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The elastic constants of a natural-quartz sphere using resonance-ultrasound spectRIS&ppye
measured. The measurements of the near-traction-free vibrational frequencies of the sphere are
matched with the predicted frequencies from the dynamic theory of elasticity, with optimized
estimates for the elastic constants driving the differences between these sets of frequencies to a
minimal value. The present computational model, although based on earlier approaches, is the first
application of RUS to trigonal-symmetry spheres. Quartz shows six independent elastic constants,
and our estimates of these constants are close to those computed by other means. E&gept for
after a 1% mass-density correction, natural quartz and cultured quartz show the same elastic
constants. Natural quartz shows higher internal frictions.2@3 Acoustical Society of America.
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I. INTRODUCTION The present study proceeded with two principal objec-
tives: First, measure the complete elastic constants of natural

S"'CF’” _d|0X|de (SiQ) n the form of quartz IS Earth's quartz. Second, analyze the macroscopic vibration frequen-
most ubiquitous surface mineral. Perhaps the first measure-

. o . Cies of a trigonal-crystal-symmetry sphere.
ments of quartz’s elastic constants originated with Gtoth, N y y y sp

whose 1895 book showed the representation surface of th We. used resonapce—ultrasound S pectrosc@pys) to .
Young (extension modulusE; measured statically. This sur- etermine these elastic constants. This method was described
I .

face revealed quartz’s moderate elastic anisotr@y/E,,  toroughly by Migliori and Sarrad, and, although our ap-
=1.31. proach proceeds similarly, the material’'s trigonal symmetry
Quartz's complete elastic constants were studied first byequires several modifications to existing models.
Woldemar Voigt, and his static-measurement results ap- Applications of RUS to trigonal crystals are rare. Ohno
peared in his epochalehrbuch der Kristallphysiln 19102 et al*? considered the case of rectangular parallelepipeds
Giebe and ScheiBemade, perhaps, the first dynamic mea-with the trigonal axis perpendicular to one of the faces in the
surements. Subsequently, quartz’s elastic constants were rirst attempt to determine the elastic constants of trigonal
ported in more than 20 studiés? crystals. Ledbetteet al® studied the elastic stiffnesses and
Interest in quartz’s elastic constants continues for thregnternal friction of monocrystal cultured quartz for cylindri-
reasons: First, q.uartz's elastic constants remain ingomplete%d geometries. In both of these studies, the general eigen-
understood, mainly because quartz is piezoelectric and We;\ye problem that results from the application of the Ritz

lack a good theory for the elastic constants of plezoelectr'ajﬁethod to the basic elasticity problem of a solid in traction-
r

crystals’ Second, quartz occupies a central place in cryst L .

. . : ee vibration was separated into four symmery groups based
chemistry-physics because of its many polymorphs. We €a8n material symmetry and geometrical symmetry. This re-
study these polymorphs, both experimentally and theoreti- y y 9 Y Y-

cally, through the elastic constants. Third, quartz's deviceduces the size of the initial eigenvalue problem and results in
applications exceed one billion per y&aviost of these ap- much faster and more accurate frequency calculations. Our

plications use quartz’'s macroscopic resonance frequencie@PProach requires multiple solutions of this eigenvalue prob-
which depend mainly on crystal geometry and elastic conlem for a continuously changing elastic-stiffness tensor, and
stants. Elastic constants can be measured accutatighin a  this separation is a critical step. Willis and colleaddesed

few parts in 18) and, because of their tensor nature, theyRUS to study the hexagonal—trigonal phase transformation
provide essential information for preparing crystal cuts within LIKSO,. Their study provides a good example of apply-

various piezoelectric propertiés. ing Landau theory to a second-order or near-second-order
Quartz’s elastic constants received extensive review, Nnophase transition. Quartzs—g transition at 573 °C provides
tably by Cady, Brice” James;’ and, recently, Ballatd. another example of such a phase transition.
In the following we describe our theoretical model, mea-
3Electronic mail: prh@engr.colostate.edu surement system, and results of their combination.
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Il. THEORETICAL FREQUENCIES The strain-displacement relations are
A. Geometry and equations of motion €= 3(u; Fup). (5)

Our specimen was a natural quartz sphere. The predictedur displacement components are expressed in terms of the
resonance frequencies depend on the sphere radius becagg@rdinates;=x, x,=y, x3=z with the corresponding dis-
our variational method of approximation evaluates termsplacement components;=u(x,y,z), u,=v(x,y,z), and
proportional to elastic stiffness over the volume of the solid.u;=w(x,y,z). Substitution of the constitutive and strain-
Density p appears on the right-hand side of the equations ofjisplacement equations into E¢d) yields the final weak
motion: form of the equations of motion. If we integrate by parts and
(1 isolate the volume integral, the resulting Euler equations of

this statement yield the equations of motion in EQ. This,
Here, o; denotes stress ang displacement. We do not ex- however, is not our goal. Instead, we seek the solution to the
plicitly solve these equations. Instead, we seek an alternatigeak form to solve for the unknown frequenciesand the
solution to their weak form. mode shapes represented by the functionsufar, w. This
requires an assumed form for the displacements.

(Tij,J:pUi .

B. Variational formulation

Hamilton’s principle for an elastic medium is given'fy ) L
C. Ritz approximations

t 1 .. 1 t — . L
5f dtf Epujuj— ECijkIEijfkl dv+f dtf t, . 6u,dS=0. In the Ritz method, we seek approximations to the three
to JV to /S @ displacements using finite linear combinations of the form
n
Heret denotes timey and S the volume and surface occu- Up(Xy, X, Xg) = E a-\If-l(xl X, X3)
pied by and bounding the solid, the components of the =
specified surface tractionsy the variational operator, the n
overdot differentiation with respect to time;; the compo- _ 2
. Us(Xq,X5,X3) = biW(Xq1,X5,X3), 6
nents of infinitesimal strain, and;jy, the components of the 2(X1.%2,%3) 2’1 VX2 Xs) ©

fourth-order elastic-stiffness tensor. The general constitutive
relation for 32-point-group trigonal symmetry represented in
rectangular Cartesian coordinates can be expressed in a con-
tracted form of the stiffness tensor as a six-by-six matrix:

n

U3z(X1,X2,X3) = |=§:1 djq}j3(xl X2,X3).

Here thea, b, andd components are unknown constants, and

Ciu Ci2 Ci3 Cia 00 the functions¥ are known functions of the spatial coordi-
71 Cyp Cp Cyy Cyy O O €1 nates used in the specific formulation. Substituting these
Loy € . . . ) :
§ 2 equations into the weak form yields the matrix equation
o3| |Cizs Cos Ciz 0 0 0]f g N
T4 Cuy Cpy 0O Cyu 0 O el [M™] [02] [0] (a}
75 0 0O 0 0 Cg Cgl| 5 [0] [M?] [03 ﬁ w2
c
77 10 0 0 0 Cg Cel " [0] [0] [M¥]
) [KY (K2 [K¥] (@) ({0}
Here we used the conventional contracted notation ( H K k2 k2P| et =] oyl @

=01, 03=04, €17€1, 26;37€4, C11117=C1a, Cuinz 31 3 3
=C44, and so ol and it is understood that the 1, 2, 3 di- [K¥] K] [K*] ol {05
rections arex; =X, X,=Y, andxz=z. The element matrices used for each of the formulations are
Hamilton’s principle in contracted notation becomes  given in the Appendix. The resulting eigenvalue problem is
. solved using the QR algorithii.
0=- f f {o16€1+0,0€,+ 035€3+ 040€4+ 055€5 Our choice of approximation function is the same as that
0V of Visscher and colleagué8 For each of the three displace-
ment components, the following class of basis functions was

1 t . . .
+ 0gdegtdV dt+§5f fp(u2+v2+wz)dV dt selected:
0Jv .
t W (x,y,2)=xylz~. (®)
+ ft dtLt_k5deS (4)  Herex, y, zdenote the rectangular-cylindrical-coordinate di-
0

rections of the cylinder and j, andk are integers. The pri-
The surface integral in Eq4) is close to zero because the mary advantage of casting the problem in this form is that
only forces engendered by our measurement system athe integrals required by the weak form are simple to evalu-
small point forces at the locations where the pinducers conate analytically. For the indices j, k, the volume integrals
tact the specimen. These forces cause little effect on ousver the sphere given in the Appendiwithout the elastic
results; therefore, we neglect them. constants have the forn®
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TABLE |. Classification and description of motion and approximation func- with an average of 2 cm. Because the volume fraction of the

tions. for vibrational modesfrom Ohno—Ref. 17, with the modal groups fibers is small, we ignored them. Except for the rutile fibers,

for trigonal symmetry shown as four combinations of two subgroups. the specimen showed “perfect” optical properties, indicating
Subset freedom from macroscopic twins. Also, any significant twin-

T;E’g:;' oo Component x . Classification ning would appear as irregular appar€hf values.
P P Y Quartz possesses trigonal symmetry, the point group 32,
AG 0D u O E E \Llongitudinalvibration — and six independent elastic-stiffness  coefficients
\l;v E g g (C11,C12,C13,C14,C33,Cyuy):
OX u (0] (0] O Torsion along axis
v E E O - -
w E (0] E Cll C12 C13 Cl4 0 0
AU EX u E E E Flexure along axis Cu Ciz —Cip O 0
v 8 (EJ g Css O 0 0
w =
EV u E (0] O Axisymmetric flexure [C” ] Cas 0 0
O E O
‘l')V 0O O E Cus Cua
1
BU EY u O O E Flexure alony axis L 3(C11—C1)) J
v E E E (10)
w E (0] (0]
EZ u (0] E O Flexure along axis
v E O O Quartz possesses a troublesome elastic coefficlept
w E E E = —Cy4= Csg, Which complicates the mathematical analysis
BG oy u E E O Torsionalong axis for relating macroscopic-vibration resonance frequencies.
v O 0O © For quartz,|C,, exceedsC;, and C;3, and thus must be
w © E E _ _ considered. When we invert E¢LO) to obtain the elastic-
0z u g CE) E Torsion along axis compliance matrixS;; ], we see that the familiar relationship
" o o o for the Young moduliE;=S;?, fails to result. TheE;; de-
pend also orC 4. Inversion leads to the further curiosity that
Cus#S,}. By inspection of Eq(10), we see thaC;,=0
N ) RT3 )= 1)1 (k= 1)1 !eads _to ads¥mrr1_et(jry mc(;e?ﬁsf toh hexago(mhns;n;rsi:
F(i,j.k=1{1= _ — ] isotropig and five independert;;, the symmetry of hig
2 (i+j+k+3)N temperaturébeta quartz.
©) We determined theC;; by using resonance-ultrasound

HereR denotes the sphere radius. This is thet+ +) octant  spectroscopy (RUS), which we described previousH.
of the sphere and is one of eight that must be evaluated fd8riefly, two 10 MHz PZT transducers hold the sphere speci-
each of the terms in these matrices. The braced term is oneiifien at two points. One transducer transmits continuous sinu-
two or three of the integeiisj, k are odd. Otherwise itig/2.  soidal waves to the specimen, and the other transducer de-
The remaining seven integrals are similar in form except fottects the specimen’s displacement response. We made
the sign, which depends on the evenness or oddness afeasurements at 22°C in vacuum (1.33Fa& 3 Torr]).
(i,j,k). This method’s principal advantage is that a single frequency
Ohnd’ showed that for a trigonal symmetry parallelepi- sweep on a single specimen yields the complete elastic-
ped it is possible to split the final eigenvalue problem intostiffness tensor, both the real pa;, and the imaginary
smaller eigenvalue problems based on the symmetries of thmrtQi]kﬁ.
material, specimen geometry, and approximation functions. The resonance frequencies depend on specimen shape,
Heyliger and Johnsdfi extended this approach to a trigonal size, mass(or mass density and elastic-stiffnessegFor
cylinder, and showed that the modal vibration patterns can beonspherical specimens, frequencies depend also on crystal
split into six subsets. For the sphere, we use the four subsetsientation) Each resonance consists of linear combinations
defined by Ohno and classify each of the functions in(Bf. of independent elastic-stiffness coefficients. Although not re-

according to the grouping shown in Table I. ported here, the complete internal-friction “tensor” can be
calculated from the half-power width of associated resonance
IIl. MEASUREMENTS peaks.

We obtained theC;; from the resonance frequencies by

We obtained a sphere of natural Brazilian quartz from ausing an iterative process that minimizes the differences be-
local rock shop. The specimen showed a mass density diveen measured and calculated resonance frequencies with
2.6466 g/cm, determined from the mass and the volumethe givenC;; , which take modified values for the next itera-
(diameter4.4998 cm, 0.7% lower than the x-ray- tion. Because of small differences between the measured and
diffraction mass density of a “perfect” quartz crystal: 2.6655 calculated resonance frequencies, g calculations ex-
glcnt. The quartz showed several randomly orientedr2-  cluded the piezoelectric and dielectric effects, the “piezo-
diam rutile (TiQ,) fibers varying in length from 0.5 to 3 cm electric stiffening.”
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FIG. 1. Resonance spectrum of trigonal-crystal-symmetry, monocrystak|s. 2. Predicted versus measured resonance frequencies. Predicted values

quartz sphere. Resonance frequencies give the elastic-stiffness@@gsor  pased on a purely elastic model, neglecting piezoelectric stiffening.

Resonance-peak widths give the imaginary parts ofGfg , the internal
o 3

friction Qjjy- TABLE Ill. Measured and calculated resonance frequentiesMHz) for

quartz sphere.

IV. RESULTS Mode o we Diff. (%) Group

Figure 1 shows the resonance spectrum. We measured

1 0.062 046 0.062 085 0.06 1
more than 100 resonance frequencies, but selected only the 2 0.062 046 0.062 085 0.06 4
first 45 (30 of which are distingtfor our analysis. Our Ritz 3 0.063 338 0.062 987 —0.55 2
model decreases in accuracy with increase in frequency; 4 0.063 338 0062987 —0.55 3
hence, higher modes are much less accurate than lower > 0.072 716 0.072871 0.21 !
' > 6 0.072 847 0.072 929 0.11 3
modes in our approximation. 7 0.073 886 0.074 004 0.16 1
The resulting elastic constants are shown in Table 1l, 8 0.073 886 0.074 004 0.16 4
which also shows our results on cultured quartz, to be re- 9 0.083 449 0.083 408 —0.05 4
10 0.087 210 0.087 468 0.30 1
11 0.087 210 0.087 468 0.30 4
TABLE II. Elastic constants and related properties of monocrystalartz. 12 0.091 391 0.090 919 —-0.52 3
13 0.091 391 0.090 919 -0.52 2
Property Natural Culture¢ordinary  Cultured(premium 14 0.095 250 0.095 285 0.04 3
p (glcn®) 2.6466-0.01  2.64970.0002 2.649%0.0002 12 8:832 ggé 8:832 gﬁ 8&2 i
C;;(GPa)  87.26 87.160.14 87.17-0.05 17 0.101855 0.101 206 —0.64 3
Css(GPa) 1058 106.060.20 105.86:0.07 18 0.101 855 0101206  -0.64 2
19 0.107 530 0.107 857 0.30 3
C44(GPa) 57.15 58.140.08 58.27-0.03 20 0.108 727 0.109 350 0.57 1
Ces (GPa) 40.35 40.260.05 40.28-0.02 21 0.109 526 0.109 801 0.25 2
22 0.109 526 0.109 801 0.25 3
C.,(GPa) 6.57 6.640.10 6.610-0.035 23 0.113 717 0.113 633 —0.07 4
C13(GPa) 11.95 12.090.21 12.02¢-0.086 24 0.113717 0.113 633 -0.07 1
Cy4(GPa) —17.18 —18.15+0.08 —18.23+0.03 25 0.115216 0.114 980 -0.21 3
E.(GPa)  79.41 78.620.32 78.610.15 2 e ooy Toat :
Es(GPa)  102.8 102.960.23 102.76:0.19 58 0.115 955 0.115 728 —020 1
vis 0.1286 0.13640.0059 0.136%0.0002 29 0121118 0120943 —0.14 4
Vi 0.0984 0.09850.0025  0.098%0.0008 30 0.124 481 0124158 -0.26 3
Vst 0.1274 0.12820.0023  0.1282:0.0010 31 0124684 0.125763 0.87 2
32 0.130591 0.129580 -0.77 1
0, (K)? 564.0 563.0 563.1 33 0.131 800 0.131770 -0.02 1
34 0.131.800 0.131770 -0.02 4
Quasi-isotropic polycrystalline elastic constants 35 0.132 240 0.132 335 0.07 2
obtained by Voigt—Reuss—Hill averaging 36 0.132 240 0.132 335 0.07 3
37 0.133352 0.134 049 0.52 2
Ci(GPa) 1002 97.14 100.7 38 0.133352 0.134 988 1.23 3
B (GPa) 3r.67 sr.74 37.69 39 0.134 091 0.134 988 0.67 2
E (GPa) 99,45 95.91 99.95 41 0.137 910 0.137576 -0.24 1
42 0.137 910 0.137576 -0.24 4
v 0.0600 0.076 44 0.058 01 43 0.139 353 0.139 167 -0.13 3
44 0.139 687 0.139 777 0.06
%Computed numerically from th€;; by averaging the sound velocities from 45 0.139 687 0.139 777 0.06 3

the Christoffel equations’ 23 472 directions.
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FIG. 3. Deformation diagrams for selected resonances. The three labels for each figure indicate group number, frequency within the group néaiibtihe orie
of the viewing perspective. For example, Fig. 1 shows the first mode from group 2 as seen looking toward the origin of tHarsplteardinate system
along the directiorf1,1,1]. (a) 1-1-001,(b) 1-1-010,(c) 1-1-111,(d) 1-2-001,(e) 1-2-010,(f) 1-2-111,(g) 1-3-010,(h) 1-3-100,(i) 1-3-111,(j) 2-1-001,(k)
2-1-010,(1) 2-1-111,(m) 2-2-001,(n) 2-2-010,(0) 2-2-111,(p) 3-1-001,(q) 3-1-111,(r) 3-2-100,(s) 3-2-111,(t) 4-1-001,(u) 4-1-111,(v) 4-2-100,(w) 4-2-111.

ported in detail elsewhefe?® Measurement uncertainties for V. DISCUSSION

the natural crystal fall in the same range as those shown for

the cultured crystals. Figure 2 shows the relationship be-  First, we consider the internal frictic@ *, which arises

tween measured and predicted resonance frequencies afi@m various lattice defects. The averaQg*, 4.7x10°%, is

provides a basis for neglecting the piezoelectric stiffening@pproximately what we reported for a cultured-quartz crystal

Thus, for quartz, piezoelectric stiffening is relatively small. with a high dislocation conten@ ~*=1.9x 10™*,° but much

For other materials, for example, LiNgG* much larger dif-  higher (by a factor of 34 than the average found for a high-

ferences arise between elastic and piezoelectric-dielectriguality (low-dislocation-content cultured-quartz crystal,

predictions. In piezoelectric crystals, waves propagate witth-4X 10 °.2° Further study of this spherical crystéstrain

velocities determined byCf, E designating constant dependence, frequency dependence, temperature depen-

electric-field intensity, which would be obtained if the crystal 9€ncé should |dent|f1y the source of its higher internal fric-

were plated with a conductor. Nonplated crystals yield théion- Because oQ = values as small as 16 found for

Cﬁ-’, D designating constant electric displacement. Eithr?r qu:i\rltz crystals with thg same apparatu_s, we believe the
our fitted frequencies yielded a rms error of 0.36%,MgherQ " reflects the specimen, not mounting losses.

slightly higher than typical values for higher-symmetry ma- ?ecclmdt,. we co?mdgr E)Te ITat\L;\Z%I]-.quartz Versus c;ﬂtured-
terials, but still in an acceptable range. Probably, the princi—quar z elastic constan@@able I. Within measurement er-

| ; f h ; 's sligh hericity. OufFers: no re_markable_differences appeatr. _Negleo@@g, the
pal error arises from the specimen's slight nonsphericity. Ou verage difference is 0.8%, corresponding closely with the

fitted frequencies, along with the percentage error and moddl . . . .
. . natural crystal’s lower mass density and consistent with
group, are shown in Table Ill. Most frequencies show excel- . . . e
. higher defect content and higher internal friction. Thus, ex-
lent measurement—model agreement, with only one or twg . .
exceptions cept for a mass-density dlﬁerence,_natural quartg gnd cul-
' tured quartz possess the same elastic constants within a small
The first ten resonance peaks showed an average internighction of 1%, except forC,,, where the natural-quartz
friction Q! of 4.7x 1074, value is lower by about 5%.
Table Il also shows the Debye characteristic temperature  The large specimen-to-specimen variationGp, may
®p calculated from the elastic constants. result from the lower symmetry of the 32 trigonal point
Figure 3 shows deformation diagrams for selected resogroup. When viewed along the axis, [0001], the crystal

nances. structure shows ion shifts away from sixfold symme{See
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Fig. 2.32 in Kingeryet al??) These shifts give rise to the gl de! el dg!
additional elastic stiffnes€,4. This distorted, or derivative, Kiljz= Kj2i1: J Zoax oy | “Yox oz
structure possesses a degree of freediia exact ionic po-
sitiong that can easily vary among different quartz crystals. Jo¥ do? Jdo¥ 9o
A ‘ ¢ 9¢; ¢ J@;
Iked&® describedC,, as the order parameter for the beta— +C56¥ WﬂL GGWa_x dav, (A2)
alpha phase transformation. Order-parameter thermodynam-
ics was treated in detail by Landau and LifsHitz. 90" gV 90" gV
i — 13_ 1,31 Pi 09 Pi 7P
Our Debye characteristic temperatug, =564 K, cal- K =Kji= v WU oy
culated as described elsewhétegrees favorablybut not X oz X 9
exactly with those given by Andersof.® =545, 585, 585 d@Y " do" W
K. The spread among the four values3.4% is surprising +Cog—r — + Cog—r —J)dv, (A3)
because if theC;; are measured within 1%a simple fealt gz ox ay X
then ®y should vary only 0.5%. At zero temperature, the v - v v - v v - v
: o : 22 ®i J¢; e do; de;i do;
elastic and specific-heat Debye temperatures are theoretically K2%= Cyy —rCo— i
identical?® For quartz, Barron and colleagdésgave a J ay ady ay Jz Jzay
specific-heat value o =558 K+ 6 K. Becaused varies v o v v 4
as G2 (G denotes effective shear modulusve used the +Cuy Pi 79 Ceei ?i dv, (A4)
shear modulus to correct o@rp to zero temperature, and we Jz  Jz Ix X
obtained@)g (elastic)=567 K, 1.5% higher than the Barron o - w o - w
etal. value and 0.5% above their estimated upper bound, | 23_ K's'zzf C Iei 0] C Iei 9¢;
564 K. e By 9z "oy oy
¢ doj’ ¢! QD‘W)dV (A5)
44 56 v v '
VI. CONCLUSIONS 9z dy 2O
(1) One can solve the problem of macroscopic vibration 3 o' dpj’ a¢i’ e}
frequencies of a trigonal-crystal-symmetry sphere. And one Ki= ¥ 97 57 Moy ay
can use this analysis to determine the complete elastic-
stiffness tensoC;;; of a material such as quartz. el dp)
) A i +Ces—— —=|dV (AB)
(2) Natural quartz shows a high internal frictio@, * 55 9% ax :

~5x10 %, but only slightly higher than shown by a poor
grade of cultured quartz with moderate dislocation content. o _ _ o S
|1P. Groth,Physicalische Kristallographie und Einleitung in die Kristallog-

(3) Natural and cultured quartz possess ngarly identica raphische Kenntniss der Wichtigsten Substang®idenbourg, Berlin,
Ciji when corrected about 1% for mass density, except for 1gg5.
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