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Two image-analysis approaches for pore size distribution (PSD) of porous media are proposed. The methods are
based on the skeleton representation of a porous object. One approach gives the local thickness of the pore object to
represent the pore size corresponding to a lower limit of PSD. The other gives the pore size taking into account the
anisotropy of pore object and corresponds to an upper limit of PSD. These two approaches can be incorporated
into a computer program without computationally intensive and complex mathematical operations. In this study,
these two approaches are applied to a two-dimensional (2D) synthetic image and 3D natural images of tissue
scaffolds with various porosities and tortuosities. The scaffolds were prepared by removing the water-soluble
poly(ethylene oxide) (PEO) component of the polycaprolactone (PCL)=PEO blend, leaving a porous PCL scaffold.
Extracting quantitative PSD information for materials with an interconnected porous network rather than discrete
voids (such as tissue scaffolds) is inevitably subjective without a universally accepted definition of ‘‘pore size.’’
Therefore, the proposed lower and upper limits of PSD can come into play when considering mass transfer and
scaffold surface area for cell–matrix interaction.

Introduction

Pore size and pore size distribution (PSD) are vital de-
scriptors in characterizing the morphology of porous

material and can be correlated with physical and biological
functions in medical and other applications.1–9 For example,
PSD influences the transport properties of liquids and gases in
soil structures in petrochemical and environmental indus-
tries2 and in agricultural products of the food industry.3 Pores
are used to reduce the dielectric constant of interlayer insu-
lators in microelectronic devices.4 In pathology, the distribu-
tion of organ pore sizes can differentiate healthy from sick
tissues5 and determine age-related morphological and histo-
logical changes.6 In tissue engineering scaffolds, PSD is one
of the key factors controlling cellular adhesion, proliferation,
matrix deposition, and mechanical compliance.1,10–13 To
achieve the goal of tissue reconstruction, an adequate scaffold
pore size is necessary to facilitate cell seeding and diffusion of
nutrients throughout the entire structure (e.g.,14). It has been
hypothesized that the pores need to be large enough to allow
cells and media to pass into the structure but small enough to
establish a sufficiently high specific surface for efficient
binding of a critical number of cells to the scaffold (e.g.,13).
Therefore, upper and lower bounds of PSD become more
practical and essential parameters in designing the scaffold. In

this study, we present two image-analysis approaches, based
on the skeleton representation of a porous object, to obtain the
upper and lower bounds of the PSD. These two approaches
assign measures of pore size to the minimum and maximum
reasonable measures (e.g., they would yield radii of the minor
and major axes of a prolate ellipsoid). In the first approach, we
adopt the definition of pore size as the maximum diameter of
a sphere that would fit in the pore volume assigned (e.g.,7–9)
and present here a newly improved superseding spheres al-
gorithm to quantify the diameter. Indeed, this diameter cor-
responds to the ‘‘local thickness’’ of the pore structure (e.g.,
minor axis), ignores the pore shape, and gives a lower bound
of the PSD. In the second approach, we adapt the concept of
mean intercept length of pore structure (a morphological de-
scriptor) for the definition of pore size and present here a
newly developed star chord length (SCL) method to take into
account the orientation dependence of pore and obtain a up-
per bound of the PSD (e.g., major axis).

Experimental methods have conventionally been used to
indirectly probe the PSD of porous media, including tissue
scaffolds. For example, an adsorption process (e.g., the
Brunauer-Emmett-Teller technique) or a filling process (e.g.,
the porosimetry technique) can be used. In general, the basic
concept is that these processes in a pore are viewed as mo-
lecular layering processes, and the PSD can be deduced
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through corresponding governing equations (mechanisms)
for the response of a porous medium to the perturbation.
Some of these experimental methods can be destructive.
With the advances in imaging and computer technology, one
can nondestructively analyze the PSD using images pro-
duced via microscopy.15 For example, microcomputed to-
mography (micro CT) can provide three-dimensional (3D)
images of intact porous media at high spatial resolution that
are representative of the true structure of the scaffold. The
focus of our study was on the image analysis technique for
extracting the PSD from the image of porous object. Those
who are interested in the methods (destructive or nonde-
structive) traditionally used to quantify the PSD in tissue
engineering may refer to reference.16

Although the evaluation of PSD of porous media has a rich
history, it is a continuing source of practically challenging
questions. One of the substantial reasons is that, in most
materials, such as tissue engineering scaffolds, the pores have
interconnected irregular shapes (rather than discrete voids),
and the definition of a ‘‘pore’’ for such media is inevitably

subjective and vague. Consequently, the PSD depends highly
on the analytical techniques employed to interpret the image,
and no qualitative comparisons can be made between them.
Therefore, quantifying upper and lower bounds (e.g., pro-
posed in this study) can largely eliminate variability between
definitions. A significant amount of research has attempted to
combine specimen image analysis with stereological theory to
characterize the PSD of porous media to provide correlations
with other functional parameters in an application. However,
results of the image analysis often depend on stereological
models (e.g., the Voronoi diagram technique17). Our pro-
posed approaches (local thickness and SCL) are based on the
skeleton representation of a porous object and are model-
independent direct estimations for the PSDs because no spe-
cial skeletonization technique (e.g., the Voronoi diagram
technique) is used before the calculations of pore size. This
model-independency is due to the proposed superseding
spheres process, which produces the locus of the centers of all
maximal spheres inscribed in the pore object and is in line
with the intrinsic definition of the skeleton. Accordingly, the

FIG. 1. A schematic of the
proposed superseding
algorithm for characterizing
the pore size distribution.
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calculation of local thickness becomes a natural byproduct of
skeletonization of the pore space during the superseding
spheres process.

In our SCL approach, instead of the local thickness, the pore
size associated with a point in the skeleton of a pore space is
evaluated as the average length of intercept segments that
occur at the intersection of lines and the boundary of material
phase. These lines emanate from the point to each direction in
pore phase. This approach, adapted from the concept of star
volume distribution for quantifying the anisotropy of porous
media,18,19 is assumed to overcome the potential object an-
isotropy that might be encountered in evaluating the pore size
and has not been addressed in previous studies.15,17 Although
both approaches (local thickness and SCL) use the skeleton of
pore size to evaluate PSD, there is no intrinsic relationship
between these two definitions of pore sizes or feasible con-
version scheme between them. In this study, our approaches
are applied to a generated 2D image of a two-phase material
and real 3D images of tissue scaffolds to determine PSD.
These porous scaffolds were prepared so as to remove the
water-soluble poly(ethylene oxide) (PEO) component of the
polycaprolactone (PCL)=PEO blend and leave a porous PCL
scaffolds with different porosities and tortuosities.

Methods

A 2D image of a pore space is used to illustrate concep-
tually how the proposed superseding approach will charac-
terize the PSD. First, as shown in Figure 1a, every pixel in a
pore space image (O) can be used as the origin of a circle (or a
sphere in 3D) to draw a circle with the largest area (i.e., this
circle must have a radius to the nearest boundary of the pore
space). Then, as show in Figure 1b, if the area of a circle around
a pixel (Q1) is completely included in the area of another circle
around a pixel (Q2), the pixel circle of smaller area will be
eliminated (i.e., no reassignment of radius for the pixel). After
a few such exclusions shown in Figure 1b and c, Figure 1d
indicates that a point (P) located in the pore space O would
become the origin of a circle with the greatest diameter that
cannot be superseded. Mathematically, this greatest radius,
R(P), can be expressed as:

8P 2 X, 8Q 2 X

If : R(P) � R(Q) þ jP�Qj þ k

Then : R(Q)¼ 0

(1)

where jP�Qj is the distance between P and Q, and the
constant k is a parameter used to reduce the interfacial irreg-
ularity (noise) existing at the pore boundary. Noise is inev-
itable in images of multiphase material and can influence the
superseding spheres process of digital images as well as the
results of PSD. In the process, the chosen value of k is im-
portant to the final result and is set to be slightly greater than
the size of a pixel (k> 1 pixel size). In this study, we used
k¼ 1.01 pixel size. Also, when the width of the pore space
image has an even number of pixels, two pixels will be asso-
ciated with the skeleton of pore space. Therefore, a special pro-
cedure has been implemented in the computer program to
obtain a skeleton centered with a single connected compo-
nent in the pore space.

By repeating the aforementioned superseding proce-
dures, what remains in the pore space image are the circles, bi-

tangent to the edge of the pore space (or tri-tangent in 3D pore
space), with the greatest diameters that can not exclude each
other. Subsequently, only these greatest diameters in the im-
age of the pore space will be used in the calculation of the PSD
F(P), which is defined as:

F(P)¼fP, R(P) j P 2 X, R(P) 6¼ 0g (2)

By tracing the loci of the origins of the exclusive circles in
the superseding spheres process, one obtains the skeleton of
the pore space. Therefore, in our superseding approach, the
PSD and the skeleton of the pore space are a mutual by-
product of each other. The skeletonization is a convenient
tool for shape analysis to obtain a simplified representation
of the shape, preserving the extent and connectivity of the
original object for a large spectrum of applications. Classi-
cally, the skeleton is computed from either the Voronoi dia-
gram technique, the distance transform technique, or the
thinning technique.20,21 Although skeletons and their appli-
cations have been extensively studied for 2D images, con-
siderably less work has been devoted to 3D images because
of the complex and intensive process of fulfilling the re-
quirements of the skeletonization.22 However, our proposed
superseding approach is different from the skeletonization
algorithms mentioned in the literature,20,21 because the su-
perseding spheres process is in line with the intrinsic defi-
nition of the skeleton—the locus of the centers of all maximal
spheres inscribed in the object.23 In other words, the skele-
tonization process used in the proposed superseding spheres
algorithm involves rejecting superseded spheres until pro-
ducing a skeletal frame, which is as thin as possible, con-
nected, and centered. This frame does not affect the general
shape of the pattern, and the original image can be re-
constructed accordingly.

Figure 2 shows the SCL approach proposed in this study,
where the chord length (‘) corresponding to a point (P) in the
skeleton of a pore space is defined as the average chord length
of lines emanating from P in various directions until they

FIG. 2. A 2D schematic of the star cord length (SCL)
method for characterizing the pore size distribution.
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encounter a boundary. Therefore, the pore size at P (R(P)), is
expressed as:

R(P)¼

P180�

h¼ 0�
‘h

2n
(3)

and the corresponding PSD is:

F(P)¼fP, R(P) j 8P 2 the skeleton of Xg (4)

where n is the number of increments between 08 and 1808.
Note that the star chord emanates simultaneously in both

directions from P (1808 apart) until both edges of the pore
space are encountered, as shown in Figure 2. Equation
3 gives the degree of variability among the intercept seg-
ments that differentiate the pore orientation from an ideal-
ized pore orientation. In this study, we calculated the pore
size for every pixel within the pore space and took n as 36

FIG. 3. A synthetic 2D microstructure (A); the skeleton of the pore phase obtained through the superseding algorithm (B);
the reconstructed pore phase based on the skeleton (C); the histograms of the resultant PSD obtained from the superseding
algorithm and the star length method (D). Note that the ‘‘superseding’’ and ‘‘local thickness’’ approaches are interchangeable
since the calculation of local thickness becomes a natural byproduct during the superseding spheres process.

Table 1. Mean and Median Values of Pore Size

Pore Diameter (pixels)

Method Mean� Standard Deviation Median

Obtained from image shown in Figure 3A
Superseding 26.34� 9.13 26.68
Star chord length 50.90� 9.09 52.19

Obtained from image shown in Figure 4
Superseding 5.17� 1.63 5.00
Star chord length 13.40� 4.01 13.44 FIG. 4. The image of a real 3D porous medium assembled

with sequential 2D x-ray tomography microstructures.
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(a 58 increment) for the estimation of PSD. The mean pore
size is defined for both approaches as:

�RR¼ 1

M

XM

i¼ 1

R(Pi) (5)

where Pi 2 the skeleton of X and M is the total number of
pixels not being eliminated in the superseding spheres process
that forms skeletons of the pore network. From the afore-
mentioned mathematical operations (equations 1-5), one can
see that the proposed superseding and SCL approaches (local
thickness and anisotropy approaches) provide a computa-
tional simplicity. The concept of these two approaches can be
easily implemented into a computer program to evaluate
PSD. Also, if pores are spherical voids rather than inter-
connected pore channels, the pore sizes calculated from both
approaches are identical.

Results and Discussion

The applicability of the local thickness and SCL approaches
to the evaluation of PSD relies on the precision of the skele-
tonization obtained through the superseding technique of the
pore space. A major requirement for this precision is that
the skeleton be reversible to reconstruct the original shape of
the object. Therefore, we use a 2D object to demonstrate the

potential of the proposed superseding spheres algorithm in
the skeletonization and then obtain the local thickness and
chord length to estimate the PSD. Figure 3A is the 2D image of
a synthetic microstructure generated from a phase-separated
polymer blend. In this 2D image, one of the phases mimics
pores, and the porosity is 0.5. Figure 3B gives the skeleton of
the pore phase after performing the superseding spheres
process. The locus of the origins of bi-tangent circles that are
mutually exclusive in the pore phase outlines this skeleton.
This extracted skeleton is a single distinguishable connected-
component structure. By taking the pixels in the skeleton as
the origins and calculating their corresponding diameters
with the superseding spheres algorithm to draw circles, the
pore phase of the image can be reconstructed from the union
of circles (Fig. 3C). The result indicates that the reconstructed
pore phase compares well with the original image, including
the local details shown in Figure 3A. Also, the reconstruction
preserves the porosity of the original pore phase. (The po-
rosity of the reconstructed image is 0.49.) Figure 3D shows
a histogram of the resultant PSD obtained through the local
thickness and SCL approaches based on the skeleton shown
in Figure 3B. It is worthwhile to note that, in tissue en-
gineering scaffolds, cells may migrate easier through larger
pores; however, the PSD of smaller pores plays an equally
important role in maintaining the cells and determining the
rate of scaffold degradation. The mean and median pore di-
ameters that are often used to quantify the pore structure are

FIG. 5. A small portion of
the original pore phase show
in Fig. 4, which is a image of
tissue scaffold (A); the re-
constructed image based on
the skeleton of Fig. 5a, which
resulted from the union of
spheres centered at all the
pixels in the skeleton (B).

FIG. 6. The histograms of
the PSD obtained from the
superseding algorithm and
star cord length method for
the pore phase of the 3D im-
age shown in Figure 4.
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reported in Table 1. As expected, the results in Figure 3D and
Table 1 indicate that the SCL approach (anisotropy) gives
a larger value of pore size than the superseding approach
(local thickness) for the image studied.

Next, we applied the same superseding spheres algo-
rithm to a more-complicated large-scale 3D image with
channel-shaped and inter-connected pore spaces (Fig. 4) to
demonstrate the capability of the proposed approaches for
characterizing the PSD of a 3D object. This 3D image is an
assembly of sequential 2D x-ray tomography microstruc-
tures of a porous material and has a porosity of 0.46. After
performing the superseding spheres process on the pore
phase of the image, a 3D skeleton of the pore phase was ex-
tracted with lines and surfaces. For the purpose of visual
clarity, we present only the reconstructed image based on
the skeletons of a small portion of the original pore phase (Fig.
5). This partial reconstruction results from the union of
spheres centered on all the pixels in the skeleton. By looking
at features that represent the small portion of the original
and reconstructed pore phases, one can see that the re-

FIG. 7. The variations of median pore size with the k value
present in eq. (1) for images shown in Figs. 2(a) and 4.

FIG. 8. Effect of image pixilation on superseding sphere representation of a single spherical void [(diameter¼ 40 pixels,
location in image; (x,y,z)¼ (42,42,42)]. Plotted are the diameters of superseding spheres vs. their distance from the xz plane
and inset are images of sphere cross-sections showing increasing pixilation from (A)–(D). The number of superseding spheres
used by the algorithm is a) 1, b) 2127, c) 2846, d) 3637.
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constructed object produced by the superseding spheres
algorithm is topologically equivalent to the original one.
Also, their porosities are practically identical (0.46 versus
0.44). This reversibility further demonstrates the versatility
of the proposed algorithm for extracting the skeleton of
images. Figure 6 gives the histograms of the PSD obtained
from the proposed local thickness and SCL approaches to the
3D image in Figure 3. Table 1 gives the mean and median
values of the pore diameter. Similar to the trend in the re-
sults of the 2D image, the SCL approach estimates the pore
size as being more than twice that of the local thickness
approach.

Although we have presented the PSD from the local
thickness and the SCL approaches, no qualitative compari-
sons can be made on their PSDs because no relationship exists
between the definitions of pore size given by these two ap-
proaches. The proposed local thickness approach defines pore
size as the lower limit because the pore size associated with a
pixel is the shortest distance from the pixel to the boundary of
pore space. However, from Equation (3), it can be seen that the
SCL approach takes into account the orientation dependence
of the pores, so the pore size obtained is the average value of
the largest distance to the boundary—an upper limit. Also, if a
medium has long, narrow, interconnected pore channels, the

FIG. 9. Origin of edges effects in the superseding algorithm.
The edge effects arise from the restriction of the location of the
center of superseding spheres to image pixels.

FIG. 10. Edge effects in superseding representation of a hexagonally packed configuration of overlapping spherical voids (5
pixels in diameter) (A) result in an anomalous clustering of over 1000 superseding spheres at the xz plane. This biases the
pore size distribution (B) towards smaller pore size. (C) When superseding spheres on the image edge are removed, the pore
size distribution more gives the diameter of the spherical void (i.e., 5 pixels).

PORE SIZE DISTRIBUTION OF 3D POROUS NETWORKS 71

http://www.liebertonline.com/action/showImage?doi=10.1089/ten.tec.2008.0298&iName=master.img-009.jpg&w=359&h=239
http://www.liebertonline.com/action/showImage?doi=10.1089/ten.tec.2008.0298&iName=master.img-011.jpg&w=492&h=111


cord length in the long axis can skew the PSD. The PSD ob-
tained from the SCL for the 2D image (Fig. 3D) is highly
concentrated in larger pore diameters, whereas the PSD of the
3D image obtained from the SCL is as well distributed as the
local thickness approach. This is attributed to the effect of 3D
interconnectivity on the PSD.

We have also examined the sensitivity of the PSD results to
the value of k presented in Equation (1). Figure 7 displays the
variation of median pore size as a function of the k value. One
can see that, when k is near unity, the median pore size reaches
its maximum; the same trend is also observed for mean pore
size (not shown in the figure). When k is less than unity, those
pores associated with pixels along the boundary of the pore
phase (with a radius of 1 pixel) cannot be eliminated during
the superseding spheres process. These boundary pore–phase
pixels with a radius of 1 pixel will contribute to the PSD and
lower the median and mean pore size. Also, the skeleton of
the pore phase will become thick (not a single component) in
the pore space. When k is much greater than 1, a number of
larger pores will be eliminated during the superseding
spheres process. Consequently, the median and mean pore
size will become lower, and the skeleton of the pore phase will
become discrete. To obtain a realistic PSD and a skeleton with
a single connected component in the pore space, theoretically,
the k value should be equal to 1; however, we recommend that
the k value chosen be equal to 1.01 because of the precision
and truncation errors during computational processes.

We also explored the sensitivity of the superseding spheres
algorithm to pixilation and edge effects that become appre-
ciable when image features are comparable with limitations in
experimental data acquisition. Both effects are consequences
of fitting maximal spheres to pore volume and are relevant to
any of the widely used image analysis techniques that rely on
this approach.17

Pixelization is a problem whenever image contours are on
the order of the experimental resolution. Its effect on the su-
perseding representation of a single spherical void (40 pixels
in diameter, embedded in a 100�100�100 pixel image) is
shown in Figure 8. The number of superseding spheres gen-
erated by the algorithm to fill the void increases dramatically
with pixelization (i.e., from 1 in the case of low pixilation
(Fig. 8A) to well over 3000 in the most extreme case (Fig. 8D)).
There are thousands of extra superseding spheres even in the
case of minimal pixelization (Fig. 8B), and their diameters are
always significantly smaller than the 5-pixel void diameter.

Therefore, the distribution of superseding diameters in this
case has essentially no relationship to the characteristics of the
void. This shows why it is essential to carefully consider ex-
perimental image pixilation when using maximal spheres to
estimate pore size. Pixelization, however, has little effect on
the algorithm’s ability to quantify other parameters such as
pore volume.

Image-edge effects set the lower size limit for the rep-
resentative volume in the local thickness approach and arise
from the restriction of superseding sphere centers to image
pixels. This restriction prevents the spheres from completely
filling partially imaged pores (Fig. 9) and can lead to the
creation of superseding spheres at the image boundary that
do not reflect the geometry of the imaged structure. If the
volume of the partially imaged pores is comparable with
the overall pore volume in the image, this can severely bias
the PSD. We explored this using a mock image of a network
of overlapping, hexagonally packed, spherical voids that
were 5 pixels in diameter. The volume of the image
(100�100�100 pixels) was considerably larger than the
characteristic length scale of the system (i.e., the 5 pixel di-
ameter of the voids), yet as Figure 10A shows, attempts by
the algorithm to fit partially imaged pores at the image edge

FIG. 11. View of the porous
phase of a real 3D porous
medium.
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FIG. 12. Porosity obtained from experimental measure-
ment and image analysis as a function of initial mass fraction
of the water-soluble PEO component of the PCL=PEO
(polycaprolactone=poly (ethylene oxide)) blend.
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(the xz plane) resulted in more than 1000 anomalous su-
perseding spheres. The PSD calculated from this represen-
tation (Fig. 10B) is clearly biased toward smaller pore size.
When superseding spheres from the image edge are re-
moved, however, the PSD is more Gaussian-like about the 5
pixel void diameter (Fig. 10C). Although eliminating all
edge-superseding spheres removed the effect in this case, the
only way to eliminate it with certainty is to ensure that the
image volume is large enough so that the PSD does not vary
if the volume is increased.

Finally, a far more rigorous test for the local thickness and
the SCL approaches were carried out to evaluate a porous
material with a high tortuosity and complex topology (such as
tissue engineering scaffolds with many interconnected par-
allel pathways and junctions of multiple paths). In this case,
the porous scaffold material was prepared in such a manner
as to eliminate the water-soluble PEO component of the
PCL=PEO blend and leave a porous PCL scaffold (Fig. 11).
Using this process, five PCL scaffolds were prepared with
mass ratios of PCL to PEO of 60:40, 55:45, 50:50, 45:55, and
40:60. Figure 12 compares the porosities measured according
to gravimetric analysis of mass loss and analysis of the X-ray
images with the theoretically expected porosity based on the
initial charge and the assumption of 100% removal of the PEO
fraction. It can be seen from this figure that, for PEO compo-
sitions from 45 to 65 mass%, the calculated porosities agree
well with the expected porosities. However, at a porosity of 40
mass%, the calculated value was significantly lower than that
expected because of the initial charge. It is likely that, when
the fraction of the insoluble PCL in the blend becomes sig-
nificantly greater than the fraction of the soluble PEO, the
blend will cease being continuous. These isolated regions of
PEO will not be removed during the soaking process and
will remain in the scaffold to lower the measured porosity
below the expected result. In addition, at the other end of the
composition range, samples with very high loadings of PEO
(>60–65%) were not characterized because of the poor me-
chanical integrity of the scaffolds.

Figure 13 shows that the average pore size obtained through
the local thickness approach increases with increasing porosity
and reaches an asymptote (based on a best curve fit) at larger
porosities, whereas the pore size obtained through the SCL
approach increases linearly with porosity. Also, the pore size
from the SCL is much higher than that obtained from the local
thickness approach except with low porosity (i.e., 28%). This
trend is consistent with our findings on PSD in previous ex-
amples. When the porosity increases beyond a certain critical

value, we believe that the interconnected scaffold pathways
increase with increasing porosity, while the local thickness of
the pathways remains a constant. However, the increase of
junctions of multiple paths, which the decreasing pore tortu-
osity with increasing porosity can explain, dominates the
chord length evaluated in the SCL approach, as shown in
Figure 14. Tortuosity is defined as the ratio of effective path
length to linear path length in random porous network, which
will be further explained at the end of this section. For the
scaffolds with porous networks with very low porosity (e.g.,
28% in our study), the pore tortuosity increases, and pore size
evaluated from the SCL seems very close to that from the local
thickness approach. This is because, using the SCL approach,
the higher tortuosity will cause chords emanating from a
skeleton point in a pore to encounter a boundary rapidly and
produce a shorter average chord length that is comparable
with the local thickness of the pore space. The results shown in
the Figures 13 and 14 suggest that increasing mean pore size
causes decreasing tortuosity. A study of porous soil struc-
ture,24 in which the PSD of the soil experimentally measured is
linked to the connectivity and tortuosity of the pore network in
three dimensions, also supports this argument.

The characterization of flow of water, air, electricity, or
elastic waves in porous media depends greatly on the tor-
tuosity of pore space where the flow passes through. For

FIG. 13. Pore size obtained
using the superseding and the
star chord length approaches
as a function of porosity
studied for PCL=PEO blend,
For the superseding approach,
the solid line is a best curve fit
based on the inset equation,
where D and f are the median
pore size and porosity, re-
spectively.
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FIG. 14. Pore tortuosity of PCL scaffold against porosity.
Tortuosity is calculated as the average ratio of effective po-
rous path length to linear path length from three orthogonal
directions of scaffold.
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example, tortuosity is an important parameter for the pre-
diction of acoustical properties of porous sound-absorption
materials. Also, tortuosity is a metric of interest for the
scaffold microstructure in tissue engineering because it af-
fects the scaffold permeability, which ultimately affects
transport within the scaffold relating to oxygen and nutrient
delivery, waste removal, protein transport, and cell migra-
tion. Conventionally, the definition of tortuosity is given as
the ratio of the actual flow path length and the straight-line
distance between inflow and outflow—a kinematical defini-
tion. We have developed a computer method for image
analysis, based on a so-called burning algorithm,25 to ac-
count for this kinematical definition and quantify the tortu-
osity of PCL scaffolds with different porosity shown in
Figure 14 (see Appendix).

Conclusions

Extracting quantitative information of pore size from
experiments or raw images is not trivial. One substantial
reason for this is that, in most materials, such as tissue-
engineered scaffolds, the pores have interconnected irregu-
lar shapes (rather than discrete voids), and definition of the
pore for such media is inevitably subjective and vague.
Consequently, the PSD depends highly on analytical tech-
niques employed to interpret the experiment or image, and
no qualitative comparisons can be made between them. As
matter of fact, a decision must be made in selecting an ap-
proach to determine the PSD that can be best correlated with
physical or chemical functions in their applications. In this
study, based on the skeleton representation of a porous ob-
ject, we have proposed two image-analysis approaches (local
thickness and SCL) for PSD. The local thickness approach
gives the local thickness of the pore object, which corre-
sponds to a lower bound of PSD. The SCL approach con-
siders the directional variation of the pore object (taking into
account the anisotropy of pore object), which corresponds to
an upper bound of PSD. Knowledge of the upper and lower
bounds of PSD are essential because cell activity within a
porous scaffold needs an optimal pore size or range.

Both approaches are geometry models and independent of
analytical technique; no intermediate process for the skeleto-
nization is needed (no mathematical morphology theory). The
skeleton derived using the proposed superseding algorithm
fulfils two essential requirements; it generates a medial axis
and preserves the connectivity of the pore space. These two
approaches can both be incorporated into a computer pro-
gram without tedious and complex mathematical operations,
and with the transparency of the proposed algorithms, users
can obtain the lower and upper limits of PSD that are more
practical and useful to the design of bioactive scaffolds.
Also, through the PSD obtained from the proposed two ap-
proaches, the porous tortuosity of a medium can be inferred.
In addition, through the superseding spheres process, the
skeleton of the pore network can be constructed to deduce
other microstructural properties that are useful in a large
spectrum of applications.
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Appendix

In principle, the burning algorithm ‘‘lights’’ a fire at one end
of the microstructure, in the chosen phase, and lets the fire
burn in that phase until there are no more pixels of that phase
left unburned, at least ones that the fire can get to via nearest-
neighbor connections. The other side of the microstructure is
then checked to see whether the fire reached there. If it did,
then the chosen phase must be connected from one side to the
other. If it did not, then the phase does not percolate.21

We have used the aforementioned burning process to
calculate the actual flow path, which can be illustrated using
schematics shown in Figure A (appended). Figure A1 gives a
two-dimensional (2D) porous object with size of 6x6 pixels,
and we started by choosing the pixels in the pore space at
one end of the system (inflow). Then, these pixels are burnt
(in gray color, Fig. A2), and their surrounding neighbors that
have the same phase are iteratively burnt (Fig. A3–A9). The
burning process continues until there are no more accessible
unburnt pixels.

From Figure A1, one can see that the fire reaches the op-
posite end of the microstructure with different burning steps

for each pixel at the end. The tortuosity (t) is defined as the
ratio of effective path length to linear path length between
inflow and outflow:

s¼ ‘a

‘

where ‘a and ‘ are the actual flow path-length and the straight-
line distance between inflow and outflow. This tortuosity can
be directional dependent (x and y direction), and the effective
tortuosity of microstructure in each direction is defined as:

seff ¼

Pn

i¼ 1

‘ai

‘i

n
:

where n is the number of pixels percolating through the mi-
crostructure. For example, the effective tortuosity in y-direction
of the microstructure shown in Figure A1 is calculated as:

seff ¼
6þ 6þ 7þ 8þ 7þ 6

6 · 6
¼ 1:11
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FIG. A. Schematics of burning process to calculate the actual flow path for a 2D porous object with size of 6�6 pixels.
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