Elastic constants of layers in isotropic laminates
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The individual laminae elastic constants in multilayer laminates composed of dissimilar isotropic
layers were determined using ultrasonic-resonance spectroscopy and the linear theory of elasticity.
Ultrasonic resonance allows one to measure the free-vibration response spectrum of a traction-free
solid under periodic vibration. These frequencies depend on pointwise density, laminate dimensions,
layer thickness, and layer elastic constants. Given a material with known mass but unknown
constitution, this method allows one to extract the elastic constants and density of the constituent
layers. This is accomplished by measuring the frequencies and then minimizing the differences
between these and those calculated using the theory of elasticity for layered media to select the
constants that best replicate the frequency-response spectrum. This approach is applied to a
three-layer, unsymmetric laminate of \@u, and very good agreement is found with the elastic
constants of the two constituent materials. 2003 Acoustical Society of America.
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I. INTRODUCTION verse shear stresses are continuous across the interface but
o ) ) ) there is a jump in shear modulus. Hence, there is a disconti-
Determining the elastic constants of materials with Un-ity in the through-thickness displacement gradient that
known constitution is a much-studied problem in science and;nnot be represented using functions w@h continuity
engineering, and there are numerous methods available fofe ' nctions such as power series, which possess continu-
solving it. One method that is particularly robust is ;s first derivatives over the specimen domain
ultrasonic-resonance spectroscdpyRS), in which the free- Recently, we developed a method to account for the
vibration response spectrum of the solid is used in Combinafhrough-thickness behavior of laminated elastic and piezo-
tiqn with the the_oretical values of freqL_Jencies for objectsg|actric medid This method is based on a discrete-layer ap-
with known ‘?'e”?"ty’ geom_etry, and elastic co'nstéﬁ'fsN_u-_ proximation to the weak form of the equations of motion, in
merous applications of this method, along with descriptions,hich we split the through-thickness and in-plane depen-
of the experimental system, measurements, and theoreticghnce of the approximation functions in the Ritz method.
analysis, are given in Migliori and Sarr8dlhe theoretical Similar approaches have been used in related problems by
predictions are based on the Ritz method, in which the SOIUPauIey and Dorfyfor wave propagation in laminated piezo-
tion of the weak form of the equations of periodic Motion is g|ectric media, and a generalized discrete-layer approach for
sought as given in Hamilton’s principle, where the displaceastic |aminates by Redd§.With this model in hand, our
ments are given in a finite series in terms of the spatial copresent objective is to evaluate the elastic constants and den-
ordinates of the specimen geometry. Excellent accuracy Caljties of layered parallelepipeds where only the edge dimen-
be obtained using this approach. __ sions, layer thicknesses, total mass, and free-vibration-
To date, most applications of URS for the determination,ggnonse spectra are given. To our knowledge, this is the first
of elastic constants have been for homogeneous media. Cogpjication of URS to dissimilar composites of this type, and
sistent with these applications, the computational algorlthm?t results in a method where, rather than separating the indi-

developed for this purpose have without exception used basifiqya| constituents of the composite, we can consider the
functions for the displacement components that have bee@omponent as a whole.

continuous with continuous derivativdsuch as the Leg-
endre polynomials used for parallelepipeds by Demaeesi

. . Il., MATERIAL
power series as used in the more general method developed
by Visscher and colleagu®s This is a valid and useful ap- Three-layer W/Cu laminates were fabricated by a
proach for homogeneous media, but special care must beowder-metallurgy approach in which powders of specific
taken when considering dissimilar media. At an interface beeompositions were mixed, layered, and then densified in a
tween two materials that differ in elastic properties, the transhot press. High-purity (99.9 1-5-um-diameter copper
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FIG. 1. Microstructure of the trilayer composite inter-
face and the copper/tungsten composite.

powder! was mixed with high-purity(99.95 W powder eral composed of an arbitrary number of elastic and isotropic
with an average particle diameter ofin.}> Cu—W powders layers. The parallelepiped has dimensions Ly, and L;,
were made by mixing amounts of pure W and Cu that wouldand the z direction is perpendicular to each dissimilar-
lead to a 20 percent composite when fully dense, and millingnaterial interface. Each layer has constitutive equations that
in a polycarbonate bottle with four to five cleaned aluminacan be expressed’ds

balls for 24 h. The laminate was made by pouring first the
Cu—W powder, then the pure Cu powder, and finally more
Cu—-W powder into a 25.4-mm-diameter graphite die. TheHere,A andu are the Larﬁeparameterséij is the Kronecker
inner walls of the die were coated with BN to prevent chemi-delta, o; are the components of stress, ajdare the com-

cal reaction with carbon. After each powder type was pouredponents of infinitesimal strain. We also use the alternate form
a clean steel punch was used for leveling. This resulted in af the constitutive relation

powder stack consisting of 20%W/0%W/20%W. The stacked
powders were then sintered in a hot press under a vacuum of 71— Cijii€» 2
1.33<1072 Pa, a load of 40 MPa at 985°C for 15 min. where theC;jy are the components of the elastic-stiffness
Cooling was accomplished with the load still applied at atensor, which can be expressed in terms of the two Lame
rate of about 20 °C/min, until about 500 °C, at which point parameters. The strain-displacement relations are given by
the rate slowed substantially. A dense trilayer sample consist-

ing of 20%W/0%W/20%W resulted, with layer thicknesses —  _ E ( au; + ]
of 1.50 mm/1.88 mm/1.66 mm, respectively. 20 0% ax

The composite microstructure and the nature of the 'n'Here,ui represent the displacement components.

te_rface between Iay_ers .is apparent_in the scanning electron Hamilton’s principle forms the basis for the weak form
micrograph shown in Fig. 1. The light and dark contrasts ; :
. . . of the equations of motidfi

represent the W and Cu, respectively. Consistent with the

fact that Cu and W do not react and are mutually insoluble, [t 1 . t —

observations in the scanning electron microsctpeM) in- 5ftodtfv 5 PU U~ Uo(€y) |dV+ LodthTk&Jde: 0.

dicated that the interface between the 20% W and 0% W (4)

layers represents a discrete transition between these compo- o .

sitions, without the presence of a discemible interphaiiee  ere:tis time,V andSare the volume and surface occupied

SEM's resolution limit is approximately 0.&m). The inter- by and bounding the solidl are the specified surface trac-

face plane does exhibit some roughness. Typically, the inteions, J is the variational operator, the overdot superscript

face position varies by less than 1@6n over 2 mm. represents differentiation with respect to time, ahdrepre-
Single-composition compositg®0% W and pure Cu  Sents the strain-energy density, given for a linear elastic ma-

were produced as described above to measure the elastRfial as

Uij=)\5ijekk+2,ueij. (l)

: ()

properties of the material in the outer layers. The hot-pressed RPN

. . . u ZCIjk|eI] € - (5)
trilayer composites were subsequently cut by diamond saw . _
into specimens of dimensions 7:0%.84x5.04 mm, with The weak form of the governing equations, as well as

the layers in the third dimension. Single-composition specithe governing differential equations themselves, can be
mens were cut by electrodischarge machining to dimension®und by substituting the above relations into Hamilton’s

10.0x 9.0 8.0 mm, with no layers. principle. Here, we use the usual contracted notation for the
elastic stiffnesse€;j by compressing thg andkl indices
Ill. THEORY into a single index ranging from 1 to 6, and maintaining the

range ofm from 1 to 3. For exampleC,;,, becomesC;,,
and so on. In rectangular Cartesian coordinates, wexset

The rectangular parallelepiped described in the previous=x, x,=y, and x3=2z, with the displacements as;
section is a special case of the general layered block assumedu(x,y,z), u,=v(X,y,z), and us=w(x,y,z). The weak
in our theoretical calculations. The parallelepiped is in genform can be expressed using this nomenclature as

A. Geometry and boundary conditions
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B. Discrete-layer approximation as the commonly used power sefie®r Legendre
nomials®

In many past studies, approximations to the three disp0|y
placements are generated in terms of the glokal,¢) co- i i — i
ordinates. In this study, the dependence of the displacemenifd€rpolation polynomials are used fdif;(z). For the in-
on thez coordinate is separated from the functionsndy. ~ Plane approximations, different types of approximations can
This allows for global functions i andy that result in a P& used for the two-dimensional functiod§(x,y). We use
subsequent reduction of the size of the computational prod?OWer series for the problem of traction-free vibration. For a

lem. Hence, approximations for the three displacement comparallelepiped witm layers o —1) is the number of subdi-
ponents are sought in the fottn visions through the parallelepiped thicknéggpically taken
N equal to or greater than the number of layers in the parallel-
— epiped, andI';; is the value of component at heightj
u(x,y,z,t)=i§1 ]21 Ui )Wy P (), corresponding]to theth in-plane approximation functioff.
. Substituting these approximations into the weak form in
v — Eq. (6), introducing the assumption of periodic motion, col-
v(xy.z0) :241 le Vi(O¥ 6y ¥i(2), (7} lecting the coefficients of the variations of the displacements,
and placing the results in matrix form, we obtain the result

In the thickness direction, one-dimensional Lagrangian

n

M s

n
wW(Xx,y,z,t)= Wi (DOHPY(x,y)¥Y(2).

(X.Y,z,t) Hgl HOWF )T (2) ORI
Here,m and n are the respective number of in-plane andpw?| [0] [M?%] [0] {v}
through-thickness terms used to approximate each variable. [0] [0] [M3] {w}
The approximations for each of the three field quantities are
constructed in such a way as to separate the dependence in [ [K*] [K*] [K¥]T( 1y} [0}
the planar coordinate variables from that in the coordinate | (k21 [K2] [K2|{ {v}}={{0}}. ®)

variable perpendicular to the interface. The reason for this is
that the change in the material properties forces a break in
the gradients of the displacements across an interface. This
can be seen easily by considering the case of shear stress aflae elements of these submatrices are themselves submatri-
dissimilar-material interface. Since the stress must be conces whose elements are determined by evaluating the prein-
tinuous across an interface but the shear modulus is differem¢grated elastic stiffnesses through the thickness multiplied

for two layers, the shear strain must be different. This im-by the various shape functions or their derivatives as deter-

plies that the slope of the displacement variables across thmined by the variational statement. If these submatrices,

interface must be different, thus eliminating functions sucheach of orderif+1), are defined by the subscriptsand 3,

(K3 [K3 (k3] ({w} {0}

TABLE I. Groupings of approximation functions.

Group Displacement X y z Group Displacement X y z
oD u @) E E OX u e} (e} @)
% E (0] E \Y E E (0]
w E E (0] w E (0] E
EY u (0] (0] E EZ u O E @)
v E E E % E e} e}
w E (6] (0] w E E E
EX u E E E EV u E 0] e}
\Y (6] (6] E \Y O E (6]
w (0] E (0] w O (0] E
oy u E E O oz u E O E
v o} e} (0] \Y O E E
w e} E E w 0] e} e}
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the corresponding elements can be expressed in a fairly contABLE Il. Group structure for layered isotropic laminate.
pact form. These are given in the Appendix.

. . Group Displacement X
The matrix equations are general and can accommodate
approximating functions inx,y) that are either global and 1
analytic (such as Fourier or power serjesr local and ex-
actly evaluatedsuch as finite-element polynomial3he de- 2

pendence on the coordinate has been eliminated by prein-
tegrating, which manifests itself in the matrix equations
above. Because of the nature of the approximating functions 3
themselves, the derivatives of the displacement are continu-
ous over only a specific sublayer. If the material is homoge- 4,
neous, this is still an acceptable approximation even for a
subdivided layer because the behavior trends toward a con-
tinuous derivative as the number of layers increases. For the
case of dissimilar media, the functions allow a break in the
slope, which matches physical reality much more accuratelgration for this characteristic must be removed. This results
than does a global approximation. not in eight groups, but four, which are the more generalized
For a homogeneous isotropic parallelepiped, Ghnogroups defined in Table | before exploiting symmetry about
showed that the eigenvalue problem in E8). can be split thex—y plane. We define these four groups and their labeling
into eight smaller problems using symmetry arguments of thén Table 1.
displacement-field components and matching these with the
appropriate series terms in the approximation functions
These are denoted by the eight groups listed in Table I,IV' MEASUREMENTS
where the letters O and E, respectively, denote functions that We measured three materials: nearly texture-free copper,
are odd or even with respect to the appropriate spatial coof.2W/Cu composite, and a three layer 0.2W/Cu—Cu-
dinate. For example, power series can be used for each of tie2W/Cu laminate. Using an optical microscope, we mea-
displacement functionsuch as in the powerful algorithm of sured layer thicknesses of 0.150-0.188-0.166 cm for the
Visscher and colleagu@s Including six terms in the Pascal- laminate. Mass densities were determined using Archimedes’
triangle visualization of the approximation functiofise.,  method with distilled water as a standard. The copper con-
terms up tax°y°z°%) means a general eigenvalue problem fortained a significant volume fraction of voids that lowered the
three unknowns with & terms in each, or an eigenvalue expected mass density by about 8%. The composite speci-
problem of dimension 648. If symmetry is used, this problemmen contained about 1% voids. For the elastic-constants de-
can be split into eight problems of dimension 81, greatlytermination, we used URS as described in the previous sec-
increasing the speed of this computation. This calculatioriion and by Migliori and Sarrdtfor homogeneous materials.
must be completed many times when the elastic constants are The sending and receiving transducers were poled poly-
being computed, and hence the splitting of the original proberystalline lead zirconate titanateZT) that hold the speci-
lem possesses much appeal. mens by their corners diagonally. One transducer transmits
For the layered bimaterial, however, there is no materiatontinuous sinusoidal waves to the specimen, and the other
symmetry about th&—y plane, and hence the splitting op- transducer detects the specimen’s displacement response.

S <csS<cs<cs<c
mmoOomMmMOOOmOOm
mMmOmOmoOmomOm|<

1.0

| I
0.2W,/Cu - Cu - 0.2W /Cu

0.8 -
S oo |
Q
c FIG. 2. Measured resonance spectrum
= of trilayer laminate. Resonant frequen-
%_ 0.4 . cies yield theC;; . The bars at the bot-

tom of the figure indicate resonance

E frequencies calculated from the de-

0.2 ] ducedC;; .

0.0 - N Lb U |
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Their center frequencies were 10 MHz. Their broadband
character permits using them far from their resonance fre-
guencies, thus minimizing the piezoelectric-crystal contribu-
tions to the systems macroscopic frequencies and damping
Figure 2 shows the frequency-response spectrum for the lay
ered composite. The two separate constituent materials als
have a response spectrum, but their individual behavior is
used only to compare with the results from our layered
model, and hence these are not shown. As discussed abov
the resonance frequencies depend on specimen shape, si:
mass(or mass densily elastic stiffnesses, and layer thick-
nesses. Although not reported, internal frictions can be cal-
culated from the half-power width of associated resonance
peaks.

V. RESULTS AND DISCUSSION

<
o

The general procedure that forms the foundation of us-
ing URS to calculate the elastic constants is to iterativelyF!C- 3. M?da'l Shapz fs_f the '_O‘I'Vesrt] m_Odﬁ in r?_mupiaﬁd '0W§St Ovehfa" _
select the elastic constants that give the best fit to the me%&eq“ency or layered bimaterial. Physically, this corresponds to shear in
. L . R e x—y plane. This is the first nonzero frequency in group 2. This modal
sured frequencies. This is accomplished by minimizing theyoup has one rigid-body mode with zero frequency.

differences between the measured and experimental frequen-
cies using the Levenburg—Marquardt algoritihetails of The 29 frequencies used in the minimization procedure

this procedure are described by Migliori and Sartao, can be split into four groups as described above. Each of

Two types of models are used to determine the eIaSti(t:hese frequencies has a corresponding modal displacement
constants of the constituent materials used in this study. The q P 9 b

: . : . _pattern of the deformation pattern the specimen undergoes as
model of most interest is the discrete-layer model describe . : .
S : it oscillates at this frequency. In Figs. 3—6 we show the low-
above, which is necessary to represent the through-thickness
X . est nonzero modal pattern for each of the four groups. For
behavior of the layered material. However, we also use

. . e type of assumed displacement field we have used in our
simpler method to calculate the elastic constants of each ;%P yp P

the two constituent materials when these materials appear polution methodology, there are six rigid-body modtsee

: . ar Panslational and three rotatiopahat result in a displace-
a homogeneous block. In this case, global basis functions . . .
. 1 - ) . ment with zero strain energy. These each yield a frequency of
with C* continuity can be used since the displacement gra: ; .
: : . . . 0, and are not included in our results other than to note that
dients are continuous within the deformédbrating solid.

Our weak form and matrix equations now remain the samegroups Land 3 possess one each of these modes, with groups

but in this case ouwz-direction approximations retain the 2 and 4 possessing two each. In several of these figures
form used for the in-plane approximation functions. This
methodology is well developetsee, for example, Refs. 6
and 5 and we will not discuss it here other than to note that
we used the same fitting procedure for the experimental fre-
guencies of the homogeneous blocks as we did for the lay-
ered material, with a resulting frequency rms error of 0.11
percent for the Cu and 0.08 percent for thg A@u compos-

ite. We note that for the homogeneous block, only two elastic
parameters are fit to the measured frequencies; for the lay
ered block, there are four.

It is usually necessary to use a number of frequencies a
least five times larger than the number of unknown constants
to be determinefl.In this application, we use the lowest 29
frequencies in our inversion scheme for the layered material
Although it is not uncommon to have missing modes in a
response spectrum, that is not the case here and our theore
ical frequencies show a very strong relationship with the ex-
perimental frequencies. We iteratively solve the eigenvalue
problem given in Eq(8) until the differences between the
measured and computed frequencies reach a minimum. The
initial guess for the elastic constants has no effect on the findilG. 4. Modal shape for the lowest mode in group 4 for layered bimaterial.
values provided they are within a reasonable ra(fe10 This m_ode corresponds to the breat_hing mode associate_d with the flat faces

. . . L emaining nearly plane but undergoing uniform deformation across each of
percent of the final elastic constants. This point is d'scusse({he six faces. This is the first nonzero frequency in group 4 which, as in
in more detail by Migliori and Sarrad. group 2, also has a single rigid-body mode.
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TABLE lIl. Calculated material properties for Cu and 0.2,¥Cu compos-

ite. The subscript H denotes that a homogeneous specimen was used to
calculate the elastic properties, whereas the subscript L denotes calculation
using the layered specimen and discrete-layer theoretical model that is the
primary focus of this study. The paramet€&s, B, G andE, are the longi-
tudinal, bulk, shear, and Young moduli, andndc are the Poisson ratio and
void volume fraction, respectively. All constants are in GPa expept and

C.

0.2 W,/ 0.2 W,/
Cu (URS) Cu(URS) Cu(URS) Cu(URS)

"/ p (glcn?) 8.2348 10.8954
’/’/ Cy, 155.71 239.74
”” / Cr 157.79 154.88 240.30 242.18
’ ’ ’ 97 Cas 155.31 233.23
””g Cus 40.001 60.015
’ ’/’/ Css 39.953 40.25 59.985 60.31
’é?/ Ces 40.175 60.845
¢¢ C 76.518 118,51
/ Cis 75.733 74.37 116.83 121.56
Coys 76.557 116.95
FIG. 5. Modal shape for the lowest mode in group 1 for layered bimaterial.cL 156.30 237.80
This group has two rigid-body modes. B 102.93 157.52
G 40.025 60.213
L . E 106.30 160.22
(where four divisions have been used for each physical layef 0.3279 0.3305
of the specimeh the modal patterns show the break in thec 0.078 0.009

shear strain at a dissimilar material interface, indicating the
need for appropriate approximating functions through the
thickness.

The final values for the elastic constants of the two con-measured frequencies compared with the theoretical frequen-
stituent materials are given in Table I, and were calculatecies as calculated using the final elastic constants for the two
with a final rms error in frequency of 0.26 percent. In thislayers. Also shown in this table are the frequencies that
table, the elastic constants are compared with values calcuvould result if the parallelepiped were a homogeneous block
lated using methods described above. Our theoretical modef either of the two materials, with block H1 denoting a
for the layered material assumes that each of the layers isomogeneous block of 20 percent tungsten and H2 a homo-
isotropic, and hence we estimate a sin@lg and Cy, for  geneous block of pure copper. Lack of significant anisotropy
each of the two layers. The good fit to the measured frequenn the elastic constants shown in Table IV reveals nearly
cies is further demonstrated in Table IV, where we show tthxture_free materia'S, as expected for powder_meta”urgy
preparation.

Our results forC,, lie within 0.9% of those of the aver-
age equivalent moduli for the Cu and 1.9% of the, AQu
composite. Our values fo€,, are within 0.6% and 0.05%
for the same two materials, respectively. It is quite possible
that for a block with such a low aspect ratio, modes involv-
ing shear deformation are more dominant, leading to better
agreement for the shear moduli than thaCgf. Other natu-
ral sources of error include the precise nature of the
dissimilar-layer bond and our treating each of the materials
as isotropic in our layered model.

Our ability to extract the elastic constants of individual
layers within a laminate could prove to be significant for
certain types of materials for which a homogeneous speci-
men may be difficult to procure. Thin films on substrates or
natural multilayered solids could potentially be studied using
this approach without having to separate the materials for
individual examination. Though not without limitations, we
have shown for the first time that ultrasonic-resonance spec-
troscopy methods can be applied to layered systems with

FIG. 6. Modal shape for the lowest mode in group 3, which also has tworeasonabl_y good results. Applications to more complex sys-
zero rigid-body frequencies and corresponding modal shapes. tems await future study.
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TABLE IV. Modal groups and frequencig@é Hz) for laminated and homogeneous blocks.

Mode Wexp Wjay Glay Q1% Gh1 Oh2 Gh2

1 123942 123 427 2 129 045 2 105420 2

2 169 557 169 834 4 175576 4 143 242 4

3 187 150 185726 2 203 567 1 165928 1

4 190199 189992 1 207530 2 169501 2

5 195 462 195012 2 211099 2 172 448 2

6 213480 213429 3 225387 4 183 066 4

7 214 272 214 545 4 232775 4 190 131 4

8 218 005 217919 4 237 165 1 193 545 1

9 220732 220782 1 237 460 3 193 662 3
10 221 446 220885 3 238123 3 194 436 3
11 232 966 232829 1 258 947 3 211037 3
12 241 005 240977 4 260 030 1 212193 1
13 242515 242622 3 262221 4 213874 4
14 258 394 259 043 4 287 736 4 234620 4
15 276 146 275605 1 297 445 1 242 835 1
16 298 201 297 474 2 323122 1 263872 1
17 298 964 299177 1 324 685 3 265 165 3
18 304732 304 759 3 326 833 3 266 848 3
19 305277 305 047 3 327 795 2 267 450 2
20 308 197 308 117 2 330751 4 269 744 4
21 313024 312 235 4 350621 1 285526 1
22 315030 315415 3 351051 3 285749 4
23 316972 315811 4 351535 4 285912 3
24 319 186 319121 1 351595 2 286 695 2
25 324133 324 330 4 359377 4 292 252 4
26 331772 333170 1 363043 4 296 226 4
27 333451 333674 4 370136 2 302 195 2
28 335782 335629 3 372100 4 303725 4
29 340 605 342 694 4 381167 1 310452 1

VI. CONCLUSIONS

u u

117 11 @ B 557pUngr U
(1) Discrete-layer models that account for kinks in displace- [Kap fA[[ ] IX X +[D ]\P“\PB

ment gradients across a dissimilar-material interface are

crucial in obtaining accurate theoretical frequency pre- + AGG]

dictions and subsequent estimates of elastic constants. ay ay
(2) Ultrasonic-resonance spectroscopy can be applied to lay-

ered isotropic laminates with good accuracy. For a 7w mlf”

trilayer composite, we found matching of the first 29 [Klz]aﬁzf [ 2]

frequencies yielding an rms error of 0.26 percent be-

tween theoretical and measured frequencies. There were PR

no missing modes. +[ABE] —2 B
(3) Layer elastic constants of the two dissimilar materials d

agree with elastic constants computed using homoge-

neous specimens within 0.9 percent for the Cu and 1.9

U U

Pldx dy, (A1)

dx dy, (A2)

vy
percent for the \/Cu composite forC,,, and within [Klﬁaﬁzj {[313] \pW+[|355]xp“ dx dy,
0.6 and 0.05 percent, respectively, f0j5,.
(A3)
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APPENDIX: PR w
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The entries in the element coefficient matrices can be [ 3]”‘3 A[[ ] ay [B™] xay
expressed as (AS5)
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