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Summary 

 
A method is described for multiscale modeling of point defects such as vacancies and 

interstitials at the atomistic level and extended defects such as free surfaces and interfaces at the 
macroscopic continuum level in a solid. The method is based upon the use of the lattice-statics 
Green’s functions. It fully accounts for the discrete lattice structure of the solid at the atomistic 
scale near point defects and reduces asymptotically to the macroscopic continuum model for 
extended defects. A major advantage of the lattice-statics Green’s function is that it can model a 
large crystallite containing a million atoms without exc essive CPU effort. Numerical results are 
presented for the displacement field on the free surface due to a vacancy in fcc aluminum. 
 

Introduction 
 

We describe a computationally efficient lattice-statics Green’s-function method for multiscale 
modeling of point defects such as vacancies and interstitials and extended defects such as free 
surfaces and interfaces in solids. The method is especially useful for interpreting and analyzing the 
elastic response of thin films and semi-infinite solids. Our model treats the point defects at the 
atomistic scale and extended defects at a macroscopic scale in the same formalism. The lattice-
statics Green’s function accounts for the discrete lattice structure of the solid and is suitable for 
atomistic modeling of point defects.  It reduces asymptotically to the continuum Green’s function 
that we use to model the extended defects. A major advantage of the Green’s- function method is 
that it is semi-analytic, in contrast to the direct computer simulation methods for lattice statics, 
which are CPU-intensive. Our method can model a large crystallite containing a million atoms 
without excessive CPU effort. We use our method to calculate displacement fields in a solid that 
contains both point and extended defects.  

 
The elastic characteristics of thin films and semi-infinite solids depend upon the strains caused 

by the point defects near the free surfaces and the interfaces. The point defects need to be 
modeled at the atomistic scale, whereas free surfaces and interfaces can be adequately modeled at a 
macroscopic scale. The continuum model is not fully reliable for modeling point defects where the 
discrete atomistic structure of the crystal lattice is very important (see, for example, [1,2]). 
Experimentally one measures strain near a free surface. In order to interpret the experimental results, 
one needs a model to calculate the strains caused by the point defects in the presence of the free 
surface. It is therefore necessary to use a multiscale model that accounts for the discrete lattice 
structure of the solid near a point defect and the macroscopic effects near an extended defect. This 
explains the strong topical interest in multiscale modeling of solids. 

 
Recent papers on multiscale modeling are based upon purely numerical techniques using the 

finite-element method and/or computer simulation of the lattice structure (for an excellent review 
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and other references, see [3]). The purely numerical techniques can be very accurate but they are 
CPU-intensive and not convenient for parametric design studies. The Green’s-function method 
gives accurate results, is computationally convenient, and can provide quick ‘what if’ answers, 
which is  useful for design of experiments. For the purpose of illustration, we apply our method to 
calculate the displacement field at the free surface of a semi-infinite aluminum crystal containing a 
vacancy. This paper is a preliminary report of our ongoing work on multiscale modeling of point 
defects in thin films of metals and semiconductors. Details will be published elsewhere. 
 

Theory  
 

We consider a monatomic Bravais lattice with a point defect at the origin. We assume a 
Cartesian frame of reference. We denote the lattice sites by vector indices l, l’ etc. A vector index l 
has 3 components, denoted by l1,  l2, and l3.  The three-dimensional (3D) force-constant matrix 
between atoms at l and l’ is denoted by φφ∗∗( l, l’). . The force on atom l  and its displacement from 
equilibrium position will be denoted, respectively, by F(l) and u(l), which are 3D column vectors. 
The displacement vectors u(l) at each lattice site give the relaxation of the lattice or the lattice 
distortion caused by the defect. 

 
The force-constant matrix for each pair of atoms is 3 × 3. It is  obtained from the interatomic 

potential as follows: 
 

[φφ ∗∗ (( l, l’))]ij =  = ∂2V(x)/ ∂xi ∂xj,     (1) 
 
where V(x) is the interatomic potential (assumed central) between the pair of atoms l and l’ 
separated by vector distance x.  Similarly, the force at the atom l due to the atom at the origin at a 
distance x is given by 
 

[F(l)]i = – ∂V(x)/ ∂xi.      (2) 
 

Following the method given in [1,2], we obtain 

 

u(l)  =  Σl’ G
*( l, l’)  F(l’),     (3)    

 
where G* is the defect lattice Green’s function defined by 
 

G*  =  [φφ ∗∗ ]−1−1.             (4)  
 
The sum in eq. (3) is over all lattice sites and Cartesian coordinates, which have not been shown 
explicitly for notational brevity. 
 

In the representation of lattice sites, G* and φφ∗∗  are 3N × 3Ν  matrices, where N is the total 
number of lattice sites in the Born-von Karman supercell. For an infinite perfect lattice in 
equilibrium without defects, F(l) is 0 for all l and the force constant and the Green’s function 



matrices have translation symmetry. We denote these matrices by φφ and G respectively. When a 
defect is introduced in the lattice, F(l) becomes, in general, non-zero and the force constant matrix 
changes.  So  
 

φφ ∗∗  =  φ − ∆ φ =  φ − ∆ φ ,        (5) 
 
where ∆φ ∆φ  denotes the local change in the force constant matrix φ. φ. From eqs. (4) and (5), we obtain 
the following Dyson equation 
 

G* = G + G ∆φ ∆φ G*,     (6) 
 

where   

G  =  [φφ ]−1−1                 (7) 
 
is the perfect lattice Green’s function. In the same representation, we can write eq. (3) in the 
following matrix notation: 
 

u = G* F.       (8) 
 
Using eq. (6), we rewrite eq. (8) as 
 

u = G F*,       (9) 
 
where 

F* = F + ∆φ ∆φ u.      (10) 
 

Equation (9) gives the displacement in terms of the perfect-lattice Green’s function and an 
effective force denoted by F*, the so called Kanzaki force [1]. From eq. (10), we can identify it as 
the force due to the defect on relaxed lattice sites, in contrast to F, which denotes the force at the 
unrelaxed original lattice site. Equation (9) is applicable to any point defect such as a vacancy, an 
interstitial, or a substitutional impurity. 

 
For the perfect lattice, G(l,l’) has translation symmetry and therefore can be labeled by a single 

index l-l’.  It is calculated by use of the Fourier representation 
 

G(l) = (1/N) Σq G(q) exp[ éq.l],    (11) 
 
where é = √-1, N is the total number of atoms, 
 

G(q)  =  [φφ (q)]−1,         (12) 



 
φφ(q) is the Fourier transform of the force-constant matrix, and q is a vector in the reciprocal space of 
the lattice. For brevity of notation, we shall use the same symbol for a function and its Fourier 
transform, the distinguishing feature being the argument of the function. Since G(q) and φφ(q)  are 3 
× 3 matrices, eqs. (11) and (12) can be used to calculate the perfect-lattice Green’s function G(l,l’). 
 

We define the defect space as the vector space generated by l,l’ for which  ∆φ∆φ is non-
vanishing. We solve the Dyson equation for the defect Green’s function by using the matrix 
partitioning technique [1]. The reduced Dyson equation in defect space is given by 
 

g* = g + g ∆φ ∆φ g*,       (13)   
 
where g, g* are components of G and G* in defect space. The matrices in eq. (13) are 3n × 3n 
matrices, where n is the number of atoms in the defect space. For point defects, n is small so eq. 
(13) can be solved by direct matrix inversion as given below: 
 

g* = (I - g ∆φ)∆φ)−1g.       (14) 
 

For example, for an fcc lattice in which the defect interacts up to its second-neighbor atoms, 
the matrices in eq. (14) are 57 × 57. Since a point defect such as a vacancy retains the local point-
group symmetry of the lattice, we can use group theory to simplify eq. (14) considerably. In the 
above case of a vacancy in an fcc lattice, eq. (14) can be reduced to a 2 × 2 matrix equation. By 
definition, the force matrix defined by eq. (2) is nonvanishing only in the defect space. Using eqs. 
(8) and (13), we obtain for all atoms in the defect space 
 

u  = g* F.        (15)  
 
After calculating u  for all atoms in the defect space, we calculate the Kanzaki force in the defect 
space by using eq. (10). Then the displacement of all atoms in the solid is given in terms of the 
perfect-lattice Green’s function by use of eq. (9). The Kanzaki force contains the full contribution of 
the discrete lattice structure in the defect space. 
 

The perfect-lattice Green’s function reduces [1] asymptotically to the continuum Green’s 
function. For this purpose, we make l and q continuous variables and replace the summation in eq. 
(11) by integration over the reciprocal space. In conformity with the continuum model notation, we 
replace l by x for large l, which will denote the position vector corresponding to the lattice site l. 
Thus, in the limit x → ∞,  
 

G(x)  = (1/2π)3 ∫ Gc(q) exp (éq.x) dq,    (16) 
 
where, keeping terms up to q2 in φφ(q), 
 

Gc(q) = Limq→0 G(q) = Limq→0 [φφ (q)]−1 =  [Λ(Λ(q))]−1. (17) 



In eq. (17), ΛΛ  is the Christoffel matrix, defined as follows: 
 

Λ ij (q) = cikjl qk ql,        (18) 
 
where i,j,k,l, etc. are Cartesian indices that assume the values 1-3, and c is the elastic constant 
tensor. Summation over repeated indices is implied. 
 

Equation (9) is our master equation for multscale modeling. At large distances from the point 
defect, we replace G by the continuum Green’s function defined by eq. (17) but use the lattice value 
of F* as  defined in terms of the lattice Green’s function by eqs. (8) and (9). Thus the displacement 
field in our multiscale model at the position vector x is given by 
 

u(x)  =  Σl’ Gc
 ((x-l’) ) F*(l’).     (19)  

 
Since the distance between the lattice sites in the defect space over which F* is distributed is much 
less than x, Gc(x-l’) can be calculated in terms of the derivatives of the Green’s function. 
 

We incorporate the effect of extended defects in Gc by imposing appropriate boundary 
conditions using the standard techniques of the continuum model. As an example, we consider a 
semi-infinite solid with a free surface. We choose a frame of reference in which the origin and the 
X- and Y- axes are on the free surface and the positive Z-axis points into the solid. The zero-
traction boundary condition at the free surface, which is taken to be the plane at x3=0, is given by 

 
τi3(x) = ci3jk ejk(x) =  0 (x3=0),   (20) 
 

where 

ejk   = ∂uj(x)/ ∂xk.      (21) 
 

Various computationally efficient representations of the continuum Green’s function for 
anisotropic semi-infinite solids are available in the literature [4,5]. In this paper, since our objective 
is just to illustrate the multiscale modeling technique, we will assume for simplicity that the solid is 
elastically isotropic. The solution for the isotropic continuum case was obtained by Mindlin [6]. 
The result for the displacement field at the free surface at a radial distance r from the origin is 
quoted below: 
 

4πur/f = -rh/R3 + µr/[(λ+µ)(R-h)R],    (22) 
 

4πuz/f = (R2 + h2)/R3 +  µ/[(λ+µ)R],    (23) 
 

where we have used cylindrical coordinates; ur and uz are, respectively, the radial and the Z-
components of the displacement field;  f is the magnitude of the force in units of 8πµ (λ +2µ)/(λ +µ) 
acting at (0,0,h); λ and µ are the Lame constants; and R2 = (r2 + h2).  
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Figure 1 Displacement field at the free surface of fcc aluminum due to a vacancy as a function of h, 
the depth of the vacancy from the free surface. Solid line- uz, the Z-component; broken line- ur, the 
radial component in cylindrical coordinates. 
 

Results and Conclusions 
 

Figure (1) gives the calculated values of u r and u z as a function of h at the free surface (1,0,0) at 
r=1 due to a vacancy at (0,0,h) in fcc aluminum. We assumed a simple model interatomic potential 
due to Bullough and Hardy (see [1]) extending up to 2nd neighbors. The lattice-statics Green’s 
function is calculated for a million atom model by use of the method given in [1], which gives F*. 
The main conclusion of this paper is that the Green’s function method for multiscale modeling can 
be used to model a large crystallite at the atomistic level without excessive CPU effort and, in the 
same formalism, include macroscopic defects such as free surfaces.  
 

References 
 
1. Tewary, V.K. (1973): “Green-function method for lattice statics”, Adv. Phys., Vol 22, pp. 757. 
2. Thomson, R., Zhou, S., Carlsson, A.E., and Tewary, V.K. (1992): “Lattice imperfections studied 
by use of lattice Green’s functions”, Phys. Rev., Vol. B46, pp. 10613. 
3. Phillips, R. (1998): “Multiscale modeling in the mechanics of materials ”, Curr Opin Solid St. Mat 
Sc., Vol. 3, pp. 526. 
4. Tewary, V.K. (1995): “Computationally efficient representation for elastostatic and elastodynamic 
Green’s functions for anisotropic solids”, Phys. Rev., Vol.  B51, pp. 15695.  
5. Pan, E., and Yuan, F.G. (2000): “Three-dimensional Green’s functions in anisotropic bimaterials ”, 
Int. J. Solids Struct., Vol. 37, pp. 5329. 
6. Mindlin, R.D. (1936): “Force at a point in the interior of a semiinfinite solid”, Physics, Vol. 7, pp. 
195. 


