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We examine the rheological and dielectric properties of solutions of equilibrium self-assembling
particles and molecules that form polydisperse chains whose average length depends on temperature
and concentration (free association model). Relaxation of the self-assembling clusters proceeds by
motions associated either with cluster rotations, with diffusive internal chain dynamics, or with
interchain entanglement interactions. A hierarchy of models is used to emphasize different physical
effects: Unentangled rodlike clusters, unentangled flexible polymers, and entangled chains. All
models yield a multistep relaxation for low polymer scission rates (“persistent polymers”). The short
time relaxation is nearly exponential and is dominated by the monomeric species and solvent, and
the long time relaxation is approximately a stretched exponential, exp[—(¢/ 7)?], a behavior that
arises from an averaging over the equilibrium chain length distribution and the internal relaxation
modes of the assembled structures. Relaxation functions indicate a bifurcation of the relaxation
function into fast and slow contributions upon passing through the polymerization transition. The
apparent activation energy for the long time relaxation becomes temperature dependent, while the
fast monomeric relaxation process remains Arrhenius. The effective exponent B(7T), describing the
long time relaxation process, varies monotonically from near unity above the polymerization
temperature to a low temperature limit, B:l, when the self-assembly process is complete. The
variation in the relaxation function with temperature is represented as a function of molecular
parameters, such as the average chain length, friction coefficient, solvent viscosity, and the reaction

rates for particle association and dissociation. © 2008 American Institute of Physics.

[DOL: 10.1063/1.2976341]

I. INTRODUCTION

The nontrivial correlations created by the transient for-
mation and disintegration of particle clusters in complex flu-
ids can induce significant changes in their transport proper-
ties whose theoretical description is basic in understanding
the dynamics of numerous “associating fluids” (micellar
fluids,' equilibrium polymers,2 thermally reversible gels,3
and glass-forming 1iquids4_6). Such fluids are characterized
by dynamic heterogeneity, even though these complex fluids
may differ considerably in the physical interactions driving
dynamic clustering. The macroscopic viscoelastic and dielec-
tric properties of these fluids appear to exhibit a common
pattern of relaxation that includes the (a) emergence of fast
and slow relaxation processes separated by an intermediate
plateau in the stress relaxation, (b) a stretched exponential
(SE) relaxation, (c) a non-Arrhenius dependence of the struc-
tural relaxation time, ete.””

In the present paper, we consider a minimal model of
relaxation involving the equilibrium self-assembly of mol-
ecules and particles into polymer chains that form and disin-
tegrate in dynamic equilibrium. This minimal model is for-
mulated in terms of microscopic properties (molecular
friction coefficients and interaction parameters) describing
the clustering and is found to exhibit the general pattern of
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relaxation in the complex fluids mentioned earlier. In particu-
lar, the stress relaxation, viscosity, and dielectric relaxation
functions for equilibrium self-assembling systems are com-
puted using classic rodlike chain, Rouse, and reptation mod-
els of chain dynamics. A previous paper introduced much of
the required theoretical framework,'" and the present work
focuses on the wide range of implications of the theory.
While the treatment below is restricted to systems in which
self-assembly occurs upon cooling, the theory is also appli-
cable to cases where association proceeds on heating. Our
modeling of relaxation in associating fluids omits the hydro-
dynamic interactions that lead to nonexponential relaxation
(i.e., “memory” effects) even in simple fluids. Hydrodynamic
interactions are often ignored when phenomenologically
modeling polymer fluids, especially at high polymer concen-
trations where the hydrodynamic interactions become
screened.!! (See Sec. IV.) We also do not include memory
effects associated with strong local interparticle interactions
or “caging” interactions that are emphasized by the mode-
coupling theory of glass-forming liquidslz’13 and its recent
generalization.]4 Despite these assumptions, we believe that
our model provides basic insight into the multistep relaxation
observed in many complex fluids in which “dynamic hetero-
geneity” (i.e., dynamic particle clustering) is involved. This
expectation remains to be confirmed, however.

Above the polymerization temperature where self-
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assembly initiates, only exponential stress relaxation is
found, but an additional slow relaxation process emerges at
lower temperatures where persistent chain clusters are
present. The terminal relaxation time 77, associated with this
slow relaxation mode, becomes increasingly prominent upon
cooling, and the relaxation function for this mode is found to
be approximately a SE, G(t) ~ exp[—(t/ 7)?], with B varying
monotonically from unity at high temperatures to a constant
at lower temperatures where the clustering transition is fully
developed. The low temperature limiting B for persistent
rodlike associating clusters and for persistent polymer chains
exhibiting reptation dynamics is found universally to be near

=%, in accord with the single mode approximation of
Doﬁglas and Hubbard (see below)."”

The averaging over the internal modes of flexible self-
assembled chains is shown to influence the effective 3, re-
ducing its value at lower temperatures. The computed pattern
of multistep relaxation and long time SE decay predicted by
our theory appears to be similar to the general pattern seen in
many complex associating fluids, although the thermody-
namic variables governing the clustering (chain length,
added salt, concentration, temperature, pressure, etc.) and the
geometrical form of the clusters (linear and branched chains,
membranes, compact clusters) vary between these systems.
While the actual geometry of the clusters may vary with the
particular associating fluid, giving rise to a change in the
exponent B at low temperatures,'5 we expect the pattern of
relaxation that we find for linear chain association to apply
generally to complex fluids in which assembly into highly
extended structures occurs.

The equilibrium self-associating fluid model for stress
and dielectric relaxations is rather complicated computation-
ally, so essential features of this model are illustrated for
representative model parameters. The first model considers
equilibrium clusters that form rodlike structures under con-
ditions where interchain excluded volume interactions are
absent.'®!” Although this model lacks internal chain modes,
the chain length polydispersity and the tunable average chain
length produce nontrivial viscoelastic and dielectric re-
sponses. The second model involves ideally flexible (random
walk) chains where the internal mode dynamics is described
using the mean-field Rouse theory, which neglects interchain
hydrodynamic interactions.'® ™" This model illustrates how
the internal modes of the chains and chain polydispersity
affect the viscoelasticity of the self-assembling fluid. Finally,
we consider a mean-field model of chains with appreciable
interchain excluded volume interactions (reptation model) to
provide insight18 into how the contribution of interchain in-
teractions influence relaxation in complex fluids where “en-
tanglement” interactions are prevalent.

Section II briefly summarizes essential definitions of
equilibrium polymerization models and the basic variables of
the theory. The general theory is then applied to the follow-
ing systems: The reversible formation of rodlike polymers,
flexible polymers (Rouse model), and chains with strong in-
termolecular chain interactions (reptation model). Moments
§; of the stress relaxation function G(#) are used to quantify
the broadening of stress relaxation induced by the wide poly-
dispersity of the equilibrium clusters. Section III describes
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applications of the theory to dielectric relaxation from calcu-
lations of the autocorrelation function () for the end-to-end
vector, and we contrast the variation in ¢(¢) with that in G(z).
The Appendix discusses the alternative two-parameter Cole—
Davidson (CD) representation of relaxation phenomena, and
interrelations are established between the SE and CD param-
eters that approximately describe relaxation in associating
fluids.

Il. STRESS RELAXATION IN EQUILIBRIUM
POLYMERS

Consider a self-assembling solution in which the chain
length distribution is determined by a reaction equilibrium
and by the overall concentration ¢ of the solute. The sim-
plest model is the “freely associating” (FA) model in which
all solute species are permitted to associate and disintegrate
without constraint.”' This minimal model is consistent with
at least two alternative reaction mechanisms.'® The first is
the monomer-mediated (MM) model** described as,

Ay=AyN_1+A,, MM model, (1)

while the other is the scission-recombination (SR) scheme,'

AN — ANr + ANN, SR model, (2)

where N=N'+N". Each association and dissociation event
involves the formation or breaking of a single “bond” in the
linear chain clusters, and k, and k; are the mean-field rate
constants for chain growth and scission, respectively. Both
rate constants are assumed, for simplicity, to be independent
of chain length and configuration. The SR and MM reaction
kinetics both yield the same equilibrium chain distributions
for the FA polymer system,

cy=BLg" " = GL7 exp(- N/L), (3)

where cy is the number density of chains with length N, ¢ is
the total monomer density satisfying ¢=ENNCN,22 and g=1
—1/L<1, with L the average chain length. L depends on the
equilibrium constant K. =k,/k, for the addition of a mono-
mer and on the initial concentration ¢,

26K,
L= % = ¢!? exp(~ As/2kg)exp(Ah/2kgT),
V1+4¢K,, -1

(4)

where Ah and As are energy and entropy changes for chain
scission, and the mean-field rate constants k; and k, are as-
sumed to have an Arrhenius temperature dependence,

kd = 5(1 CXP[— Sd/kBT],

)
ka = 5{1 exp[— (sd - Ah)/kBT:L

where g, is the activation energy for the scission reaction.
When N is treated as a continuous parameter, the equilibrium
number density likewise also emerges as the exponential dis-
tribution of Eq. (3) (which applies for L>1).%**

The influence of particle clustering is illustrated by com-
paring the behavior of polydisperse systems of “frozen,”
nonassociating chains with solutions of “dynamic” or “liv-
ing” chains where each system has the same exponential
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FIG. 1. (Color online) Concentration dependence of characteristic polymer-
ization temperatures: (a) “Onset” T,, (b) inflection point Ty, and (c) “satu-
ration” Ty, temperatures for the quasichemical free association model of
equilibrium self-assembly. T4, =355 K is the “polymerization” temperature
for the solution having a reference concentration ¢,. The two filled circles
correspond to the states chosen in Fig. 2, and the solid line denotes the
cooling history for obtaining S in Figs. 3 and 6. The dotted line passes
through the polymerization transition. The inset depicts the degree of asso-
ciation ® as a function of temperature.

chain length distribution as Eq. (3). The description of the
temperature dependence of viscoelastic properties is facili-
tated by defining the polymerization temperature Tg as the
inflection point in the temperature dependence of the fraction
®(T) of monomers in the clusters,

I’o(1)  d* ( 1

arr dr _%>=O' (©)

The polymerization temperature can be also defined as the
temperature where the specific heat capacity C,(T) of the
system is maximum® or alternatively as the “kink” in the
mass density for a compressible fluid.”® The onset of asso-
ciation upon cooling occurs at a temperature 7, the mono-
mers are largely consumed at a temperature T,, and T is an
intermediate temperature (see Fig. 9 of Dudowicz et al. * and
the related discussion). The locus of onset T, and saturation
T, temperatures (see inset of Fig. 1) are calculated for the
quasichemical FA model as the characteristic temperatures
where the degree of polymerization approaches ®(T,)
=0.05 and ®(T,)=0.95, respectively.”'* These characteris-
tic temperatures vary monotonically with the initial mono-
mer concentration, and their loci provide the “state dia-
grams” (the analog of phase boundaries in phase separating
or crystallizing systems) for this and many other self-
assembhng systems in solution (see Fig. 1). Note that ¢v,
=¢Y, where ¢ denotes the initial volume fraction of
monomers” and v 4 1s the volume of a monomer subunit.
The stress relaxation modulus G(7) for an equilibrium
associating fluid involves contributions from both the self-
assembled species and the unassociated monomeric particles.
To minimize the number of parameters, the subunits are
taken to have identical relaxation behavior as the solvent
particles. Since the relaxation of the solvent and monomers
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is not described by either of the classical polymer models,
their contribution to the short time stress relaxation is de-
scribed using the simplest Maxwell model, while the long
time contribution from chain dynamics is treated separately,
as illustrated below using the simple Rouse, reptation, and
rodlike chain dynamical models with modifications intro-
duced to describe the reversible scission/association
processes.

The evaluation of the contribution to the stress relaxation
function G(z) from the clusters requires summing over the
normal modes for the collective chain motions and then av-

eraging over the equilibrium size distribution (¢"~' in the
simple FA model),10
40 N-1
G(t) = G exp(=1/7,) + 5 2 > GoaNg“a(p)
N 2 p=1
Xexp(—t/7,)exp(=t/7,), (7)

where 7, is the characteristic time for reaction (1) or reaction
(2), whose dependence on N is given explicitly in Eq. (9)
below, while 7, are the normal mode relaxation times of the
linear chains. A similar scheme for describing relaxation in
equilibrium polymers by a weighted average as in Eq. (7) has
been introduced by Faivre and Gardissat”’ and also by
Huang et al® Gy is the “plateau modulus” for clusters with
fixed length N, while G.,=G+(1-®)G" accounts for the
contributions from solvent and monomer particles, respec-
tively. The relaxation times 7,,=7 exp(e,/kzT) for the sol-
vent and monomers are set equal for simplicity, but this as-
sumption is not required. Equation (7) recognizes that the
monomer contribution at lower temperatures is proportional
to the concentration of the unassociated monomers which
become depleted as the monomers join into chains, while at
high temperatures the relaxation of the unassociated species
dominates. The mode dependent factor o(p) is specific to the
polymer model (stiff chains, flexible chains, rods, etc.) and is
thus a dynamical quantity to be computed. For instance, our
computations of the relaxation modulus G(r) for the Rouse
model of associating polymers indicate that 7, = 7,N?/p?* and
o(p)=1, while the treatment of dielectric relaxation with the
Rouse model of associating polymers involves the normal-
ized time correlation function for the end-to-end vector
(1)=(R(t)R(0))/(R?), a description that requires the summa-
tion over odd modes with the factor o(p)=1/p?,

N-1

8 1
wN(t)=;E ;exp(— t7)exp(-1/7) (p odd). (8)

p=1

Likewise, the contribution to the stress relaxation from
chains with fixed length N undergoing reptation dynamics is
proportional to () of Eq. (8) with 7,=7,, v/p* TrepN
=Tep(N/L)*, and o(p)=1/p*. The “single mode approxima-
tion” involves simply restricting the sums in Egs. (7) and (8)
to p=1.

Finally, the characteristic times for the scission/
association reactions are taken as the average lifetimes 7, of
the linear chain clusters, which are obtained in Ref. 10 as
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— for MM reaction
2k,
Tq= | )
——— — for SR reaction.
k 2L+ N)

These equations assume that chain scission is unimolecular
and arises either at the chain ends (MM) or occurs with uni-
form rate along the chain (SR). Thus, the temperature depen-
dence of the chain scission time is governed by the variations
in the dissociation rate constant k; and the average chain
length L. For instance, the average chain scission time for SR
kinetics  changes as  7,==(k L)™' ~exp(e,/ kzT)exp(
—Ah/2kgT).

Stress relaxation in equilibrium self-associating fluids
becomes particularly simple at high temperatures (clustering
upon cooling) when 7 is less than the time 7,=D(R?)/6 for
ideally unbreakable chains to diffuse a distance on the order
of the mean square end-to-end distance (R%), where D is the
average diffusion coefficient of the unbreakable chains. The
low temperature limit of G(¢) in Eq. (7) then reduces to a
simple exponential relaxation, the classic Maxwell viscoelas-
tic relaxation model."” (This result applies to the rodlike
chain, the flexible chain, and even the reptation model and
thus is quite general.) The later nontrivial case was first
noted by Cates” in pioneering modeling of the dynamics of
wormlike polymers. Numerous experiments for aqueous sur-
factants forming wormlike micelles and other systems form-
ing equilibrium associates seem to conform remarkably well
to this simple exponential relaxation.”* 2

Unsurprisingly, the Maxwell relaxation is not universally
observed, which has led to some questioning of validity of
the model of Cates.”’ In our view, this judgment is prema-
ture, and we focus instead on the obvious possibility that
experimental deviations from the Maxwell model may be
explained in terms of the more general Eq. (7) where the
relaxation process involves a complicated interplay between
fission, chain diffusion, influence of interchain interactions,
and relaxation modes of the self-assembled chains. Since our
goal is not to specifically model aqueous wormlike micelles
or chain forming gelator molecules in organic solvents,* the
models treated here are not designed specifically for describ-
ing these particular associating fluids. The focus, instead, is
on general phenomena describing how chain polydispersity
under equilibrium conditions, chain flexibility, and interchain
excluded volume interactions affect the stress relaxation in
solutions of equilibrium clusters for conditions ranging from
partially persistent chains (7;,=7,) to highly persistent
chains (7,> 7). The results below demonstrate that stress
and dielectric relaxation can exhibit a much more compli-
cated relaxation than that predicted by the Maxwell model
when the self-assembled chains are persistent, thereby acting
more like conventional polymer solutions where the bonds
mimic essentially irreversible chemical reactions. Many of
our results qualitatively agree with the observed nonexpo-
nential stress relaxation for associating fluids with persistent
c:hains,31’34737 while Turner and Cates®® and Granek and
Cates™ described the effect of chain persistence using the
SR-FA model of equilibrium association and reptation.
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Measurements of the compliance provide valuable infor-
mation concerning stress relaxation in self-assembling solu-
tions. The equilibrium steady-state compliance17 J, probes
the relation between the n=1 and n=2 moments (A") of the
relaxation time distribution for the system,

o o 2
Jezf tG(t)dt/ {J G(t)dt:|
0 0

. G'(v)
= lim

G (@) Gy (ADKAY. (10)

The analysis of J, for various models of reversibly associat-
ing systems is most conveniently executed using the last
equality of Eq. (10) in conjunction with the SE model as
represented in the frequency domain. The imaginary Laplace
transform u*(7w, B) of the SE is well approximated for low
frequencies by the first two terms of the series in Eq. (A4) of
the Appendix,

w(rw,B) = é[r(l/ﬁ)irw+r(2/,8)72w2], (11)

which is used below to analyze our calculations for models
of the dynamics of equilibrium associating systems, such as
the scission-Rouse or scission-reptation models. More spe-
cifically, the steady-state compliance J, computed with these
models using Eq. (10) is equated with its analog from the SE
model from Eq. (11),

(A% _pre/p

JGo= 5=

S AP T Rwe)” 12

enabling the determination of the model and system depen-
dent parameter S=1 that optimally fits the low frequency
portion of G*(w). The product J,G, provides a useful mea-
sure of the breadth of the stress relaxation process.

A. Rodlike model for equilibrium polymers

The single mode approximation is most accurate for the
relaxation of an equilibrium mixture of straight cylindrical
macromolecules. The theory of frozen, monodisperse rodlike
clusters predicts the frequency dependency of the dynamic
shear moduli as'’

P
Gy mw Trzod,N

G(w)=—" ,
(@) N 1+w2750d’,\,
(13)
GO( M| WTq N )
G'w)=—|—"—"""F5"+mor, ,
( ) N 1+w27'?0d’1\/ 2% rod, N

where Go=pRT/Mq=¢kpT, M is the molecular mass of a
monomer, p is the cluster mass concentration which is re-
lated to the total monomer density ¢ in solution by p
=¢pM,/N, (N, is the Avogadro number), the rotational relax-
ation time 7,,q v of the cylinder equals

my N F(N/d)

ST N, (14)
B

Trod,N =

m; are model specific constants (1, :% and m2=§; see Ref.
17), F is a slowly varying function of N/d that is of order
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FIG. 2. (Color online) Multistep stress relaxation function for polydisperse
mixtures (a) of unbreakable rodlike clusters with average length L=600 and
7,=3.8X 107 at a low temperature T/T4=0.563 and (b) of living rods with
average length L=120 and 7,=1.0X 107 at a higher temperature /Ty
=0.631 (open squares). T,ogv==7,N° is the rotational relaxation time of
monodisperse rods at fixed N. The short time relaxation constant is 7,,=7,
and the ratio G..: G is taken as 1:3. The solid lines are SE fits with (a)
£=0.28 and (b) B=0.62, respectively, to the long time portion of the relax-
ation function as deduced from the steady-state compliance J,G, for the
same temperatures. The inset depicts the long time contribution to G(z) for
the rodlike model of unbreakable rods at 7/7T4=0.563. The model param-
eters used are Ah=20kgT,, &,,=&,=8kzT,, and ,=115kzT, (T;=300 K).
The polymerization temperature Ty, is determined from the inflection point
of ®(T) as Tp=355 K.

unity, d is the diameter of the stiff cylindrical macromol-
ecule, N is its length, and 7, is a segmental relaxation time,

T, = Ti,) exp(eykgT). (15)

The near proportionality of 7,4y to N? is similar to the scal-
ing of the reptation time Trep’N.lg Thus, the computations of
G(1) from Eq. (7) with o(p)=4;, involve the single mode
relaxation time 7,=7,,q v for the rodlike cluster with length N
from Egs. (14) and (15). For consistency, the long time con-
tribution in Eq. (7) to the N=1 “one bead” limit is required
to reproduce the short time contribution (taken separately) at
high temperatures above the polymerization temperature.
This consistency condition introduces interrelations between
parameters, namely, the zero-shear viscosity 7,(T,) of the
solution of unassociated single beads at high temperatures is
chosen to equal to that computed using the Maxwell model
describing the contribution from “monomers.” This condi-
tion implies 70(T,)=G" 7,,= G7,. The modulus ratio G°/G",
is best obtained from experiment and is treated as a param-
eter below.

Figure 2 displays the stress relaxation modulus of a FA
equilibrium mixture for persistent, unbreakable rodlike clus-
ters at low temperatures 7<<Tg, where SR or MM reaction
kinetics are too slow to influence cluster relaxation, and also
at higher temperatures where the scission rates impact sig-
nificantly the relaxation dynamics of the rods formed by dy-
namic association. The illustrative parameters are indicated
in the caption. Remarkably, G(¢) exhibits a nearly flat plateau
for 7,,<t<7,4,- The width of the plateau grows with di-
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minishing temperature as the average chain length L in-
creases. This behavior occurs because the relaxation times
7,04 for linear chain clusters are proportional to 7,N°, and the
height of the plateau generally also depends on L because the
height is governed by the ratio G,/ G.. Above the polymer-
ization temperature 7>Tg, long chains dissociate into
monomers, so the high temperature system exhibits the short
time relaxation of the monomer-solvent mixture (presumed
here to be an exponential relaxation). A plateau in G(¢) de-
velops at lower temperatures when the ratio of characteristic
relaxation times 7,4/ 7, becomes large. Consequently, the
height of the plateau decreases with cooling as the fraction of
monomers diminishes. The long time decay of G(¢) is domi-
nated by the relaxation modes of the linear chain clusters
with the length distribution dictated by the equilibrium FA
model. The multistep decay of Fig. 2 is qualitatively similar
to data from the dynamic light scattering autocorrelation
function and corresponding stress relaxation data (which
have a more limited accessible time range) for persistent or
“entangled” wormlike micelle solutions.”’

The long time relaxation process obtained from Eq. (7)
is well represented by a SE, as demonstrated in Fig. 2. The
exponent 8=0.30 agrees well with the time variation in G(¢)
over many decades at low temperatures, i.e., for the corre-
sponding frozen polydisperse system. This finding is encour-
aging in view of data for the rheology of wormlike micelles
where the apparent B for aqueous cetylpyridinium chloride
surfactant with added Na-salicylate salt (293 K) varies from
a low limit near 0.3 to almost 1.0 as the salt concentration
increases relative to that of the surfactant.*

An alternative approximation for 8 may be evaluated
from the equilibrium steady-state compliance J, using Eq.
(10), so both methods of evaluating B8 are compared. Disre-
garding the purely viscous (m,) contribution to G” in Egq.
(13) for the relaxation function of unbreakable, polydisperse
rods (k;—0), the low frequency limit of the complex modu-
lus G*(w), normalized by go=G'(0>0)=G,/(Lm,), yields

G'(w)/gy = T207L0?,

(16)
G"(w)lgy= 67w,

where L is the average length of the frozen chains.

The computed compliance J,g;,=20.0 for the polydis-
pere mixture of unbreakable rodlike molecules and the use of
Eq. (12) yield B=0.28, which agrees well with the exponent
B=0.30 obtained by fitting the long time portion of the com-
puted G(7) in the time domain. Below we demonstrate that
all three models (Rouse, rodlike, and reptation) for frozen
chains with an exponential length distribution produce simi-
lar SE long time behaviors with the quasiuniversal exponent
B :ﬁ, as predicted by Douglas and Hubbard" within the
single mode approximation.

When the scission rates of the rodlike molecules are
non-negligible, the apparent stretched exponent deduced
from fitting the long time portion of G(¢) can exceed % In-
deed, the average of the normalized long time contribution
from Eq. (7) translates in the frequency domain for small @
to the relations
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G'(w)/gy = LT 0*S,,

(17)
G”(w)/go = LTS&)§1 N

where the moments S :(j=1,2) of the cluster size distribution
can be evaluated analytically using a continuous chain length
distribution instead of a discrete summation as

_ 1 f 7NV
S:=— g — N/L)dN, 18
=) QPN (18)
and where the dimensionless parameter r in Eq. (18) is de-
fined by

B 27Nk, for MM kinetics (19)
"T | 2Nk, (2L+N) for SR kinetics.

The frozen system (of infinitely persistent chains) corre-
sponds to k;=0 and, consequently, to the limit »=0, so that
Eq. (17) transforms to Eq. (16) describing the case of frozen
rods. Comparing Eqgs. (17) and (11) enables evaluation of the
stretching parameters relevant to the low frequency domain
for reversible systems where »>(0. When the reaction kinet-
ics are relatively rapid (r> 1), the coefficients from Eq. (18)
become LS,=(LS;)>=const, and Eq. (12) implies that the
relaxation function is exponential at long times with S=1.

It is interesting to consider how the computed B from
G*(w) at small w compares with that obtained from fitting
the relaxation function G(z) at long times. Our analysis indi-
cates that the apparent B3 evaluated from the computed G(z)
changes systematically with the range of time used in the
fitting process. Clearly, at sufficiently short times, scission
events do not affect the relaxation process, while at very long
times the dominant contributions to G(r) are provided by the
longest rods, whose “efficiencies” of chain relaxation
Trod.n/ T are amplified by their nonzero scission rates. Hence,
B=1 is also expected to emerge from G(¢) in the limit of
extremely long times, but this situation is only of academic
interest since G(r) has essentially decayed to zero at such
long times. The intermediate time domain yields an apparent
stretching exponent S that changes smoothly between these
two regimes for equilibrium associating systems. The appar-
ent B from fits to the low frequency portion of G*(w) for
associating solutions of rodlike macromolecules corresponds
to that computed for G() in the “intermediate” time range
for the relaxation of rods with average length L whose range
of effective relaxation times overlaps the time domain used
in the fitting process.

The apparent exponent B naturally depends on tempera-
ture because of the variation in the cluster size distribution,
reaction rates, and rates of cluster diffusive rearrangements,
implying more specifically the change in the average chain
length L, rate constant k,, and structural relaxation times, i.e.,
Toq) With temperature. Below, we briefly illustrate how B
varies from a low S plateau regime for persistent rodlike
chains at low temperatures T<Tg(r=0) to B=1 for the
short lived species characterized by appreciable scission
rates at higher temperatures 7> T, (r=1). The dissociation
constant k,; in systems self-assembling on cooling increases
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FIG. 3. (Color online) The sigmoidal temperature dependence of the fits of
B to the low frequency portion of G*(w) for the scission-rodlike model of
dynamics and aggregation. The model parameters for the scission and acti-
vation energies are the same as in Fig. 2.

with temperature, while the average chain length L de-
creases. When the SR mechanism is operative, both factors
produce a change in 8 as we detail below.

The temperature dependence of the time scale for chain
diffusive rearrangements in Egs. (14) and (15) and for sciss-
ion of the clusters in Egs. (5) and (9) combine with the
variation in the average chain length in Eq. (4) to determine
the overall behavior of the effective exponent B(T). For il-
lustration, B(7) has been computed (Fig. 3) from the steady-

state compliance J,go=LS,/(LS,)? using the scission-rodlike
model, the activation energies &; and &,, and the scission
energy Ah specified in the caption of Fig. 2. Reported values
of Ah for a number of wormlike micellar fluids lie in the
range from 20kzT to 70kgT, and usually the activation en-
ergy &, (associated with the rate constant k;) exceeds the
scission energy AR although independent measurements
of each energy are difficult due to the complex interplay
between the times scales of chain scission and the diffusive
rearrangements and to the impact of the temperature depen-
dence of the average chain length.41 However, the qualitative
behavior of B(T) is independent of the specific choice of
model parameters.

The most remarkable observation in Fig. 3 is the sigmoi-
dal variation in B(T), which is similar to the temperature
dependence of the configurational (nonvibrational) entropy
of the fluid and of 1-®(7) where @ is the self-assembly
order parameter (see inset of Fig. 1 and Ref. 39). A qualita-
tively similar shape for B(T) is found below for the Rouse
and reptation models, although the low B:§ plateau
emerges independent of L for the rodlike model, while its
appearance depends somewhat on L for the Rouse model
(see below). The sigmoidal dependence of B(T) arises, in
part, from the variation in 8 with the dimensionless param-
eters r of Eq. (19), which depends on the average chain
length, the solvent viscosity (through Tg), the solute concen-
tration, and the temperature. While B(T) is a function of
these molecular parameters, the qualitative picture of struc-
tural relaxation for systems self-assembling on cooling dis-
plays the sigmoidal behavior as emerging from the variation
with temperature of the ratio of the chain scission time 7, to
the times 7, of internal cluster motions and the average clus-
ter size L, parameters that shift 8 in the same direction as
does temperature changes.
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094901-7 Relaxation in “complex” fluids

A similar S-shaped curve is also characteristic of the
apparent activation energy £, computed from the tempera-
ture dependence of the terminal relaxation time 7,=(A) in an
equilibrium associating fluid (as described below). For ap-
preciable scission rates and &, Ah, the apparent activation
energy E, at intermediate temperatures below Ty, (i.e., where
the solution contains relatively long chains that break and
recombine rapidly) actually exceeds the low temperature
limit value of E, = g,+(3/2)Ah, corresponding to persistent,
almost unbreakable polymers.

This trend for the activation energy of the stress relax-
ation time parallels the normal trend in glass-forming liquids
where E, increases upon cooling, reflecting the growth of
transient polymeric excitation structures below Tq).6’42’43
Consider now self-assembling fluids in the vicinity of Tg. As
the equilibrium chains dissociate into small oligomers and
then into the monomers with increasing the temperature, the
effective parameters 8 and E, describing stress relaxation
vary dramatically above T, even for very slow reaction ki-
netics (k;=~0), namely, B(T) increases from the low plateau
level to unity while the apparent activation energy decreases,
as is typical for glass-forming fluids. Analytical estimates of
this behavior are possible for unbreakable chains (k;=0).
Using the exact discrete chain length distribution, the low
frequency limit of the complex modulus yields expressions
analogous to Eq. (17) with

— - . 1+4q+q2
LS, =2 N(1-q)g" ' = ————,
=1 (1_4)

(20)

LS, =2 N°(1 - g)g™!
N=1

_1+579+302¢>+302¢° +57¢° + ¢°
(1-¢9)° ‘

The low temperature T<T,,(q=1) steady-state compliance
J.80=20 exactly equals that computed with the continuous
distribution (L>1) and implies a low B. On the other hand,
at high temperatures 7> T, (¢=0,L=1), the “shape in-
dex” J,go becomes J,g,=1, as expected for the single expo-
nential relaxation limit (8=1).

Unlike the impact of reversible reaction kinetics on
stress relaxation, the trend in B(T) described above is asso-
ciated with the polymerization transition and reflects the co-
operative influence of both polydispersity and scission en-
ergy on chain dynamics. Figure 4 depicts the dependence of
the computed terminal relaxation time 7 for almost unbreak-
able rods (a polydisperse system with k;~0) over a wide
range of temperatures. The stretching exponent B(7)=0.3
varies only slightly with temperature for 7<<Tg but changes
dramatically above Ty, approaching unity at “high” tempera-
tures 7> T,. However, the apparent 83 derived above Tg, from
J.go describes the low frequency limit of G*(w) rather than
G(r). We observe a change in the slope B,=d log[
—log[G(1)/Gyl]l/d log t for the intermediate time regime
where G(1)/ G, relaxes from 0.5 to 0.001. The B(T) from fits
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FIG. 4. (Color online) The temperature dependencies of the terminal relax-
ation time 7,=(A) for the rodlike model of unbreakable equilibrium poly-
mers and the relaxation time of the monomers 7,, (both normalized to 7'21) as
a function of the inverse reduced temperature 7,/ 7. The segmental 7, and
monomer 7,, relaxation times are set equal. The model parameters for the
scission energy Ak and activation energies are the same as in Fig. 2. The
inset displays the apparent activation energy E,=d log 7/d(1/T) divided
by the high temperature value E, o=&,=8kzT as a function of the reduced
temperature T/Tg for different scission energies Ah: (a) 13.3kgT,, (b)
20.0kzT,, and (c) 26.7ksT,.

above Ty, to the low frequency part G*(w)/ G increases over
an appreciable temperature range, but the average chain
length L varies over a limited range, AL=1.

The inset to Fig. 4 shows that the apparent activation
energy progressively increases upon cooling. The inset also
exhibits the influence of the scission energy on the effective
E4(T). The increase in E4(T) correlates with the variation in
the enthalpy Ah of the assembly process (“sticking energy”™).
Evidently, decreasing the scission energy (see caption of Fig.
4 for energetic parameters) makes the structural relaxation
process more Arrhenius. Thus, both the emergence of dy-
namic clusters and their persistence in time contribute to the
strength of the non-Arrhenius temperature dependence of the
structural relaxation time of complex fluids. The temperature
dependence of the terminal relaxation time 7 for an equilib-
rium mixture of clusters and that for the monomers 7,, merge
for T>T,, as demonstrated in Fig. 4. Notice that 7 grows
astronomically in this illustrative example, so that the fluid
effectively becomes a solid at some point, a phenomenon
recently indicated in certain wormlike micelle solutions.**

The relaxation time ratio ®(7)=7;/7,=LS, is found to
be a universal function of the inverse reduced temperature
Tg/T for unbreakable rods, yielding a single curve indepen-
dent of Ah but influenced by the chain scission entropy As
and the total monomer density ¢. For 7>T,, the ratio be-
comes @ =1, while for T<Tg, log O(T) becomes linear
with slope ay(As, d)=d log O(T)/d(Tg/T). Indeed, the po-
lymerization temperature and the scission energy in the FA
model are related by Ty,=5"'(As, ¢)Ah, where 8(As, @) is a
factor depending on concentration and entropy of assembly.
For low temperatures, ®(7T)=6L> and the slope « is de-
duced as ay=38(As, @)/ 2kp.
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B. Rouse model for equilibrium polymers

Multistep relaxation processes are now described for the
Rouse-scission model in a fashion similar to that for the
rodlike chain model. The short time behavior again is gener-
ally characteristic of the relaxation of monomers and solvent
particles, while the long time relaxation is expected to ex-
hibit Rouse-like dynamics for the equilibrium self-
assembling fluids. The long time Rouse relaxation process
becomes modified by the reversible scission-association
events. A multistep relaxation appears in the equilibrium as-
sociating Rouse system if the relaxation time 7y_; = 7, of the
fastest relaxation mode is comparable to the local monomer/
solvent relaxation time 7,,. The ratio 7,/ 7,, depends only on
temperature, which therefore acts as a tunable parameter
controlling the occurrence of multistep decay in living Rouse
systems.

1. Effect of internal chain modes on relaxation

Our previous work formulates a minimal model of vis-
coelastic and dielectric relaxation in order to explore system-
atically how the coupling between the scission/association
processes and the internal chain rearrangements modifies the
relaxation dynamics from that of a frozen polydisperse solu-
tion of Rouse chains. The low frequency limit of the com-
plex modulus G*(w) for an equilibrium population of dy-
namically associating chains is generallylo

G'(0)/Gy= K0S,
21)
G"(w)/Gy= kS,

where Gy=pRT/M, is the plateau modulus, k= (72/8)7,, the
Rouse constant 7 is

s
0% 3k, T

(22)

p=¢M,/N, is the mass concentration of the clusters in the
solution, ¢, is the monomeric friction coefficient, and b is the
effective length of a segment. The coefficients §j are com-
puted as the averages over the equilibrium cluster distribu-
tion S;=SyL2Ng"~'S;. The quantities S;(j=1,2) involve
sums of contributions from modes with different relaxation
times,

(23)

where the dimensionless parameter a depends on the mecha-
nism of the scission/aggregation kinetics, '
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_ 2k, for MM Kkinetics (24)
| kk 2L+N) for SR kinetics.

The summations in Eq. (23) may be accomplished analyti-
cally by contour integration for the scission-Rouse model,"

s coth x 1 (1 1 ) 25)
= =+ S
! \J';\r'l +a 2N\a 1+a

B (1+2a)coth x  N(1 - coth® x)

T oV e} a(l+a)
1 /(1 1
BN (S — 26
2N<a2 (1+a)2) (25)
where
x=2N arcsinhva. (27)

A monodisperse system of frozen nonreacting Rouse
chains in solution corresponds to a=0, whereupon the sums
in Eq. (23) yield

2N* -2 2

= 3y 3"

(28)

_8N'+20N°-28 8
- 45N 45

3
2 .

The average over an exponential chain length distribution for
a polydisperse system of frozen chains may be evaluated
analytically (j=1,2) using the continuous distribution

- “ NS,

S;= fo Fiexp(— N/L)dN. (29)
In particular, for the frozen chain Rouse model with a=0, the
integrals yield

§1 = ;“L,

4

S,=%L (a=0). (30)

The opposite limit of reacting chains with rapid reaction pro-
cesses (a>1) produces

S]z

b}

Q |=

@31
1
S2=; (a>1)

Averaging Eq. (31) over the equilibrium chain length distri-
bution leads to § =q,S;(L) where g; is independent of L, with
¢:=0.83 and ¢,=0.76 for SR kinetics and where ¢;=¢,=1
for the MM mechanism. The scission rate is inversely pro-
portional to N for the former model, while the latter model
has the rates independent of N as in Eq. (24).

We now compare Eq. (I11) for the frequency domain
transform of the SE function u(f)=exp[—(¢/7)?] with Eq.
(21) for the normalized complex modulus G*(w)/ G, where
the constant Go=G'(w— ) is chosen as the high frequency
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FIG. 5. (Color online) Normalized dynamic viscosity 7*(w)=G*(w)/iw for
self-assembling systems with average chain length L=100 as a function of
the dimensionless frequency 7. The solid lines correspond (a) to unbreak-
able Rouse chains and to living polymers with MM reactions with (b)
Tok,=107 and (c) 7yk,=1072. The dotted lines are their SE fits, which yield
(a) B=0.18, (b) B=0.33, and (c) B=0.48. The normalizing coefficients are
170=CGy7y, where C equals (a) 164.5, (b) 22.5, and (c) 7.51. Real compo-
nents of the shear viscosity %’ are displayed in (a), while imaginary com-
ponents 7" are presented in (b).

limit of the real part of G*(w) in order to generate equations
for the 8 and 7 that best approximate the low frequency
portion of G*(w)/ G,

S, BrQip)
3 CTX1/B)’ (32)
T _SI1/B) (33)
K 5I@2/B)

When a> 1, the reaction kinetics are fast compared to the
Rouse relaxation times, and the ratio in Eq. (32) becomes

S,/ §%'—V 1. Hence, the resulting S==1 corresponds to an ex-
ponential relaxation, with the relaxation time 7=kxa~'. On
the other hand, when reaction rates are slow, a<<1, the
exponent is B<1, the effective relaxation time is
r=kL*(16I'(1/B)/5I'(2/B)), and B is small for high aver-
age chain lengths (L>1). Figure 5 depicts the viscoelastic
relaxation 7" (w)=G"(w)/iw over the full frequency domain
for the Rouse model with several reaction rates, along with
the SE fits using parameters evaluated from the low fre-
quency limiting expressions in Egs. (11), (32), and (33). Al-
though the fits are only to the low frequency region, the
correct behavior is well represented over a wide frequency
domain apart from the shift in the frequency maximum.
The comparison between Egs. (32) and (12) enables ex-

pressing the dimensionless shape index JeGozgz/gf for
the stress relaxation function in terms of the coefficients
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Sl»(j =1,2). The product J,G is computed as 0.4N for mono-
disperse frozen Rouse chains, while polydisperse frozen
chains (i.e., with infinitely slow chain scissions) have a shape
index of J,G(=2.4L. The stretching exponent computed from
Eq. (32), i.e., using the steady-state compliance, equals B
=().24 for monodisperse frozen Rouse chains with N=100,
while the polydisperse frozen system with L=100 produces
B=0.18 from the fit. The steady-state compliance J, for the
scission-Rouse model depends on L when the reaction kinet-
ics are slow (see the frozen chains example above where J,
scales as L), while for faster reaction rates the compliance
weakly depends on L, yielding J,Gy==1 for the fast scission
limit. When the parameter >0 is constant as for MM ki-
netics, B is found to be practically independent of L (for B
=(.3). This comparison demonstrates again that the product
J,Gy=1 defines the extent to which the relaxation process of
a complex fluid departs from a simple exponential.

2. Single mode approximation

Douglas and Hubbard" used the single terminal (long-
est) mode approximation to analyze the time dependence of
G(r) for the Rouse model. Thus, they approximated the
Rouse stress relaxation function for monodisperse systems at
long times ¢> 7 (as well as the relaxation function for stiff
chains) by a single exponential relaxation,

1
G(1)/Gy = ;/exp(— t/71g), (34)

where 75 for the p=1 Rouse mode is 7= 7,N>. While this
mathematical simplification leads to modest errors in the
proportionality constants, the scaling laws for viscoelastic
and transport properties remain unchanged, as is demon-
strated explicitly.

Use of the terminal mode approximation G(r) for the
relaxation of associating systems again enables calculation of
the apparent B from the low frequency portion of
G\(w)/gon» Where goy is the high frequency limit of the
long time approximation to the real part of the complex
modulus gy y=G'(w>0)=G,/N. This approximation yields
J.gonx=1 which automatically translates for monodisperse
chains to the single mode approximation =1, as expected.
When the SE is matched using Egs. (32) and (33) for the
Rouse model [see also Eq. (12)] and all modes are retained,
the stretched exponent B describes the shape of G(¢) quite
well in the intermediate time range (Fig. 6) as well as in the
long time limit where the fit within the single mode approxi-
mation is made. While the longest mode approximation for
times 1> 7, yields a single exponential (8=1) for a mono-
disperse system, polydispersity shifts B to a lower value for
an exponential size distribution.

The normalization coefficient g, of the single mode ap-
proximation [Eq. (34)] for polydisperse systems is the aver-
age plateau modulus
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FIG. 6. (Color online) Stress relaxation modulus of unbreakable polydis-
perse Rouse chains with average chain length L=100 (open circles), its SE
fit with 8=0.18 obtained from the steady-state compliance J,G,, (solid line),
and the single p=1 mode approximation (dotted line). The inset displays the
same curves on different scales but with the same line legends.

“ gonN G
2= f 80N exp(= NIL)AN = 2. (35)
. L L

Thus, the low frequency behavior of the normalized complex
modulus is obtained from Eq. (21), keeping only the p=1
mode, and Eq. (35) is

Gi(w)/gg=67L"e?,
(36)
G,Il(w)/go = T()Lz(l),

which gives J,go=6 and S=0.38.

A log-log plot of G,(r) versus ¢ for monodisperse or
polydisperse Rouse chains demonstrates (inset to Fig. 6)
three “stages” of relaxation: Early, <7, (not discussed
here), intermediate, 7,<t< 7, and long time relaxation re-
gimes, t> 7. The inset demonstrates that the single mode
approximation of Douglas and Hubbard" is reasonable for
the long time dynamics. While our matching approach ana-
lyzes G*(w) and does not apply directly to G(¢), the param-
eters B and 7 obtained from low frequency fits to G*(w)/ G,
with all modes retained agree well with the computed
G(t)/ G, function for the Rouse model in the intermediate
time range k;7y<t<k,7;. The relaxation parameter S
=0.38 derived from Gj(w)/g, is more consistent with the
B=0.30 evaluated from time domain calculations of G,(r) at
long times (see Fig. 6). These values are compared to the
exact asymptotic value of % derived by Douglas and
Hubbard" based on a steepest descent calculation. The cal-
culated exponent at low temperatures, 8==0.30, is indepen-
dent of the average chain length, an independence that re-
flects the averaging over the polydisperse polymer chains.
Thus, our approach of using the n=1 and n=2 moments of
the relaxation time distribution probes the shape of the relax-
ation function on a time scale that overlaps with the relax-
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FIG. 7. (Color online) The sigmoidal temperature dependence of the fits of
B to the low frequency portion of G*(w) for the scission-Rouse model. The
inset presents the temperature dependence of the average chain length. The
model parameters are Ah=20kzT,, and &,—&,=60kzT,,. The polymerization
temperature Ty is determined from the inflection point of ®(7) as
Te=355 K.
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ation spectrum of the system, while 8 derived from J,g, of
the single mode approximation still yields reasonable agree-
ment with the full G(¢) at long times.

Figure 6 compares G(z) for a polydisperse Rouse system
with the low frequency SE fit and with G (7). The slowest
mode approximation is excellent in the long time limit 7
> 7, and this portion of G(z) is well described by the SE
model with 8=0.30 (not shown). A linear regime for the
Rouse chains is present in the inset at intermediate times. For
instance, the relaxation function G(¢) for the frozen mixture
with L=100 is compared with its SE fit with 8=0.18 com-
puted from the steady-state compliance J,G (as exhibited in
the inset), which in the long time limit 7>k, 7% is followed
by another linear regime with 8==0.30 that is obtained for all
L in the terminal mode approximation.

The temperature dependence of B(T) for the Rouse-
scission model is illustrated similarly to that for the rodlike
case. The Rouse constant 7, is proportional to the monomer
friction coefficient, which often follows an Arrhenius behav-
ior in simple fluids,"”

To= 7'8 exp(ey/T). (37)

The variation in B(T) has also been computed (Fig. 7) from

the steady-state compliance J,Gy=S 1/§% using the activation
energies g, in Eq. (5) and E, from Eq. (37). The temperature
dependence of the average chain length L(T) for the FA
model in Eq. (4) requires a specification of the scission en-
ergy as Ah. The sigmoidal dependence of B on T arises from
the variation with temperature of the dimensionless ratio a of
Eq. (24). The contributions from the internal modes makes
the small B “plateau” depend on L at low temperatures
(where B drops below % for flexible chains due to the impact
of the internal modes on the relaxation process).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



094901-11 Relaxation in “complex” fluids

C. Reptation model for equilibrium polymers

Mathematically, the dynamics of the reptation model are
analogous to those of the rodlike system since both models
de-emphasize the higher p> 1 modes by the prefactors 1/p?
(reptation), or these modes are absent (rodlike), while the
structural relaxation times 7., y and 7,,q y both vary nearly
as N, and the equilibrium cluster size distributions are speci-
fied as identical. Consider first the contribution to the relax-
ation modulus from chain clustering. Application of Eq.
(A33) of Ref. 10 for small @ to the frozen chain reptating
system produces the leading term for the modulus of a
monodisperse system as,

G'(0)/Gy = (7%120) 7, v

(38)
G"(0)/Gy = (7°/12) Ty,

where the plateau modulus G, depends on molecular param-
eters, concentration, and temperature but not on chain length,
and the reptation time 7, y is proportional to N3. A polydis-
perse frozen system with an exponential chain length distri-
bution merely yields a modification of the constant factors in
Eq. (38),

G'(w)/Gy= 421T4Tfepw2,

(39)
G"(w)/Gy= 27727'repw,

where 7, is the relaxation time for monodisperse chains
with length L equal to the average for the polydisperse dis-
tribution. Our theoretical prediction of 8=0.33 for polydis-
perse frozen chains undergoing reptation dynamics emerges
as independent of L. An analysis of the Cole—Cole plot of
G'(w) versus G"(w) indicates that the SE fit is reliable not
only at low w but over the full frequency range. Incorpora-
tion of “breathing” modes™ into the reptation model would
alter this conclusion, however, leading to a power law inter-
mediate time decay that is qualitatively similar to the flexible
chain model described in Sec. II B 2.

The low frequency regime for a living chain system is
described by the leading behavior,

G'(0)/Gy= Ty S5,

(40)
G"(0)/Gy= Tyep n®S],
with
WV"Z
2 tanh| —
Si=———F+——", 41
Tp mb? “1)
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TABLE I. SE parameters for monodisperse and polydisperse systems with
relatively slow and rapid reaction kinetics.

Model Type S,/ 82 B 5,/5? B
Rodlike Frozen 1.0 1.0 20.0 0.28
Reptation Frozen 1.20 0.85 10.5 0.33
Rouse Frozen 0.4N a 2.4L a
Rouse, s.m.’ Frozen 1.0 1.0 6.0 0.38
Rapid MM 1.0 1.0
Rapid SR 1.1 0.92

’S,/82=BI(2/B)/T*(1/ ).
s.m. means single mode approximation.

_ 2 Trepnka for MM kinetics “3)
B TrepNka(2L+N)  for SR kinetics.

Calculations for frozen chains (b=0) yield averaged sums

with rather large coefficients S,=24S,(L), S,=50408,(L)
[see Egs. (38) and (39)] compared to the near unity coeffi-
cients for highly “dynamic” chains (b>1). For example, b
large produces Ej:quj(L) with ¢,;=0.83 and ¢,=0.76 for SR
kinetics (8=0.92) and ¢;=¢,=1 for MM Kkinetics (B8=1).
Hence, if b>1, the sums satisfy S;j=S,=1/b% and the
physical model of rapidly exchanging chains is reflected by
B=1, i.e., by a nearly single exponential. Thus, analogous to
Eq. (32), the SE function provides a similar fit to the
scission-reptation model in the low frequency regime, and
the exponent S and the relaxation time 7 may be found easily
from Egs. (32) and (33) by substituting 7., for «x by intro-
ducing the sums S; from Eqs. (41) and (42) and by averaging
these with Eq. (29).

The shape index J,G for frozen monodisperse chains is
identical to that from a computation of the steady-state
compliance.18 The reptation model for monodisperse poly-
meric fluids predicts J,Gy=1.2 and B==0.85, which corre-
sponds to a nearly exponential relaxation. Polydispersity in
the frozen system widens the relaxation time distribution
considerably, and hence, the shape index becomes J,G,
=10.5, with 8=0.33 as found earlier. The latter estimate 8
=0.33 differs somewhat from Cates’ proposed value of S
~(.25 because Cates” approximated 7= 7, in the SE func-
tion. Using the same approximation as Cates and matching to
the terminal relaxation times for polydisperse chains yield
(Ay=7I'(1/ B)/ B=27 1, which in turn implies 8= 0.26, in
accord with Cates. The steepest descent estimate of Douglas
and Hubbard" (,82 %) from the simple single mode approxi-
mation also provides a reasonable approximation for self-
assembling fluids with reptation dynamics.

Table I summarizes the calculations of the stretching ex-
ponents S along with the parameters J,Gy=S,/ Sf for differ-
ent dynamical models. Two limiting cases are presented, fro-
zen (a=0) chain systems and rapidly reacting (¢=1) ones.
The first two numerical columns correspond to monodisperse
(N) chain length distributions, while the last two are for
polydisperse exponential distributions whose average length
is L.
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lll. DIELECTRIC RELAXATION IN THE EQUILIBRIUM
POLYMER MODELS

The complex permittivity of an associating fluid is now
illustrated using the scission-Rouse model'® in a manner
analogous to that for the complex modulus. The low fre-
quency limit of €"(w) varies as

€(w)= flo)-& =1-4K’w’S,,,
€)— € ’
(44)
€' — €,
€'(w) = =2kwS1,,
€)— €y

where €' (w) and €’(w) are the real and imaginary parts of the
normalized dielectric permittivity, and €, and €, are the lim-
iting low and high frequency dielectric permittivities. The
coefficients Sy, and §;, are determined from the leading
terms of expansions in powers of frequency as

J. Chem. Phys. 129, 094901 (2008)

(p odd),

(45)

1
SZ,e = 2

5(p odd).

— T

p=l p2<sin2<—p) +ae)
2N

The p~2 factor precludes their analytical evaluation of the
sums in Eq. (45), but they may be evaluated by contour
integration to good accuracy since a  previous
approximation10 introduces minimal error (as low as 4%
relative error for N=10) for low frequencies and long chains,

g I tanh Ny (46)
be a, \/a_e\r’1+aeNy2’

1
Sy ==
‘a 2 a1+ a, Ny

C
y = arcsinhva,,

a,=2a.

The contribution to the dielectric permittivity €*(w) from
solutions of chains with length N is determined by the imagi-
nary Laplace transform of the normalized autocorrelation
function ¢(¢) for the chain end-to-end vector.*® An averag-
ing over the equilibrium chain distribution leads to the di-
electric permittivity

* _ N —iwt _1
e(w)—foe ( dtz/;(t))dt

©

=(0) - iwf e Y(n)d =1 - ¢ (), (50)

0

with ¢(t) =2 \L2Ng"' /i (1) being the averaged autocorrela-
tion function. The polydispersity averaged function y(r) is
fitted again by a SE but perhaps with different parameters 3
and 7. Then, calculations of €'(w) in Eq. (50) are compared
below with the approximation in which (¢) is replaced by a
SE function w(z). Using Egs. (11) and (50) the approximate
SE model yields the dielectric permittivity at low frequencies
w as

€'(w)=€(w)—ie'(w)

=1- é[F(l/,B)iTw +T2/B)7Pw?]. (51)

Comparing the approximate €(w) from Eq. (51) with Eq.

\e"a_evl +a,(2 tanh Ny + Ny tanh?> Ny — Ny) + (1 + 2a,)y tanh Ny

(47)

(48)

(49)

(44) for the scission-Rouse model enables determination of
the optimal B and 7. This procedure reproduces Egs. (32) and
(33) but with different coefficients S; , # S;(j=1,2). Williams
and Watts*’ derived the series expansion in Eq. (A3) of €'(w)
for a SE form. However, the alternative series expansion in
Eq. (A4) is much more reliable for very small frequencies @
(see the Appendix).
Equations (46) and (47) for frozen Rouse chains (a=0)
reduce to
N +1

1,e 3

=~ l]\/2
3

b}

(52)
6N*+10N?>+11 2

Sy = =~—N' (a=0),
2 45 5V (@=0

while averaging Eq. (52) over an exponential distribution
gives (j=1,2)

§1 = 2L2,
(53)

S,=16L* (a=0).

The dielectric relaxation shape index B for frozen chains is
independent of the chain length L because of the scaling of
the coefficients S;, and S; of Eq. (30) with L. Thus, 8
emerges from the fit as 8=0.45 for polydisperse solutions of
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FIG. 8. (Color online) Normalized dielectric loss €’ as a function of dimen-
sionless frequency 7w for equilibrium populations of chains with the same
average chain lengths L=100 and different relaxation dynamics. The solid
lines are for (a) unbreakable Rouse chains and living polymers that follow
MM reaction kinetics with (b) 7yk,=107° and (c) myk,=10"*. The dotted
lines are the SE fits with (a) 8=0.45, (b) 8=0.67, and (c) B=0.84.

frozen Rouse chains (a=0). Equilibrium polymers with fre-
quent scission events (a,= 1) yield Sie:Sz,e: l/ag, imply-
ing the reduction in exponential relaxation (8=1). Figure 8
compares the dielectric loss peaks for the scission-Rouse
model with the SE approximation which is quite accurate
over the full range displayed even though it arises from fit-
ting of the low frequency behavior.

The shape of the low frequency tail of the loss peak for
monodisperse systems is quite accurately represented by a
single exponential relaxation since the contributions of the
higher modes is de-emphasized by the 1/p* weight factors in
Eq. (8). The deviation of the dielectric relaxation function for
associating fluids from a simple Debye form arises mostly
due to polydispersity. Frozen Rouse chains are characterized
by a loss maximum at an inverse frequency of 1/,
=2.77,L% [0.977,N? for a monodisperse system (Ref. 48)]
that is comparable to the longest relaxation time. As the
scission rate increases, the appropriate 8 approaches unity,
and the 7 from the SE fit changes from the scaling ~L? for
the frozen limit to ~L*, where k=0 for MM and k=1 for SR
kinetics. Also, retaining a constant ratio 7pk; between the
chain scission time and the Rouse constant (i.e., for MM
Kkinetics), the low frequency fit of B is sensitive to the aver-
age chain length L. For instance, at 7yk,=107%, we find 3,
=(.52 for L, =100, while 8,=0.84 for L,=1000. The shape
of the dielectric loss peak is determined mostly by the p=1
modes of those species whose lengths lie in an interval
L+ AL about the average L. The ratio 7,k,= 102 applies for
“shorter” chains, while for “longer” chains, 7k,;= 1, making
the “chemical” relaxation more effective for longer chains
and narrowing the width of the relaxation spectrum distribu-
tion, i.e., B increases toward unity. When the chains are
nearly frozen (or are frozen), B weakly depends (does not
depend) on the average chain length, e.g., for the much
smaller 7,k,=10"° and L,=100 and L,=1000 the resulting

1.2=0.45 differ by 6§8=0.01 even though the average chain
length varies by a factor of 10.

The dielectric relaxation spectrum may thus be repre-
sented over a wide frequency region as the sum of two re-
laxations in which the high frequency process is attributed to
relaxation of solvent and monomers (generating a peak co-
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FIG. 9. (Color online) Normalized Cole—Cole plot for polydisperse mixture
of unbreakable chains undergoing reptation dynamics at 7<<Tg. The multi-
step dielectric relaxation includes (a) the high frequency relaxation €)(w) of
solvent and monomer particles and (b) the low frequency contribution € (w)
associated with chain relaxation. The ratio of the relaxation strengths is
taken as Ae¢/Ae€,=1. The dotted line is the SE fit of the low frequency
process with 8=0.33.

inciding with that of the pure solvent for dilute enough
solutions49), while the low frequency peak comes from inter-
nal chain relaxation,

€'(w) = g,(0) + € (w). (54)

Analogous to the short time stress relaxation, the high fre-
quency dielectric relaxation is assumed to obey a Maxwell
model for the solvent and monomer particles,

Afh

T
l+iwT,

e(w) = (55)
while the low frequency contribution in equilibrium self-
assembling solutions is described by one of our chain mod-
els. At low temperatures T<Tg(L>1), we expect the low
and high frequency relaxation processes to be well resolved
and produce a double arc Cole—Cole plot. For illustration,
Fig. 9 displays the computed frequency dependent dielectric
permittivity for a polydisperse mixture of persistent chains
undergoing reptation dynamics at low temperatures. Gener-
ally, the low frequency “chain” contribution to the dielectric
relaxation is given by

(o) = Ael[l = NG ) |, (56)
N
where
M) = 5 i ! (p odd)
VM) = 3T N 2P b+ imggw) T
(57)

The exact sum in Eq. (57) is evaluated in the Appendix of
Ref. 10 [see Eq. (A30)]. When b=0(T<Tg), the low fre-
quency asymptote of € (w) is fitted by a SE with S=0.33
since (1) =g(r) for the reptation model, and hence, the same
B and 7 emerge from fitting the low frequency dielectric
relaxation €"(w) and stress relaxation G*(w)/ G, functions.
The multistep dielectric relaxation is depicted in Fig. 9
in terms of a normalized Cole—Cole plot. The ratio of the
relaxation strengths of the low and high frequency contribu-
tions strongly depends on concentration,” and the value
taken is indicated in the caption. At higher temperatures the
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average chain length L decreases, leading to a smoothing and
disappearance of the dip. When L is large enough (®=1),
the Cole—Cole plot remains unchanged by further lowering
of the temperature.

IV. CONCLUSIONS

We study minimal models for the viscoelastic and di-
electric relaxations of fluids self-assembling into chainlike
clusters that form and disintegrate reversibly at equilibrium.
The relaxation dynamics predicted for these fluids using
classical polymer dynamic models are largely affected by the
competition between the chemical SR and internal chain re-
laxation processes. The computed steady-state compliances
are fitted to SE functions, which are often used to analyze
experimental data. The relaxation modulus G(7) calculated
for three dynamical models (rodlike, Rouse, and reptation)
are well approximated by a SE relaxation over an appre-
ciable time range, a feature often observed experimentally
for the long time relaxation of complex fluids. The exponents
B deduced from the computed low frequency behavior of
G*(w) enable us to describe an intermediate time regime that
overlaps with the characteristic relaxation times of the
chains. The theory is illustrated in detail for the stress relax-
ation of rodlike and of Rouse chains with an exponential
chain distribution derived from the theory. The long time
contribution to G(r) for unbreakable chains behaves as a SE
with 8=0.3 at low temperatures and is thus similar to the
relaxation functions for polydisperse systems whose dynam-
ics is effectively described by a single relaxation mode (rod-
like macromolecules or reptative chains).

Our model yields a sigmoidal dependence of the stretch-
ing exponent B both as a function of the ratio of the scission
time to the characteristic time for internal chain motions and
temperature. For systems that associate upon cooling, the
chain scission time at low temperatures is large compared to
the time scale of diffusive rearrangements of the clusters,
thereby producing a plateau with small 8 at low tempera-
tures. On the other hand, the high temperature system is
composed of either short oligomers or long chains that de-
compose and recombine rapidly, and consequently, the stress
relaxation approaches another plateau in 8 with =1 at high
temperatures. The transition zone in the stress relaxation
from the highly stretched to a nearly exponential regime
evolves naturally as temperature increases, and the relaxation
spectrum narrows, a phenomenon also exhibited rather gen-
erally in the dynamics of glass formation.”® Unbreakable
polymers or simple fluids have an effective relaxation time
that is a weak function of temperature, in contrast to associ-
ating fluids, living polymers, and micellar solutions where a
strong temperature dependence emerges from an increase in
the dissociation rate constant k; as temperature is elevated.
We also demonstrate the relationship of the stretching expo-
nent B to the molecular parameters of the chain models.

An additional motivation for investigating the dynamics
of equilibrium self-assembly arises from the suggestion by
Douglas and Hubbard"® that the “dynamically heteroge-
neous” structures forming and disintegrating in dynamical
equilibrium in cooled liquids (where crystallization is sup-
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pressed) can be understood as a kind of self-assembly. In
particular, based on symmetry arguments applied to exact
formal integral equations describing relaxation in fluids at
equilibrium along with experimental observations for stress
relaxation in glass-forming liquids, Douglas and Hubbard"®
hypothesized that these heterogeneities should take the form
of equilibrium polymers, thereby rationalizing many univer-
sal aspects of stress relaxation in glass-forming liquids. Since
their work, much evidence from both simulations for glass-
forming liquids and direct observations of the dynamics of
colloidal fluids has accumulated, supporting their hypothesis
(see Ref. 51 for a discussion and for a fit of the temperature
dependence of the mass distribution for mobile strings to a
self-assembly model of the kind described in the present pa-
per). The phenomenological similarity between the dynamics
of associating polymers and the dynamics of glass-forming
liquids has been established by Kumar and Douglas52 and
recently by other authors.”>* The original work of Douglas
and Hubbard"® models the dynamic heterogeneity of glasses
as a kind of equilibrium polymerization, assuming, in effect,
that the transient clusters are rigid over the times of the stress
relaxation. Thus, the analogy with conventional equilibrium
polymers is evident. Mobile particle chains clearly cannot be
equated with conventional polymers in terms of their impact
on the chain viscoelasticity, although the growing length of
the polymers upon cooling certainly correlates with both the
increase in the apparent activation energy and the decrease
in the configurational entropy in cooled liquids. Simula-
tions™ >’ indicate that both the mobile and immobile particle
clusters grow into polymer structures in a complementary
fashion upon cooling, so that the presence of one class of
clusters seems to imply the other. Given the complexity of
the clustering phenomenon occurring in glass-forming lig-
uids, a direct application of our model to this class of com-
plex fluids requires caution. Nonetheless, we expect that the
main cause of the multistep relaxation in glass-forming lig-
uids is the presence of polydisperse immobile particle clus-
ters, as originally envisioned by Douglas and Hubbard."

Consistent with this conjectured relationship between
self-assembling fluids and glass-forming liquids, a mono-
tonic decrease in 3 has been reported in both structural glass-
forming liquidsz’4’6’8’9’58’59 and even magnetic glass-forming
materials.”’ The present theoretical framework for self-
association indicates that this variation in B arises from an
averaging over a polydisperse chain distributions at equilib-
rium and a phenomenology that is strikingly reminiscent of
the phenomenology of glass-forming liquids. While the
original Douglas—Hubbard equilibrium polymerization
model of stress relaxation in glass-forming liquids simply
assumes that a single chain relaxation mode dominates the
relaxation process, the single mode approximation is found
here to be good for rodlike chains and chains exhibiting
reptative dynamics but only qualitative for flexible associat-
ing chains in the long time limit.

As mentioned in Sec. I, both the theoretical arguments of
Douglas and Hubbard'® and the present treatment of associ-
ating fluids omit hydrodynamic interactions associated with
collective momentum diffusion in the fluid. Even in simple
fluids,”" these long range interactions lead to memory effects
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in stress relation. Consequently, the velocity autocorrelation
function associated with particle diffusion incurs a nonexpo-
nential (power law) long time relaxation due to hydrody-
namic interactions. These interactions are neglected here be-
cause the interest lies in the longer time relaxation where the
heterogeneities in the fluid associated with assembled clus-
ters are expected to dominate the fluid relaxation. Our treat-
ment is quite consistent with other treatments of the dynam-
ics of polymer solutions where hydrodynamic interactions
are neglected.

The scission-Rouse model of self-assembling polymer
solutions is also used to obtain basic qualitative insights into
the dielectric relaxation of associating fluids. Our model cal-
culations indicate that the dynamic heterogeneity of the as-
sociating fluid produces relaxation that is well described by a
SE function, but 8 and 7 are found to differ from the corre-
sponding quantities obtained from modeling stress relax-
ation. The 8 and 7 estimated from the computed loss peaks
are found to be useful for representing the complex permit-
tivity of an associating fluid as a function of temperature,
chain length, and concentration. The form of the dielectric
loss peak is sensitive to the “efficiency” of the scission dy-
namics, as governed by the dimensionless parameter a. For
fixed and nonzero a> 0, the shape of the dielectric loss peak
€'(w) strongly depends on L. Similarly, frozen chains with a
near zero yield a loss peak that is insensitive to the chain
length, a theoretical observation that may be useful for track-
ing the dynamics of chains in self-associating solutions and
in estimating the reaction rates.
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APPENDIX: STRETCHED EXPONENTIAL AND
COLE-DAVIDSON RELAXATION FUNCTIONS

1. Analytical representation of stretched exponential
function in the frequency domain

The Laplace transform of the SE function u(f) into the
frequency domain,

o [

e u(t)dt=iw f eiote=nP gy
0

w(w,7,B) = ia)J

0
(A1)

cannot be performed analytically. Thus, we consider trac-
table representations for the SE function in the frequency
domain. This transformation may, however, be developed as
a power series expansion in w. Representing the Laplace—
Fourier transform as

w(z,p) =iz f e ey,

0

(A2)

with z=w7 the reduced frequency, alternative power series
expansions may be introduced by expanding either of the
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two exponentials in Eq. (A2). Expanding the first e term
yields the series representation

. < 1 T@p+1)
B =2 5 )

. w
X[smz(n,8+2n+ 1) +icos5(nﬂ+ 2n + 1)},

(A3)

which converges rapidly for large z= w7 but experiences con-
vergence problems when z approaches zero. The alternative
expression for w*(z,B) is generated by expanding the e
term,

; Il ™ (n+1\| . 7n
IUJ(Z,IB):/_BEE)FF( 3 ){sm7+lc057] (A4)

These asymptotic series are summed until the next neglected
term in the series begins to increase in absolute value.
Useful checks on numerical approximations are provided
by the specific cases of ,8=0,%,1, where the Fourier—
Laplace transform can be effected analytically. The optimal
point z,, where the two series expansions should be joined is
found by minimizing the absolute difference between Eqgs.
(A3) and (A4) as a function of z and M, where M is the
number of terms retained from Eq. (A4) for the asymptotic
series at low z. Calculations for z, and M over a range of
parameters 3 have been approximated using cubic polyno-
mials to describe log z,, and log M as functions of log .

2. Cole-Davidson and stretched exponential models:
Analytical interrelations

The Havriliak—-Negami (HN) equation

1

¢(w) = [1+ (iwr))?

(A5)
is often used to model relaxation phenomena,63 where ¢"(w)
is the normalized relaxation function. Davidson and Cole
found that an appreciable amount of dielectric relaxation
data may be fitted by Eq. (A5) (=1, 0<B=1). The relax-
ation functions ¢*(w) is related to its time domain counter-
parts ¢(t) by a transformation as in Eq. (Al). Lindsey and
Patterson® studied the ability of the CD (a=1) to reproduce
the Laplace transform of the SE (Ref. 64) and concluded that
the CD and SE relaxation function have similar shapes, but
their time distribution functions p(7) are very different at
long times.** Snyder and Mopsik65 demonstrated that with
achievable instrumental accuracy, the HN and SE relaxation
functions are distinguishable. Here we determine the expo-
nents [ associated with CD and SE relaxation functions by
fitting their moments (A"),
J "g(1)dt,

0

(A") = f ) 7'p(n)dT= (A6)
0

1
(n-1)!

rather than globally comparing their shapes as a function of
time or of frequency. Expanding the low frequency portion
of the complex modulus and dielectric permittivity as a se-
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FIG. 10. (Color online) Differences between imaginary parts of the normal-
ized dielectric permittivities in the scission-Rouse and the SE or CD models
A€" as a function of dimensionless frequency 7yw for equilibrium chain
population with equal average chain lengths L=100 and different relaxation
dynamics: (a) unbreakable Rouse chains and (b) living polymers with MM
reaction kinetics and myk,=107>. The parameters 3 for each model are pre-
sented in the legends. The exponent Bcp, which was presented first in (a)
and (b), is evaluated analogous to Bgg, while the second value B¢y, in the
legends is obtained using the relations of Lindsey and Patterson (Ref. 64).

ries in w yields the moments (A") as the coefficients of those
expansions,
e I'(n/
(A"gp = SE (n/Bsg) ’

-1 B (A7)

Tn n
(Aep=="PI1 (Bep+i=1). (A8)
s =1
Equating the n=1 and n=2 moments of the SE and CD func-

tions yields the nonlinear interrelations between S and 7 for
the SE and CD dynamics as

1
Bep = 1
(A9)
e = 7sel (1/Bsg) ’
BseBcp

where u=2Bs'(2/ Bsg)/ T2(1/ Bsg).

As exhibited by Fig. 10, classical Rouse-like behavior
for frozen chains is reproduced quite well by the dielectric
loss peak from the SE function whose Bgg=0.45 is evalu-
ated from a fit to the low frequency limit, while the analo-
gous best low frequency CD relaxation function with SBcp
=0.14 does not fit €'(w) near wy,,. The parameter Bcp
=0.31, which emerges from a global least-squares ﬁtting,(’4
provides a much better description with the CD equation.
However, this approximation degrades in accuracy at low
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frequencies. When chain reactions are present and the expo-
nents are larger, the CD equation with 3 evaluated from the
low frequency behavior better reproduces the dielectric loss
peak in the scission-Rouse model, and both SE and CD func-
tions are reliable approximations (see Fig. 10).
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