
Shear-induced conductor-insulator transition in melt-mixed polypropylene-carbon
nanotube dispersions

J. Obrzut,1,*,† J. F. Douglas,1,*,‡ S. B. Kharchenko,2 and K. B. Migler1

1Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2Masco Corporation, Taylor, Michigan 48180, USA

�Received 17 May 2007; revised manuscript received 11 September 2007; published 15 November 2007�

The blending of carbon nanotubes �CNTs� into polymer matrices leads to intrinsically nonequilibrium
materials whose properties can depend strongly on flow history. We have constructed a rheodielectric spec-
trometer that allows for the simultaneous in situ measurement of both the electrical conductivity ���� and
dielectric constant ���� as a function of frequency �, as well as basic rheological properties �viscosity, normal
stresses�, as part of an effort to better characterize how flow alters the properties of these complex fluids.
Measurements of � indicate a conductor-insulator transition in melt-mixed dispersions of multiwall CNTs in
polypropylene over a narrow range of CNT concentrations that is reasonably described by the generalized
effective medium theory. A conductor-insulator transition in � can also be induced by shearing the fluid at a
fixed CNT concentration � near, but above, the zero shear CNT conductivity percolation threshold �c. We find
that the shear-induced conductor-insulator transition has its origin in the shear-rate dependence of �c, which
conforms well to a model introduced to describe this effect. Surprisingly, � of these nonequilibrium materials
fully recovers at these elevated temperatures upon cessation of flow. We also find that the frequency depen-
dence of ���� follows a “universal” scaling relation observed for many other disordered materials.
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INTRODUCTION

There is a growing interest in adding small concentrations
of carbon nanotubes �CNTs� to plastics to impart multifunc-
tional capabilities to the materials, including electrical1–6 and
thermal7–10 conductivities as well as changes in the bulk and
shear modulus.7,11,12 Perhaps the most significant applica-
tions to date involve conductivity enhancements in numerous
applications where conductive polymeric materials are re-
quired. Specifically, CNT dispersions have led to applica-
tions in sensors,13,14 electrospraying of car parts, and in the
semiconductor and automotive industries relating to the dis-
sipation of unwanted charge.2,15

The large changes of the properties of nanocomposites of
CNT and polymer materials are typically discussed in terms
of the percolation theory. Most commonly, CNTs are isolated
from each other at low concentrations. The composite is then
an insulator since the conductivity of the polymer matrix is
taken to be negligibly small, but a “percolating” network of
particles forms at higher concentrations as the randomly po-
sitioned and oriented particles begin to “overlap.” Geometri-
cal percolation theory also requires that the particles are ei-
ther perfectly conducting �or insulating when insulating
particles are considered� or that they can freely overlap �no
excluded volume interactions�, which leads to a divergence
of the conductivity in the case of “superconducting” inclu-
sions at a well-defined “geometrical percolation threshold.”
In reality, the matrix polymer has a nonvanishing conductiv-
ity and the conductivity of the carbon nanocomposite tends
to approach a limiting finite value at high CNT loadings,
features that cannot be described by the geometrical perco-
lation theory. The conductivity transition in this type of ma-
terial is thus not really a purely geometrical phenomenon.
The application of an oscillating electric field to a relatively
insulating matrix material with conducting inclusions at fixed

frequency distorts the charge distribution on these conduct-
ing particles and induces a strong dipole moment on the
particle interaction that reacts upon the applied external elec-
tric field.16,17 These large dipolar interaction fields generated
by the particles begin to overlap beyond a critical particle
concentration that depends on the particle shape and the in-
terfacial properties of the particles, resulting in a screening
transition where the particle configuration as a whole re-
sponds like a single collective body of relatively high con-
ductivity so that charges can then be displaced over large
distances by the applied field. We term the “critical concen-
tration” where this electrodynamic transition occurs a “con-
ductivity percolation threshold” �c, by analogy with geo-
metrical percolation theory, but it should be appreciated that
there is no simple relation between the percolation threshold
calculated from the continuum theory of the dielectric prop-
erties of heterogeneous materials and the threshold geometri-
cal percolation theory in either on-lattice or off-lattice
versions.18

Below, we use the generalized effective medium �GEM�
theory19,20 to describe the dependence of the conductivity of
our polymer dispersions on CNT concentration under both
quiescent and steady shear conditions. This model involves
an “amalgamation” of effective medium theory, a mean field
theory generalizing the original continuum Maxwell ap-
proach to describe the properties of mixtures, with ideas
drawn from percolation theory that address the formation of
clusters within the material as the concentration increases.
The advantage of this approach is that it allows a description
of the crossover between the high and low conductivity
states that is characteristic of these and many other compos-
ite materials, while percolation theory descriptions restrict
attention to concentrations near �c where large changes in
conductivity and in other properties occur. While GEM has
its theoretical shortcomings, we find that we can fit our data
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well to this model over a wide range of conditions, allowing
an estimation of the conductivity in the high and low con-
centration limits and for a range of shear rates, and this
model also allows reliable estimates of the conductivity per-
colation threshold as a function of shear rate.

The diffusion of carbon nanotubes in a viscous polymer
matrix is rather slow,7 if not negligible, and the CNT con-
figurations do not generally correspond to equilibrium con-
formations as one might encounter in solutions. Under such
nonequilibrium conditions, the aggregation of the tubes aris-
ing from direct nanotube-nanotube attractive interactions and
topological interactions under fluid flow are the crucial de-
terminant of the properties of the resulting dispersion. These
dispersions can thus exhibit properties that strongly depend
on the flow history to which they have been subjected, but
little is known quantitatively about this general phenomenon.
In this paper, we thus attempt to quantify these relationships
by developing a method to measure conductivity in well-
defined flow fields and by observing the dependence of con-
ductivity on shear rate, composition, and annealing time. We
can also expect the carbon nanotubes to become substantially
deformed under flow conditions, so these objects are some-
what akin to wound up “springs” that store elastic deforma-
tion energy under flow. The release of these stresses in a
quenched polymer nanocomposite material over time can be
expected to affect the mechanical properties of these materi-
als, substantially leading to appreciable property evolutions
in the material over time that could affect the susceptibility
of the material to failure �a relevant concern for aerospace
applications where material failure can have catastrophic
consequences�. To obtain an initial insight into this general
phenomenon, we performed stopped flow measurements on
our carbon annotate filled polymer melts and found that �
indeed evolves substantially over time. A similar phenom-
enon can be expected at low temperatures, except that the
time constant for this aging phenomenon should be much
longer.

Previous studies of conductivity in CNT dispersions
have established the importance of the flow processing
conditions15,21,22 on nanocomposite properties. Under typical
processing conditions used to prepare the materials, the flow
is time dependent and complex �mixtures of different types,
i.e., shear and extensional�. In that study, we focused mainly
on the rheological properties of CNT-polypropylene �PP�
dispersions7 where the CNT mass fraction was varied from
0.0025 to 0.15. In this previous work, we also briefly con-
sidered the effects of shear on conductivity in comparison
with the observed rheological property changes. These mate-
rials exhibited unusual rheological and processing character-
istics including shear thinning, negative normal stress differ-
ences, and a suppression of die swell. In the steady shear
measurements, we utilized a flow cell where we averaged the
conductivity over a wide range of shear rates and did not find
a sharp conductivity transition with shear.

In this paper, we investigate these materials using a rheo-
dielectric spectrometer that we have constructed to measure
the alternating current �ac� conductivity during shear flow at
well-defined shear rates. We seek to determine the conditions
under which these materials exhibit a maximum sensitivity to
perturbations, and we thus focused on the concentration re-

gime near the conductivity percolation threshold where the
tenuous conducting CNT network is the most fragile. We
found a sharply defined conductor-insulator transition as a
function of shear rate and CNT fraction, and we quantified
the recovery of the material conductivity upon the cessation
of flow.

MATERIALS AND MEASUREMENTS

Details of the synthesis procedure of the CNTs and their
dispersion in the PP matrix of the present work have been
described in previous papers,23,24 so we only describe essen-
tial aspects of the CNT formation and their dispersion in PP.
The CNTs used in our study are multiwalled, grown in a
chemical vapor deposition reactor by the catalytic decompo-
sition of xylene hydrocarbons at about 675 °C using fer-
rocene as a catalyst.25 The PP was an amorphous resin
�Grade 6331 Montell Polyolefins�, having at 190 °C a vis-
cosity of about 3000 Pa s. Composites containing mass frac-
tions xm=0.005, xm=0.01, and xm=0.025 of CNTs in PP were
formed via melt blending using a twin-screw extruder.24 The
distribution of CNTs in the samples was examined by a laser
scanning confocal microscope �model LSM510, Carl Zeiss,
Inc.�. Relatively uniform dispersions of CNTs �Fig. 1� were
achieved without utilizing surfactants or surface functional-
ization of the tubes. Figure 1 shows that the dispersions con-
sist of a relatively wide range of diameters and lengths of
nanotubes. Although the initial length to diameter ratio of
CNTs was �1000 before processing, the tubes fragment dur-
ing mixing, which decreases the aspect ratio value after
mixing.23 The typical length of CNTs is on the order of
10 �m and the diameter is about 50 nm.23,24 This polydis-
persity in CNT structure is typical of polymer nanocompos-
ites formed with both single-wall and multiwall CNT mate-
rials due to the intrinsic disorder arising in the large scale
fabrication process, the tendency of the CNT materials to
form bundled structures, and the disorder introduced in the
CNT later through the dispersion process.

The rheodielectric experiments were performed utilizing a
standard rotational rheometer that was modified for the elec-
trical characterization. The experiments were conducted at
190 °C under N2 atmosphere using parallel circular plates
separated by a gap �d� of about 0.80 mm. For a given rota-

10 µm

FIG. 1. Confocal optical image of CNT-PP melt at CNT concen-
tration xm=0.01.
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tional rate of the lower plate, the shear rate ��̇� increased
radially as a function of position, so that conductivity mea-
surements over the entire sample yielded an averaged value.
Therefore, we utilized a custom-made test cell constructed
from three conductive aluminum rings �r1, r2, and r3� �Fig. 2�
of width w separated by nonconductive polyamide regions.
This configuration allowed us to measure the conductivity at
well-defined shear rates and better observe possible transi-
tions. At moderate shear rates �1 s−1��̇�0.2 s−1�, the con-
ductivity from the three rings collapsed onto a single curve
when plotted versus the actual shear rate at each ring �data
not shown�.

Complex impedance measurements �impedance magni-
tude �Z*� and the corresponding phase angle 	� of our
CNT-PP composites were conducted in the frequency range
of 40 Hz to 1 MHz through a four-terminal technique using
an Agilent 4294A precision impedance analyzer, calibrated
with a standard extension adapter to short, load, and open
standards. The complex conductivity, �*=��+ j��, was ob-
tained from the measured complex impedance Z* normalized
by the geometry of the test fixture,

�* =
d

Z*�r 
 w�
, �1�

where d is the sample thickness, and the product of r and w
represents area of the ring electrode. These conductivity
measurements were made in the shear gradient direction,
i.e., perpendicular to flow streamlines.

The distinctive feature of the dielectric limit is ���0, and
a linear dependence of the imaginary conductivity ���� with
frequency, while 	�−90°. The lowest measurable conduc-
tivity in our system was ��*�= ����=5
10−9 S/m at 40 Hz,
which is illustrated in Fig. 3�b� �plot �8��, for an air gap when
the sample was removed. The upper measurement limit of

the real conductivity was verified by bringing the two plates
of the test fixture into contact in the absence of a sample,
which resulted in �Z*� of 1±0.1 � and 	= �0±0.2�°. For loss-
less dielectric materials, 	 is characteristically near −90°,
while in the case of dielectrics with a loss due to intrinsic
real conductivity, the phase angle between the ac voltage and
the resulting current is in the range of −90° �	
0°. The
combined relative experimental uncertainty of the measured
complex conductivity magnitude was within 2%, while the
experimental uncertainty of the dielectric phase angle mea-
surements was about ±0.5°.

RESULTS

In Figs. 3 and 4, we examine the frequency dependent
complex conductivity results as a function of shear rate at
190 °C for the xm=0.005 and xm=0.025 formulations. The
real part ���� of the complex conductivity exhibits a plateau
that extends up to a certain frequency �s. Throughout this
paper, we denote the frequency independent real conductiv-
ity ����→0,	�0� as �0. Our highest �0 values are in the
range of about 0.01 S/m �Fig. 4�a�, plot �1��, an order of
magnitude larger than has been previously reported for simi-
lar composites.22 At higher frequencies, ���s, �� increases
with increasing frequency according to the power law, ��

r1
r2
r3

FIG. 2. Test fixture. The surface of the shearing disk consists of
alternating nonconductive �polyimide� and conductive �aluminum�
electrode rings �r1, r2, and r3� to improve accuracy of the shear-rate
measurement.

FIG. 3. �a� Real part �� and �b� imaginary part �� of complex
conductivity as a function of frequency for xm=0.005 CNT in PP
measured at the following shear rates: �1� 10−3 s−1, �2� 0.2 s−1, �3�
0.6 s−1, �4� 1.0 s−1, �5� 1.6 s−1, �6� 3.0 s−1, and �7� 6.3 s−1. �8�
Conductivity of an air gap when the sample was removed.
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��n, which is commonly described as a universal transport
property of disordered solids and applicable to a broad range
of semiconducting materials, conductor-dielectric mixtures,
and composites.26–29 The power law exponent �n� is positive
and less than 1 and, in our measurements, found to be about
0.4. The dipolar and carrier polarization, expressed by the
real part of the dielectric permittivity ��r��, contribute prima-
rily to ��. The complex conductivity response of conductor-
dielectric mixtures, such as CNT-PP, is often analyzed in
terms of the resistance-capacitance �R-C� percolation model,
in which the conducting and dielectric properties of the mix-
ture are represented by a network of idealized resistors and
capacitors.28–30 In the investigated frequency range, it is con-
venient to represent the equivalent circuit of such a network
in terms of lumped capacitance �C� connected in parallel
with a resistance �R�. The equivalent complex admittance is
the sum of the admittances of these two elements.30–33 The
complex conductivity �* of a specimen having thickness �d�
and the active area of electrodes �A=rw� can be expressed by
Eqs. �2a�–�2c�

�* = �0 + j��0�r
*, �2a�

where �=2�f is again the angular frequency, �r
* is the com-

plex relative dielectric permittivity of the material, �r
*=�r�

− j�r�, �0 is the dielectric permittivity of free space, and
j2=−1. Separating Eq. �2a� into real and imaginary compo-
nents, we obtain

�� = �0 + ��0�r� �2b�

and

�� = j��0�r�. �2c�

Thus, scaling with frequency of the in-phase component of
the complex conductivity ���� depends on the frequency de-
pendence of �r����, while the corresponding dielectric disper-
sion of �r���� determines scaling of �� with frequency. We
determined �0 values by fitting the experimental �� data to
Eq. �2b� using a nonlinear least-squares fitting routine.

The imaginary part �� of the complex conductivity is
shown in Figs. 3�b� and 4�b�, where the slope of the plots
corresponds to the real part ��r�� of the complex dielectric
permittivity �Eq. �2c��. The dashed straight lines represent ��
calculated as a reference for several constant values of �r�. It
is seen in Figs. 3�b� and 4�b� that the measured �� deviates
from linearity, especially at higher frequencies, indicating
that the composites exhibit not only the frequency dependent
conduction but also a frequency dependent dielectric polar-
ization and dispersion. Depending on the CNT concentration
and shear rate, �r� can change by several orders of magnitude.
In the case of large CNT concentration �xm=0.025� and small
shear rates, �r� approaches a value of about 104 �Fig. 4�b�,
plot �1��. With decreasing CNT concentration and increasing
shear rate, �r� decreases to about 102 �Fig. 3�b�, plot �1�� and
eventually approaches the dielectric limit of the polymer ma-
trix �PP�, about 4.5 �see Fig. 3�b�, plot �6��.

Figure 5 illustrates the time dependence of �0 at isother-
mal conditions of 190 °C after shearing was stopped. For
each of the compositions considered, �0 returns to its near
quiescent value. A 60% � recovery for xm=0.005, 0.01, and
0.025 nanocomposites occurred after about 3, 9, and 14 min,
respectively. A similar recovery effect has been reported for
PP-CNT melts extruded at 220 °C.23 The conductivity re-
covery was attributed to the reorganization of the percolation
network and the reformation of the local contacts between
the nanotubes and to the reorientation of nanotubes oriented
in the shear flow.22
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FIG. 4. �a� Real part �� and �b� imaginary part �� of complex
conductivity as a function of frequency for xm=0.025 CNT in PP
measured at the following shear rates: �1� 10−3 s−1, �2� 0.2 s−1, �3�
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DISCUSSION

Effect of shear on the conductivity percolation concentration

The enhanced conductivity ��0� of polymer materials
through the addition of CNT is currently one of the few
commercially viable applications of these additives1–3 and,
therefore, we focus on this property and how it is modified
under shear conditions. Figure 6 illustrates the effect of shear
on �0 for all three compositions. At low shear rates, the
conductivity decreases slightly with increasing �̇ as noted
previously,9 whereas above a critical value, it falls precipi-
tously. Evidently, a lower concentration CNT dispersion is
substantially more susceptible to perturbation by flow. The
overall character of the conductivity plots suggests a reverse-
percolation transition where higher �̇ would correspond to a
lower concentration of the conducting filler. In the case of
xm=0.005, �0 approaches the insulating limit of the PP ma-
trix of about 10−8 S/m at �̇ above 6 s−1. At these high shear
rates, the conductivity data almost coincide with pure PP,
indicating that the material becomes a shear-induced dielec-
tric insulator. This sensitivity of �0 to flow in the percolated
CNT network is illustrated in Fig. 7. For the quiescent case,
we find that the characteristic steep rise in conductivity starts
at a volume fraction of about 0.0012 �xm�0.0036�. The ap-
plied shear field shifts the percolation condition for �0 to
higher CNT content and shear also broadens the transition.
These observations confirm our hypothesis that the sensitiv-
ity of the CNT network to an applied shear flow perturbation
is greatest at the beginning of the percolation transition
where CNT only forms a weakly interconnected network.
The network becomes more robust when the CNT concen-
tration is several times above the percolation threshold.

According to the classical effective medium theory of
Bruggeman,34 the conductivity ��0� of a mixture is given by
an average between the conductivities of the insulating ma-
trix ��m� and the conductivity of the pure additive material
��a�,

�1 − ��
�m − �0

�m + 2�0
+ �

�a − �0

�a + 2�0
= 0, �3�

where � is the volume fraction of the conducting phase and
where the matrix is a relatively insulating material. By con-
struction, effective medium theory recovers the exact result

of Maxwell16 and Torquato17 for the low concentration limit
where a simple virial expansion applies. Scaling arguments
based on percolation theory, where the conductivity of the
matrix is entirely neglected and the particles are taken to be
infinitely conductive, imply that �0 exhibits the scaling form

�0 = �m��c/��c − ���s, � 
 �c �4a�

and

�0 = �a��� − �c�/�1 − ���t, � � �c, �4b�

where � is the CNT volume fraction, �c is the critical per-
colation concentration, and s and t are “critical exponents”
defined by the lattice percolation theory. The GEM
model19,25,33 formally “merges” the percolation and effective
medium theories. In particular, this theory indicates that �0 is
the following function of the conductivities of constituents:

�1 − ��
�m

1/s − �0
1/s

�m
1/s + A�0

1/s + �
�a

1/t − �0
1/t

�a
1/s + A�0

1/t = 0, �5�

where A is a parameter related to the percolation concentra-
tion A= �1−�c� /�c. This extension of Eq. �3� recovers Eqs.
�4a� and �4b�, the scaling behavior for � near �c by construc-
tion. The shortcoming of this procedure is that the exact
perturbative result of Maxwell16 and Torquato17 is no longer
recovered in the dilute limit since �0 is no longer analytic in
the additive concentration. Despite this problem, GEM pro-
vides a significant improvement over the percolation theory
since it interpolates between the low and high concentration
additive regimes, while at the same time exhibiting a critical
scaling behavior near the conductivity percolation threshold
where �0 varies rapidly.

We seek to determine the conductivity percolation con-
centration ��c� as a function of shear rate by analyzing the
data shown in Fig. 6 in terms of Eq. �5�, which we solve for
�c using a nonlinear least-squares routine. In fitting to the
GEM relation, Eq. �5�, the volume fraction ��� of CNTs in
PP was determined assuming a typical density of the CNTs
of about 2.6 g/cm3 �Ref. 35� and a PP density of about
0.78 g/cm3. Based on these estimates, the volume fraction of
nanotubes is found to be about 0.3 times the mass fraction.
From the sigmoidal character of the experimental data plot-
ted in Fig. 6, we determine the parameters in Eq. �5�. The
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conductivity of the PP matrix was determined to be �m �PP�
�10−8 S/m �Fig. 6� and the conductivity of the CNT mate-
rial �A �CNT� was estimated to be on the order of 10−2 S/m
for low shear rates and 10−3 S/m for high shear rates. The
conductivity of the composite in the high CNT concentration
limit is evidently not equivalent to that of an isolated tube. At
high concentrations, the CNTs form a porous networklike
structure rather than a continuous solid �see Fig. 1�. �A
�CNT� also depends on �̇ since shear influences the contact
distribution and presumably the contact resistance between
the CNT, effects that are not really addressed in the simple
GEM model. As previously observed for the GEM model,
especially for CNT materials,36 the fitted values of the expo-
nents do not conform exactly to the lattice percolation theory,
which is certainly understandable given the approximations
involved. We were able to fix the exponent t governing the
concentration dependence of �0 in the low shear-rate regime
to the theoretically expected value of t=2 �Refs. 37 and 38�
for all our data, but the value of the other exponent s had to
be adjusted �s�1.3–2.7� compared to the theoretically ex-
pected value of s=0.7.37,38 This difficulty is almost certainly
due to the fact that the GEM theory relies on an effective
medium theory for spherical particles as its basis in Eqs. �4a�
and �4b�, while the CNT clearly does not conform to this
approximation. In particular, the virial coefficient ��� is ex-
actly 3 from the work of Maxwell for particles much more
conductive than the polymer matrix,16 while this quantity is
predicted to be on the order of 103 for particles having an
aspect ratio on the order of those in our CNT samples.17

Much of this effect can be adsorbed into the fitting of the
percolation concentration to experiment, but this procedure
clearly has its limitations for particles as anisotropic as the
CNT.

The functional dependence of the GEM model for �0 pro-
vides a satisfactory description of the conductivity change
with CNT concentration that we observed �Fig. 7�. The re-
sulting estimates of �c as a function shear rate are shown in
Fig. 8. For the quiescent case, we find that the �c is on the
order of 0.12% volume fraction, while the applied shear field
monotonically shifts �c to a higher CNT concentration. Ap-
plication of shear also induces an overall broadening of the
insulator-conductor transition as a function of CNT concen-

tration. These two effects are particularly evident at larger
shear rates. For example, the conductivity percolation con-
centration transition at �̇=6.3 s−1 is shifted to about �c
�0.24% volume fraction, which is approximately twice its
quiescent value. This trend is predicted by the geometrical
percolation theory under the reasonable assumption that
shear causes some alignment of the CNT, which is known to
increase the geometrical percolation threshold in networks
formed of overlapping extended particles.39,40

The influence of shear on the viscosity of dispersions of
extended particles in fluids has been considered in several
previous works and the shear dependence of the viscosity
percolation threshold analog of �c was estimated in this
context.41 The application of shear to such an inhomoge-
neous fluid induces stresses on the particles, which in turn
induce long-range dipolar elastic fields in the fluid that react
back upon the applied shear fields at the boundaries of fluid
dispersion. This problem is mathematically analogous, at low
particle concentrations, to calculating the conductivity
change of a suspension of highly conducting particles in a
relatively insulating fluid.42–44 Basically, this connection
arises because the fluid shear viscosity � is simply propor-
tional to the momentum diffusion coefficient of the fluid so
that 1 /� is the momentum conductivity or “fluidity”.45 Thus,
we may utilize here the viscosity percolation threshold esti-
mates to describe the shear-rate dependence of �c,

41

�c��̇� = �co + ��c max − �co�
���̇�2

1 + ���̇�2 . �6�

In Eq. �6�, �co is the quiescent value of �c, the amplitude
�c max−�co=��c is the maximum change in �c induced by
the flow, and � is a flow relaxation time governing the flow-
induced particle orientation process, which has been
suggested39 to be on the order of the structural relaxation
time of an entangled polymer melt matrix. Specifically, the
anisotropic particles are assumed to be dispersed isotropi-
cally for �̇→0 and the shift �c max−�co describes the effect
of particle alignment along the shear field direction in the
limit �̇→�. Figure 8 shows a fit of the �c data to Eq. �6�,
where we obtain ��1 s. The observation that �c increases
with �̇ according to Eq. �6� supports our interpretation of the
conductor-insulator transition as arising from the partial
flow-induced alignment of the CNTs along the fluid flow
direction.25 The maximum change in ��c occurs for �̇c
�1/��1 s−1, which is consistent with � being comparable
to the structural relaxation time of the polymer matrix �see
Fig. 3 of Ref. 7�. The emergence of a highly conducting state
from the mutual collective interactions of the CNTs means
that it is naive to visualize these changes in terms of the
orientation of individual isolated tubes. A large part of this
trend must also reflect the breaking down of the CNT net-
work structure that forms through a combination of direct
intertube attractive interactions, topological interactions be-
tween the tubes due to strong excluded volume interactions
that keep the tubes from passing through each other under
flow and strong direct contact interactions arising from the
physical impingement of these relatively rigid particles. In
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)
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FIG. 8. Critical percolation concentration ��c� as a function of
shear rate where symbols represent the calculated �c data, while the
solid line is a fit to Eq. �3�.
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our previous work,7 we explained the shear-induced changes
in the viscoelastic properties in terms of these same factors.

Conductivity recovery upon succession of shear

Now that we have established the strong effect of shear on
�0 for concentrations near, but above, �c, we examine the
ability of these nanocomposites to recover their electrical
characteristics upon the cessation of shear. While we might
expect that the nanotubes should remain “frozen” in place
once the flow stops �due to the non-Brownian nature of the
annotate mobility within the polymer matrix�, we actually
found that the conductivity was recoverable. Indeed, Fig. 5
illustrates that at each of the compositions considered, �0
returns to its near quiescent value. A 60% � recovery for
xm=0.005, 0.01, and 0.025 nanocomposites occurred after
about 3, 9, and 14 min, respectively. We note that Huang et
al.46 have recently made a study of the viscoelastic properties
of CNTs in viscous polymer matrices, where substantial
variations of the dispersion properties in relation to mixing
time and where very large changes in the shear viscosity
were noted when the melt composites were left to stand over
the time scales of weeks. These variations were attributed to
the “reaggregation” of the CNTs, despite the non-Brownian
conditions of these observations. The data in Fig. 5 serve to
quantify this type of “aging” phenomenon in a system where
the kinetics is more amenable to quantitative study. In future
work, we plan to consider the influence of temperature and
concentration on this technologically important phenom-
enon.

Since Brownian motion should not be effectively opera-
tive in leading to relaxation in these sheared dispersions, we
need to consider other mechanisms that could drive the re-
laxation process. The deformation of the tubes under flow in
a polymer melt47 provides a clear candidate for this effect,
and we suggest that the relaxation is driven by the residual
stresses in the CNT dispersed melt that are induced under
steady flow conditions. This hypothesis could be checked by
Raman or other scattering techniques that are sensitive to
stress effects on the tubes.48–50 In a recent work, it has been
suggested that CNTs can inhibit the relaxation of the large
residual stresses that accompany the formation of semicrys-
talline polymer materials, thereby affecting the brittleness of
the resulting solidified material.51 Recent work has suggested
that the presence of unstable mechanically strained filler in a
stable elastic matrix can lead to materials with extreme me-
chanical damping characteristics.52,53 CNT-polymer nano-
composites seem to be very promising for fabricating such
materials by simply quenching the CNT filled melt into a
solidified state after a flow. It seems clear that future work
should better quantify the effect of residual stress effects in
polymer nanocomposites and their effect on the mechanical
and dielectric properties of polymer nanocomposite materials
and the evolution of these properties over long time scales.

Conductivity scaling with frequency

The measured ac conductivity response of the double net-
work of carbon nanotubes interpenetrating an entangled PP
polymer matrix above percolation can be described by a ran-

dom impedance network model with hopping transport of
charge carriers, in which conductivity and dielectric proper-
ties are represented by a network of resistors �R� and capaci-
tors �C�.28–30 Typical dielectric loss data for CNT-PP ex-
tracted from the ac conductivity data ��r��0= ���−�0� /�� are
shown as a function of frequency in Fig. 9 for xm=0.025.
There is a broad loss peak in each plot. This loss peak is
characteristic when the charge transport is due to multidi-
mensional variable range hopping.28,29,54

The crossover frequency �s corresponds to the macro-
scopic relaxation frequency �� and it is defined by the peak
frequency of the dielectric loss. These features reflect hop-
ping conduction in disordered media.29,54 The shoulder that
develops with increasing shear rate in the percolation regime
at �
�s indicates that the dimensionality of the system de-
creases with shearing, consistent with the flow-induced
alignment of the CNTs discussed earlier. Above �s, in the
multiple hopping regime, �s
�
�0, where �0 is the mi-
croscopic cutoff frequency, conduction occurs in the isolated
clusters of sites and the real part of the conductivity increases
with �.

There has been a long debate in the literature regarding
how to determine the crossover frequency of the onset ac
conductivity for the master plot. The proposed procedures
are often based on somewhat arbitrary assumptions.4,32,35 For
example, �s has been defined as a frequency when
����s� /�0=100.5 �Ref. 52� or that ����s� /�0=1.1 at � /�s,

4

or a simple representative conductivity plot selected as a
scaling reference.55 Although the crossover frequency is the
microscopic relaxation frequency, it is difficult to quantita-
tively analyze the dielectric relaxation spectrum �Fig. 9� in
the presence of a charge transport that is governed by the
statistic of the dominant hopping sites and yet coupled with
polarization effects due to disorder. According to the perco-
lation conductivity model,36,54,55 the macroscopic crossover
frequency depends on the percolation critical exponents and
the critical volume fraction: �s=�0��−�c��s+t�. Since in our
analysis percolation parameters are related to �0, we find that
�s /�0 indeed scales linearly with �0.32 On the other hand,
�s depends on the nature of distribution of the hopping con-
ductivity sites in disordered materials, i.e., reflects the resis-
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FIG. 9. Imaginary part of the dielectric permittivity for xm

=0.025 as a function of frequency at the following shear rates: �1�
10−3 s−1, �2� 0.2 s−1, �3� 0.6 s−1, �4� 1.0 s−1, �5� 1.6 s−1, �6� 3.0 s−1,
and �7� 6.3 s−1.
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tance between hopping sites and effective capacitance and,
therefore, it should accordingly scale with the dielectric
permittivity.35,54,55 Hence, we can assume equivalence be-
tween �s and the macroscopic relaxation frequency ����,

�� = �s = �0/��0��r
*����

. �7�

We observed that �s increases with increasing �0, while
it decreases when the dielectric permittivity increases, �s
��0 / ��0��r

*�����. These two opposite trends are illustrated
in Figs. 3 and 4. For example, �s /2� is about 27 kHz in Fig.
3�a� �plot �1��, �0 is about 2.0
10−3 S/m, and ��r

*� is about
1.4
103. In comparison, �s /2� decreases to about
13.6 kHz in Fig. 4�a� �plot �5��, where ��r

*� is about 2.6

103 at a similar �0 value of about 1.97
10−3 S/m.

Figure 10 shows the results of scaled ����� /�0 according
to Ref. 54 with �s obtained by solving iteratively Eq. �7�
against �r���� and �r����. The scaled conductivity for �
��c compares well with the universal trend showing a
power law behavior �����n� at ���s. The plateau in the
conductivity at �
�s indicates the existence of one or more
percolation paths of the resistive elements across the network
that comprise an infinite cluster. The value of n in Fig. 10 is
about 0.4 for all �c
0.13%. At higher �c, the exponent n
decreases continuously with increasing �c, approaching a
value of about 0.12 at �c of about 0.23% volume fraction.
The decreasing value of n indicates that the fraction of resis-
tive paths decreases with shearing in favor of the developing

network of insulating capacitance elements �C�,26,28,30 con-
sistent with the shear-induced conductor-insulator transi-
tions.

CONCLUSION

The blending of carbon nanotubes into polymer matrices
leads to composite materials whose properties can depend
strongly on the flow history to which the materials have been
subjected. Through ac conductivity measurements, we ob-
served the conductor-insulator or “percolation” transition in
melt-mixed dispersions of multiwall CNTs in polypropylene
over a narrow range of CNT concentrations. The shear-
induced conductor-insulator transition has its origin in the
shear-rate dependence of the critical percolation concentra-
tion ��c�, which increases with shear rate in accordance with
our model for the shear-dependent percolation threshold. Ac-
cording to this model, the quiescent value of �c is on the
order of 0.12% volume fraction �0.36% mass fraction�, while
the structural relaxation time of the polymer matrix is about
��1 s. The observation that �c increases with �̇ according
to Eq. �6� indicates that the �̇ field-induced alignment of the
CNTs is along the fluid flow directions. Since �c and � are
universal parameters of the percolated network, Eq. �6� can
be used as a predictive tool in the analysis of shear-induced
behavior of other materials.

The character of the dielectric loss peak extracted from
the complex conductivity data indicates that the charge trans-
port is due to the multidimensional variable range hopping
and that the dimensionality of the system decreases with
shearing, consistent with the CNT alignment discussed ear-
lier. In the quiescent regime, the frequency dependence of
the real part of conductivity follows a “universal” power law
scaling relation seen in many disordered materials.

Interestingly, under sufficiently high shear rates, the con-
ducting composite becomes a shear-induced insulator. The
conductivity of these nonequilibrium materials fully recovers
upon cessation of flow. The results suggest that the presence
of carbon nanotubes structures in a stable elastic matrix �PP�
can lead to materials with interesting mechanical damping
characteristics.
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