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Formation of a surface quantum dot near laterally and vertically neighboring dots

B. Yang* and V. K. Tewary
Materials Reliability Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA

~Received 4 October 2002; published 1 July 2003!

The elastic-energy-release rate~EERR! of a surface quantum dot~QD! near laterally and vertically neigh-
boring QDs in a linear anisotropic elastic substrate is calculated. The EERR is used to describe quantitatively
the driving force for growth of a newly formed~i.e., small! QD in the presence of a grown~i.e., large! QD and
hence quantitatively the driving force for their ordering by assuming that the variation of the total change of
free energy~including elastic energy, surface energy and edge energy! with their relative location depends only
upon the elastic-energy part. An efficient boundary-element method is employed to solve the three-dimensional
boundary-value problem of anisotropic elasticity, which requires discretization only along the surface of the
QDs and their interface with the substrate. Numerical results for InAs QDs of cuboidal shape on a GaAs
substrate with a free surface along the~001! plane are reported. It is found that the presence of a large surface
QD inhibits the growth of a small surface QD. The small QD ‘‘prefers’’ to align with the large one in the~100!
and~010! directions. However, this effect is relatively small, of about a 1.5% change of the EERR. In contrast,
the effect of a buried large QD on the growth of a small surface QD can be significant, of up to a 25% change
of the EERR. The favorable location of a small surface QD may be either vertically above or at an angle to the
buried large QD, depending upon the depth of the latter. The driving force for the growth of a small surface QD
at the favorable locations is enhanced by the presence of the buried large QD. In addition, the theory predicts
an optimum depth of the buried large QD for the driving force for the growth of a small QD at the surface.

DOI: 10.1103/PhysRevB.68.035301 PACS number~s!: 68.35.2p
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I. INTRODUCTION

Currently there is a strong interest in semiconductor qu
tum dots ~QDs! because of their potential applications
interesting devices, such as ultralow threshold laser, reso
tunneling devices, and huge-capacity memory media.1 An
efficient method of fabricating semiconductor QDs is bas
on the spontaneous formation of small dots on the surfac
a heteroepitaxial thin film. In this process, a QD may nuc
ate and grow in the elastic field of neighboring QDs. T
long-range elastic effect may lead to lateral and vertical
dering of QD arrays that is essential to many QD appli
tions, such as those mentioned above. Recently, Yang2 intro-
duced the elastic-energy-release rate~EERR! to quantify the
driving force in the formation of quantum islands~QIs! in-
cluding QDs and quantum wires~QWs!. The EERR is de-
fined as the reduction of elastic strain energy per unit volu
of QI growth. It was used to examine the vertical ordering
QWs in an isotropic elastic system under the assumption
the variation of the total change of free energy~including
elastic energy, surface energy and edge energy! with their
relative location depends only upon the elastic energy pa
is the objective of the present work to apply the EERR un
the same assumption to explore quantitatively the effect
laterally and vertically neighboring grown~i.e., large! QDs
on the driving force for a newly formed~i.e., small! surface
QD in a three-dimensional~3D! anisotropic elastic system.

Experimentally, a new QD is often found to grow on
free surface vertically above an existing QD.3–7 In other
cases, a vertically oblique array of QDs is found.5,8,9 In their
discussion of the formation of arrays of QWs, Shchuk
et al.10 have calculated the interaction energy between
sheets of identical QWs in a cubic anisotropic elastic so
They assumed that the QWs have the same properties a
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substrate. They found that there exists a bifurcation of c
relation and anticorrelation of QW sheets, depending up
the distance between the two sheets, in order to minimize
energy of the system. This bifurcation has, however, not b
found in the isotropic elastic system with QWs of a differe
shape based on the same concept of energy minimizat2

Ponchetet al.11 developed a similar model to investigate th
lateral interaction of identical QDs. However, since the
studies10,11did not set up a reference level of energy chan
it is not clear how strongly these QIs interact, for instan
compared to the environmental noises in the practical se
In parallel, some research groups have used the spatial v
tion of strain~or strain energy density! of a single seed QI~or
a group of seed QIs! to predict the favorable location of
new QI.3,12–14Zhanget al.15 further developed the local-field
approach
of QI formation by coupling to it a kinetic law. Such
approaches in terms of strain or strain energy density, wh
are conceptually different from the aforemention
approaches2,10,11based on the change of system energy in
course of QD formation, may be applicable to a kinetic
controlled process. In the self-assembly of equilibrated
arrays, an approach based on the minimization of sys
energy is applicable.1,2,10,11

In Sec. II, the three-dimensional boundary-value probl
of QDs in a substrate is formulated. The QDs and subst
have generally different materials properties. An efficie
boundary-element~BE! method16,17 is used to solve the an
isotropic elastic inhomogeneity problem. Because it uses
half-space Green’s function for the substrate, coupled w
the infinite-space Green’s function for the QDs, the B
method requires only numerical discretization along the s
face of the QDs and their interface with the substrate. T
numerical procedure is more efficient than the conventio
©2003 The American Physical Society01-1
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FIG. 1. ~a! A half-space heterostructure wit
embedded and uncapped QDs and a thin wett
film. ~b! Formation of a new QD by mass trans
port from the wetting film.
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BE method using only the infinite-space Green’s funct
and than both the domain-based numerical technique
finite-element method18 and finite-difference method.19 In
Sec. III, the EERR of a small InAs QD of cuboidal sha
near a large InAs QD on a GaAs substrate is calculated.
variation of the EERR with their relative location is used
explore the driving force and favorable location of a new
formed QD in the presence of a laterally or a vertica
neighboring grown QD. The present formulation describ
quantitatively the driving force for formation of a QD an
hence quantitatively the driving force for interaction and
dering of QDs. This is of practical significance in the stra
engineering of QD nanostructures.20 Conclusions are drawn
in Sec. IV.

II. FORMULATION

The elastic-energy-release rate is defined as the redu
of elastic strain energy per unit volume of mass transp
from a wetting layer to a QD of certain shape.2 We analyze
the critical EERR for nucleation of a self-similar QD o
cuboidal shape near an existing grown QD. This phys
process is schematically shown in Fig. 1. Figure 1~a! shows
the initial state: a grown~seed! QD that is uncapped or bur
ied, and a finite wetting layer on a substrate. The wett
layer is assumed to be very thin and to cover a very la
area compared to the dimensions of the QD. The produc
the thickness and the area is finite, yielding a finite volum
Thus, the elastic strain energy of the system can be obta
as a sum of those of the wetting layer and of the seed
calculated separately, i.e., the interaction energy of the w
ting layer and the seed QD is negligible. Figure 1~b! shows a
target state of a small QD being nucleated by mass trans
from the thin wetting layer. Similarly, because the wetti
layer is very thin and covers a very large area compare
the dimensions of the QDs, the elastic strain energy of
system can be obtained as a sum of that of the wetting la
and of the seed QD plus the new QD calculated separa
From states~a! to ~b!, the mass is conserved. Therefore, t
elastic strain energy of the two systems,Winitial andWtarget,
can be written, respectively, as

Winitial5Wseed1wwetVwet and Wtarget5Wseed1newdot

1wwet~Vwet2Vnewdot!, ~1!

whereWseedis the elastic strain energy of the system of on
the seed QD and substrate, andwwet and Vwet are, respec-
tively, the elastic strain energy density and volume of
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wetting layer,Wseed1newdot is the elastic strain energy of th
system of the seed QD, new QD, and substrate, andVnewdotis
the volume of the new QD.

By fixing the shape and volume of the seed QD, t
EERR for formation of the new QD is derived by different
ating the second equation in Eq.~1!:

Gnewdot52
dWtarget

dVnewdot
52

dWseed1newdot

dVnewdot
1wwet. ~2!

In later calculations, this quantity is evaluated approximat
in a finite-difference scheme as

Gnewdot52
Wseed1newdot2Wseed

Vnewdot
1wwet. ~3!

The finite-difference formula is accurate for a new QD
small volume compared to the seed QD. It is valid also
causeWseedis the limiting value ofWseed1newdotwhenVnewdot
approaches zero. Therefore, the evaluation of the EE
Gnewdot, is reduced to calculating the terms:Wseed,
Wseed1newdot, andwwet. Assuming that the higher the EERR
the more favorable is the condition for the growth of a ne
QD, the relation of a new QD to a seed QD can be de
mined.

To evaluate the termWseed1newdot, we consider a hetero
structure consisting of a semi-infinite substrate, a seed
~uncapped or buried!, and a small new surface QD, as show
in Fig. 1~b! ~excluding the wetting layer!. The materials
properties of the QDs are the same, and are different fr
those of the substrate. The QDs and substrate are coher
bonded, and their lattice constants are different. This in
duces a uniform eigenstrain field in each QD. The eigenst
field induces a residual elastic field upon relaxation of
system, and hence causes the QDs to interact. A Carte
frame of reference system (x1 ,x2 ,x3) is established with the
x3 axis normal to the free surface and with the origin at t
free surface. A numerical BE scheme is applied to solve
elastic problem with multiple bodies and eigenstrain fie
leading to an efficient evaluation of the elastic strain ene
of the system.

The boundary integral equation of displacement alo
boundaries of the substrate in equilibrium is given by

1

2
ui

~M !~X!5E
S~M !

@ui j*
~M !~X,x!pj

~M !~x!

2pi j*
~M !~X,x!uj

~M !~x!#dS~x!, ~4!
1-2
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where the superscript~M! indicates the association of a qua
tity to the substrate,S stands for surface,ui and pi
([s i j nj ) are respectively the displacement and tract
components, andui j*

(M ) andpi j*
(M ) are respectively the half

space fundamental solutions of displacement and tractio
the j th direction at a field pointx due to a unit point force
acting in the i th direction at a source pointX. Repeated
subscript implies summation over its range from 1 to
These fundamental solutions satisfy the traction-free bou
ary condition along the surface of the half space.21 In the
above definition of tractionpi , s i j is the stress componen
andnk is thekth component of the unit outward normal at
smooth boundary point.

Similarly, the boundary integral equation of displaceme
along boundary of thenth QD, Dn (n51,2) with a uniform
eigenstrain field in equilibrium is given by

1

2
ui

~Dn!
~X!5E

S~Dn!
$ui j

* ~Dn!
~X,x!@pj

~Dn!
~x!2F j

~Dn!
~x!#

2pi j
* ~Dn!

~X,x!uj
~Dn!

~x!%dS~x!, ~5!

where the intrinsic tractionF j
(Dn)

[Cjklm
(Dn)

« lm
0(Dn)nk ,22 where

Ci jlm is the elastic stiffness component,« lm
0 is the eigenstrain

component, andui j
* (Dn) and pi j

* (Dn) are, respectively, the
infinite-space fundamental solutions of displacement
traction due to a point force,21 which are different from the
above half-space ones,ui j*

(M ) andpi j*
(M ) for the substrate.

Along all the external boundaries, including the open s
face of an uncapped QD and the top surface of subst
excluding the part covered by an uncapped QD, the tract
free condition, i.e.,pi50, is imposed. Across all the inter
faces between the substrate and QDs, the continuity co
tions of displacement and traction, i.e.,ui

(M )5ui
(Dn) and

pi
(M )52pi

(Dn) , are imposed. Under these conditions,
unique solution to the elastic field in the system exists. T
solution can be obtained by using a BE method based
Eqs. ~4! and ~5!.16,17 Because Eq.~4! uses the half-spac
fundamental solution that satisfies the traction-free condi
along the top surface, only the part of the top surface, wh
the traction-free condition is not satisfied due to the atta
ment of a surface QD, requires discretization. The itera
scheme of successive over-relaxation is used to solve
problem of multiple bodies.16

Once the solution on the boundaries is obtained, the e
tic strain energy of the system with uniform eigenstrain fie
in each QD can be evaluated by23

Wseed1newdot5
1

2 ES
piuidS2

1

2 ES~D !
FiuidS

1
1

2 EV~D !
Ci jkl « i j

0 «kl
0 dV, ~6!

whereS(D) and V(D) are, respectively, the surface and vo
ume of the seed and new QDs. The first term represents
work done by the external traction, which is zero in t
present case of zero traction along external boundaries
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self-balanced traction along interfaces. The second term
resents the work done by the intrinsic traction due to
uniform eigenstrain field in the QDs during the deformati
of the body. The third term, which is a constant, correspo
to the ground state before relaxation of the eigenstrain fi
in the QDs.

The termWseedcan be evaluated as a special case in
same way as above. The wetting layer, which is assume
consist of the same material as the QDs, has an eigens
field due to its lattice mismatch with the substrate. Its str
energy densitywwet corresponds to the state with its stre
relaxed in thex3 direction. This term, which is defined to b
1/2s i j (« i j 2« i j

0 ), can be obtained provided that the stresss i j

and strain« i j are available. The stress and strain can
obtained by solving the twelve~independent! equations of
s i j 5Ci jkl («kl2«kl

0 ) ~i.e., constitutive law! under six condi-
tions of s i350 and«115«225«1250.

III. FORMATION OF A QD NEAR NEIGHBORING DOTS

In this section, the previous formulation of the EERR f
formation of a small QD in the presence of a seed QD
applied to examine InAs QDs on a GaAs substrate. B
materials are modeled as cubic anisotropic and linearly e
tic. Their crystallographic directions are, respectively, par
lel to each of the Cartesian axes. The free surface of
substrate is taken to be the~001! plane. The elastic constant
for GaAs areC115118, C12554, C44559 (GPa), and, for
InAs, C11583, C12545, and C44540 (GPa). The eigen-
strain in the QDs is hydrostatic, i.e.,« i j

0 5«0d i j . The shapes
of the QDs are taken to be cuboidal with side dimensio
a3a30.5a for seed dot~either uncapped or buried!, and
0.2a30.2a30.1a for new surface dot. Since the elast
fields and total strain energy are, respectively, linearly a
quadratically dependent upon«0, these quantities are scale
correspondingly by the latter. All lengths are scaled bya.

A. Effect of a laterally neighboring dot

The case when the seed QD as well as the new QD is
the free surface is first considered, as shown in Fig. 2. T
location of the QDs is defined by the coordinates of the c
ter of their bottoms. Let us locate the seed QD at~0, 0, 0! and
the new QD at (x1 ,x2,0). Using the previous formulation
the EERR for self-similar formation of the new QD is calc
lated for various values ofr and u, wherex15r cosu and
x25r sinu. The results along three radial lines,u50°, 30°

FIG. 2. Formation of a new QD in the presence of a latera
neighboring grown QD.
1-3
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B. YANG AND V. K. TEWARY PHYSICAL REVIEW B 68, 035301 ~2003!
and 45°, and along a circular arc fromu50° to 90° at r
5a, are plotted in Figs. 3 and 4. The angular variation of
EERR is symmetric relative to thex1 andx2 axes.

Figure 3 shows that the EERR for formation of the ne
QD decreases when the new QD gets closer to the seed
This shows that the presence of the surface seed QD inh
the growth of a new QD nearby. This figure also shows t
the EERR is the highest when the new QD is aligned in
~100! direction. This behavior is confirmed by Fig. 4, whic
shows that the angular variation of the EERR atr 5a has a
minimum atu545° and maxima atu50° and 90°. Thus, an
alignment of the new QD along the~100! or the~010! direc-
tion is favorable. However, the difference between the ma
mum and minimum values of the EERR is only appro
mately 1.5% of the average magnitude. Figure 3 also sh
that the EERR decreases rapidly withr when the new QD
gets very close to the seed QD. In this situation, the c
tinuum model as such may not be valid, and a lattice-le
model should be used.

B. Effect of a vertically neighboring dot

Now the case of a buried seed QD and a new surface
is considered, as shown in Fig. 5. The location of the s

FIG. 3. Radial variation of the EERR for formation of a new Q
at three anglesu50°, 30° and 45° from the center of the larg
surface QD.

FIG. 4. Angular variation of the EERR for formation of a ne
QD betweenu50° and 90° and atr 5a from the center of the large
surface QD.
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QD is defined by the coordinates at the center of its
surface, set at~0, 0, h!. The location of the new surface QD
is defined in the same way as above by the coordinates o
center of its bottom surface, set at (x1 ,d,0). The EERR for
formation of the small surface QD is calculated as a funct
of the new-dot coordinatex1 for d50, 0.3a and 0.6a, and
h50.1a, 0.3a, and 0.6a. The results are plotted in Figs
6~a!, 6~b!, and 6~c!.

The plots in Fig. 6~except one curve withh50.1a and
d50 in Fig. 6~a!, which will be discussed next! show that
the EERR for the formation of the small surface QD is t
highest when the new QD is vertically above the buried s
QD. When the new QD is moved aside and farther from
center of the buried seed QD, the EERR decreases, and
increases. It eventually approaches a constant value at a
distance. When this happens, the buried seed QD has
significant effect on the formation of the new QD.

When the depth of the buried QD is small, as in the ca
of h50.1a shown in Fig. 6~a!, the behavior of the EERR a
described above is different. In this case, the maximum va
of the EERR does not occur when the new QD is right abo
the buried seed QD. Instead, the maximum value app
when the new QD is between the center and the edge of
buried seed QD. At the peak point, the EERR decreases
idly with increasing distance between the two QDs. Th
implies that for small values ofh, the favorable location for
formation of the new QD is not vertically above the se
QD. Therefore, the calculation suggests that an obliq
stacking of QD arrays can be energetically favorable if
separation depth, i.e., spacer thickness, is small. For la
separation depths, the vertical stacking of QD arrays
favorable.

In addition, the variation of the EERR as a function
depthh for x15d50 is examined. In this case, the new Q
is vertically above the seed QD and the depth of the seed
is varied. The result is shown in Fig. 7. It can be seen that
EERR has the maximum value at abouth50.3a. This im-
plies that there is an optimum depth of the buried seed
for the formation of a new QD at the free surface. Also, t
magnitude of the EERR is always larger than that when
seed QD is remote to the new QD~equivalently, that in the
absence of the seed QD!. Thus, together with the result
shown in Fig. 6, it is concluded that the presence of
buried seed QD enhances the growth of a new QD at
favorable locations on the free surface. The enhancemen
the EERR can be up to 25% above the mean value.

FIG. 5. Formation of a new QD in the presence of a vertica
neighboring grown QD.
1-4
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FORMATION OF A SURFACE QUANTUM DOT NEAR . . . PHYSICAL REVIEW B 68, 035301 ~2003!
Finally, we remark that the presence of edges of the Q
contributes significantly to the spatial variation of the EER
for formation of a new QD. Therefore, the results presen
above depend upon the shapes of the QDs which are
sumed to be cuboidal. The characteristics of the EERR va
tion may be different for QDs of other shapes.

FIG. 6. Variation of the EERR for formation of a new QD alon
lines (x1 ,d,0) for a fixed depth of the buried seed QD:~a! h
50.1a, ~b! h50.3a, and ~c! h50.6a. The insets are the surfac
plots of the EERR over the area above the buried seed QD.
03530
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IV. CONCLUSIONS

The EERR for the formation of a surface QD in the pre
ence of laterally and vertically neighboring QDs in semico
ductors has been examined. This problem of multiple bod
in anisotropic elasticity has been solved by applying an e
cient BE method. Because it uses the half-space fundame
solution for the substrate, coupled with the infinite-spa
fundamental solution for the QDs, the BE method requi
only numerical discretization along the surface of the Q
and their interface with the substrate. The formula for cal
lating the elastic strain energy of the QDs with unifor
eigenstrain field requires only the displacement and trac
along these boundary and interface, which are the direct
come of the BE solution. Thus, the present BE method
computationally more efficient than the conventional B
method using only the infinite-space fundamental solution
well as the domain-based numerical techniques such as
finite-difference and the finite-element methods. Numeri
results for the EERR of an InAs QD of cuboidal shape on
GaAs~001! substrate are reported.

It has been shown that the presence of a grown sur
QD reduces the EERR for the growth of a small surface Q
nearby. The small surface QD prefers to align along the~100!
and ~010! axes with the large one. However, this lateral e
fect is relatively small, of only about 1.5% change of t
EERR. In contrast, the effect of a buried seed QD on
formation of a surface QD can be significant, of up to 25
change of the EERR. Depending on the depth of the bu
seed QD the EERR or the formation of a small surface Q
reaches the highest magnitude when the small QD is ei
vertically above or at an angle to the large grown QD.
implies that in the case of thick spacer, which covers the s
QD, a vertical array of QDs would exhibit an ordering
correlation. In the other case of thin spacer, an oblique sta
ing of QDs is energetically favorable. When the new QD
vertically above the seed QD, the EERR, plotted as a fu
tion of the depth of the seed QD, has the maximum value
abouth50.3a. Thus, there is an optimum depth of the bu
ied seed QD for the driving force of a new QD at the surfa

The above results have been derived for QDs of cubo
shape. The EERR is sensitive to the shape of the QDs

FIG. 7. Variation of the EERR for formation of a new QD righ
above the center of the buried seed QD with the depth of the bu
seed QD.
1-5
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B. YANG AND V. K. TEWARY PHYSICAL REVIEW B 68, 035301 ~2003!
cause of the effect of the edges. Therefore, the characteri
of the EERR as discussed above may not apply to QD
other shapes. The EERR also depends on the volume o
QDs. The EERR calculated above is for the early stage
QD growth. Favorable locations for growth of a QD ma
change as the QD grows.
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