the
single point reference cantilever method (£10%) and the
Cleveland method (6% ).

A second way of graphically extracting the stiffness and
precision of the test cantilever is to use the same data in
Fig. 4 and superimpose 95% confidence limits. The value of
kiese (0.085 N/m) can be read off the graph at the point
where a=1. When this is done for the upper and lower
bounds on the 95% confidence limits, we get a graphical
representation of the precision of the data. Precisions of the
single point reference cantilever and added mass methods are
superimposed on Fig. 4 as a visual comparison. It should be
noted that the key to the array cantilever method is the im-
plicit adherence of the data to the Euler-Bernoulli model al-
lowed by using the extremely uniform cantilevers in the
array.

The data examined in Fig. 4 represents an optimal case
since the spring constant lies midway along the array speci-
fications; however, we have also conducted exploratory
experiments using test cantilevers near the extremes of the
array spring constants. Using a stiff test cantilever
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(k=0.65 N/m) also provided very good precision (2%). Us-
ing a very compliant test cantilever (k=0.014 N/m) we
found significantly poorer precision (8%) due to variations in
the force curve behavior. We suspect that this was due to
complications from the buckling and twisting of the test can-
tilever tip. In both extremes the array method precision was
still better than that of the regular reference cantilever
method by a factor of 4.

Using an array of reference cantilevers with different
spring constants we have demonstrated that it is possible to
make measurements on the array and analyze the data in
such a way as to obtain a spring constant for an unknown
cantilever with greater precision than possible with just re-
peated measurements on a single cantilever or even averaged
measurements on several cantilevers. When this approach is
combined with independent validation of the reference can-
tilevers with an SI traceable method, this technique offers an
accurate and precise method for calibrating AFM cantilevers
in the field.
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