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The elastic constants of a natural-quartz sphere using resonance-ultrasound spectroscopy~RUS! are
measured. The measurements of the near-traction-free vibrational frequencies of the sphere are
matched with the predicted frequencies from the dynamic theory of elasticity, with optimized
estimates for the elastic constants driving the differences between these sets of frequencies to a
minimal value. The present computational model, although based on earlier approaches, is the first
application of RUS to trigonal-symmetry spheres. Quartz shows six independent elastic constants,
and our estimates of these constants are close to those computed by other means. Except forC14,
after a 1% mass-density correction, natural quartz and cultured quartz show the same elastic
constants. Natural quartz shows higher internal frictions. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1593063#

PACS numbers: 43.20.Hq, 43.20.Ks, 43.35.Cg@RR#
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I. INTRODUCTION

Silicon dioxide (SiO2) in the form of quartz is Earth’s
most ubiquitous surface mineral. Perhaps the first meas
ments of quartz’s elastic constants originated with Gro1

whose 1895 book showed the representation surface o
Young ~extension! modulusEii measured statically. This su
face revealed quartz’s moderate elastic anisotropy:E33/E11

51.31.
Quartz’s complete elastic constants were studied firs

Woldemar Voigt, and his static-measurement results
peared in his epochalLehrbuch der Kristallphysikin 1910.2

Giebe and Scheibe3 made, perhaps, the first dynamic me
surements. Subsequently, quartz’s elastic constants wer
ported in more than 20 studies.4–6

Interest in quartz’s elastic constants continues for th
reasons: First, quartz’s elastic constants remain incomple
understood, mainly because quartz is piezoelectric and
lack a good theory for the elastic constants of piezoelec
crystals.7 Second, quartz occupies a central place in cry
chemistry-physics because of its many polymorphs. We
study these polymorphs, both experimentally and theor
cally, through the elastic constants. Third, quartz’s dev
applications exceed one billion per year.5 Most of these ap-
plications use quartz’s macroscopic resonance frequen
which depend mainly on crystal geometry and elastic c
stants. Elastic constants can be measured accurately~within a
few parts in 104) and, because of their tensor nature, th
provide essential information for preparing crystal cuts w
various piezoelectric properties.8

Quartz’s elastic constants received extensive review,
tably by Cady,4 Brice,9 James,10 and, recently, Ballato.5

a!Electronic mail: prh@engr.colostate.edu
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The present study proceeded with two principal obje
tives: First, measure the complete elastic constants of na
quartz. Second, analyze the macroscopic vibration frequ
cies of a trigonal-crystal-symmetry sphere.

We used resonance-ultrasound spectroscopy~RUS! to
determine these elastic constants. This method was desc
thoroughly by Migliori and Sarrao,11 and, although our ap-
proach proceeds similarly, the material’s trigonal symme
requires several modifications to existing models.

Applications of RUS to trigonal crystals are rare. Oh
et al.12 considered the case of rectangular parallelepip
with the trigonal axis perpendicular to one of the faces in
first attempt to determine the elastic constants of trigo
crystals. Ledbetteret al.6 studied the elastic stiffnesses an
internal friction of monocrystal cultured quartz for cylindr
cal geometries. In both of these studies, the general eig
value problem that results from the application of the R
method to the basic elasticity problem of a solid in tractio
free vibration was separated into four symmery groups ba
on material symmetry and geometrical symmetry. This
duces the size of the initial eigenvalue problem and result
much faster and more accurate frequency calculations.
approach requires multiple solutions of this eigenvalue pr
lem for a continuously changing elastic-stiffness tensor, a
this separation is a critical step. Willis and colleagues13 used
RUS to study the hexagonal–trigonal phase transforma
in LiKSO4. Their study provides a good example of appl
ing Landau theory to a second-order or near-second-o
phase transition. Quartz’sa–b transition at 573 °C provides
another example of such a phase transition.

In the following we describe our theoretical model, me
surement system, and results of their combination.
/114(2)/644/7/$19.00 © 2003 Acoustical Society of America
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II. THEORETICAL FREQUENCIES

A. Geometry and equations of motion

Our specimen was a natural quartz sphere. The predi
resonance frequencies depend on the sphere radius be
our variational method of approximation evaluates ter
proportional to elastic stiffness over the volume of the so
Densityr appears on the right-hand side of the equations
motion:

s i j , j5rüi . ~1!

Here,s i j denotes stress andui displacement. We do not ex
plicitly solve these equations. Instead, we seek an alterna
solution to their weak form.

B. Variational formulation

Hamilton’s principle for an elastic medium is given by14

dE
t0

t

dtE
V
F1

2
ru̇ j u̇ j2

1

2
Ci jkl e i j eklGdV1E

t0

t

dtE
S
t̄kdukdS50.

~2!

Here t denotes time,V andS the volume and surface occu
pied by and bounding the solid,t̄ k the components of the
specified surface tractions,d the variational operator, the
overdot differentiation with respect to time,e i j the compo-
nents of infinitesimal strain, andCi jkl the components of the
fourth-order elastic-stiffness tensor. The general constitu
relation for 32-point-group trigonal symmetry represented
rectangular Cartesian coordinates can be expressed in a
tracted form of the stiffness tensor as a six-by-six matrix

5
s1

s2

s3

s4

s5

s6

6 53
C11 C12 C13 C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 0 0 0

C14 C24 0 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C56 C66

4 5
e1

e2

e3

e4

e5

e6

6 .

~3!

Here we used the conventional contracted notation (s11

5s1 , s235s4 , e115e1 , 2e235e4 , C11115C11, C1123

5C14, and so on!, and it is understood that the 1, 2, 3 d
rections arex15x, x25y, andx35z.

Hamilton’s principle in contracted notation becomes

052E
0

tE
V
$s1de11s2de21s3de31s4de41s5de5

1s6de6%dV dt1
1

2
dE

0

tE
V
r~ u̇21 v̇21ẇ2!dV dt

1E
t0

t

dtE
S
t̄kdukdS. ~4!

The surface integral in Eq.~4! is close to zero because th
only forces engendered by our measurement system
small point forces at the locations where the pinducers c
tact the specimen. These forces cause little effect on
results; therefore, we neglect them.
J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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The strain-displacement relations are

e i j 5
1
2~ui , j1uj ,i !. ~5!

Our displacement components are expressed in terms o
coordinatesx15x, x25y, x35z with the corresponding dis
placement componentsu15u(x,y,z), u25v(x,y,z), and
u35w(x,y,z). Substitution of the constitutive and strain
displacement equations into Eq.~4! yields the final weak
form of the equations of motion. If we integrate by parts a
isolate the volume integral, the resulting Euler equations
this statement yield the equations of motion in Eq.~1!. This,
however, is not our goal. Instead, we seek the solution to
weak form to solve for the unknown frequenciesv and the
mode shapes represented by the functions foru, v, w. This
requires an assumed form for the displacements.

C. Ritz approximations

In the Ritz method, we seek approximations to the th
displacements using finite linear combinations of the form

u1~x1 ,x2 ,x3!5(
i 51

n

ajC j
1~x1 ,x2 ,x3!,

u2~x1 ,x2 ,x3!5(
i 51

n

bjC j
2~x1 ,x2 ,x3!, ~6!

u3~x1 ,x2 ,x3!5(
i 51

n

djC j
3~x1 ,x2 ,x3!.

Here thea, b, andd components are unknown constants, a
the functionsC are known functions of the spatial coord
nates used in the specific formulation. Substituting th
equations into the weak form yields the matrix equation

F @M11# @0# @0#

@0# @M22# @0#

@0# @0# @M33#
G H $a%

$b%
$c%

J v2

1F @K11# @K12# @K13#

@K21# @K22# @K23#

@K31# @K32# @K33#
G H $a%

$b%
$c%

J 5H $0%
$0%
$0%

J . ~7!

The element matrices used for each of the formulations
given in the Appendix. The resulting eigenvalue problem
solved using the QR algorithm.15

Our choice of approximation function is the same as t
of Visscher and colleagues.16 For each of the three displace
ment components, the following class of basis functions w
selected:

C~x,y,z!5xiyjzk. ~8!

Herex, y, z denote the rectangular-cylindrical-coordinate d
rections of the cylinder andi, j, andk are integers. The pri-
mary advantage of casting the problem in this form is t
the integrals required by the weak form are simple to eva
ate analytically. For the indicesi, j, k, the volume integrals
over the sphere given in the Appendix~without the elastic
constants! have the form16
645Heyliger et al.: Elastic constants of natural quartz
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F~ i , j ,k!5H 1,
p

2 J Ri 1 j 1k13~ i 21!!! ~ j 21!!! ~k21!!!

~ i 1 j 1k13!!!
.

~9!

HereR denotes the sphere radius. This is the~111! octant
of the sphere and is one of eight that must be evaluated
each of the terms in these matrices. The braced term is o
two or three of the integersi, j, k are odd. Otherwise it isp/2.
The remaining seven integrals are similar in form except
the sign, which depends on the evenness or oddnes
( i , j ,k).

Ohno17 showed that for a trigonal symmetry parallelep
ped it is possible to split the final eigenvalue problem in
smaller eigenvalue problems based on the symmetries o
material, specimen geometry, and approximation functio
Heyliger and Johnson18 extended this approach to a trigon
cylinder, and showed that the modal vibration patterns can
split into six subsets. For the sphere, we use the four sub
defined by Ohno and classify each of the functions in Eq.~8!
according to the grouping shown in Table I.

III. MEASUREMENTS

We obtained a sphere of natural Brazilian quartz from
local rock shop. The specimen showed a mass densit
2.6466 g/cm3, determined from the mass and the volum
~diameter54.4998 cm!, 0.7% lower than the x-ray
diffraction mass density of a ‘‘perfect’’ quartz crystal: 2.665
g/cm3. The quartz showed several randomly oriented 2-mm-
diam rutile (TiO2) fibers varying in length from 0.5 to 3 cm

TABLE I. Classification and description of motion and approximation fun
tions for vibrational modes~from Ohno—Ref. 17!, with the modal groups
for trigonal symmetry shown as four combinations of two subgroups.

Trigonal
subset Type Component

Subset

Classificationx y z

AG OD u O E E Longitudinal vibration
v E O E
w E E O

OX u O O O Torsion alongx axis
v E E O
w E O E

AU EX u E E E Flexure alongx axis
v O O E
w O E O

EV u E O O Axisymmetric flexure
v O E O
w O O E

BU EY u O O E Flexure alongy axis
v E E E
w E O O

EZ u O E O Flexure alongz axis
v E O O
w E E E

BG OY u E E O Torsion alongy axis
v O O O
w O E E

OZ u E O E Torsion alongz axis
v O E E
w O O O
646 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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with an average of 2 cm. Because the volume fraction of
fibers is small, we ignored them. Except for the rutile fibe
the specimen showed ‘‘perfect’’ optical properties, indicati
freedom from macroscopic twins. Also, any significant twi
ning would appear as irregular apparentCi j values.

Quartz possesses trigonal symmetry, the point group
and six independent elastic-stiffness coefficie
(C11,C12,C13,C14,C33,C44):

@Ci j #53
C11 C12 C13 C14 0 0

C11 C13 2C14 0 0

C33 0 0 0

C44 0 0

C44 C14

1
2~C112C12!

4 .

~10!

Quartz possesses a troublesome elastic coefficientC14

52C245C56, which complicates the mathematical analys
for relating macroscopic-vibration resonance frequenc
For quartz,uC14u exceedsC12 and C13, and thus must be
considered. When we invert Eq.~10! to obtain the elastic-
compliance matrix@Si j #, we see that the familiar relationshi
for the Young moduli,Eii 5Sii

21, fails to result. TheEii de-
pend also onC14. Inversion leads to the further curiosity tha
C44ÞS44

21. By inspection of Eq.~10!, we see thatC1450
leads to a symmetry increase to hexagonal~transverse-
isotropic! and five independentCi j , the symmetry of high-
temperature~beta! quartz.

We determined theCi j by using resonance-ultrasoun
spectroscopy ~RUS!, which we described previously.19

Briefly, two 10 MHz PZT transducers hold the sphere spe
men at two points. One transducer transmits continuous s
soidal waves to the specimen, and the other transducer
tects the specimen’s displacement response. We m
measurements at 22 °C in vacuum (1.33 Pa@1023 Torr#).
This method’s principal advantage is that a single freque
sweep on a single specimen yields the complete elas
stiffness tensor, both the real partCi jkl and the imaginary
part Qi jkl

21 .
The resonance frequencies depend on specimen sh

size, mass~or mass density!, and elastic-stiffnesses.~For
nonspherical specimens, frequencies depend also on cr
orientation.! Each resonance consists of linear combinatio
of independent elastic-stiffness coefficients. Although not
ported here, the complete internal-friction ‘‘tensor’’ can b
calculated from the half-power width of associated resona
peaks.

We obtained theCi j from the resonance frequencies b
using an iterative process that minimizes the differences
tween measured and calculated resonance frequencies
the givenCi j , which take modified values for the next itera
tion. Because of small differences between the measured
calculated resonance frequencies, theCi j calculations ex-
cluded the piezoelectric and dielectric effects, the ‘‘piez
electric stiffening.’’
Heyliger et al.: Elastic constants of natural quartz
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IV. RESULTS

Figure 1 shows the resonance spectrum. We meas
more than 100 resonance frequencies, but selected only
first 45 ~30 of which are distinct! for our analysis. Our Ritz
model decreases in accuracy with increase in freque
hence, higher modes are much less accurate than lo
modes in our approximation.

The resulting elastic constants are shown in Table
which also shows our results on cultured quartz, to be

FIG. 1. Resonance spectrum of trigonal-crystal-symmetry, monocry
quartz sphere. Resonance frequencies give the elastic-stiffness tensorCi jkl .
Resonance-peak widths give the imaginary parts of theCi jkl , the internal
friction Qi jkl

21 .

TABLE II. Elastic constants and related properties of monocrystala-quartz.

Property Natural Cultured~ordinary! Cultured~premium!

r ~g/cm3! 2.646660.01 2.649760.0002 2.649760.0002

C11 (GPa) 87.26 87.1660.14 87.1760.05
C33 (GPa) 105.8 106.0060.20 105.8060.07

C44 (GPa) 57.15 58.1460.08 58.2760.03
C66 (GPa) 40.35 40.2660.05 40.2860.02

C12 (GPa) 6.57 6.6460.10 6.61060.035
C13 (GPa) 11.95 12.0960.21 12.02060.086
C14 (GPa) 217.18 218.1560.08 218.2360.03

E11 (GPa) 79.41 78.6260.32 78.6160.15
E33 (GPa) 102.8 102.9060.23 102.7060.19

y12 0.1286 0.136460.0059 0.136760.0002
y13 0.0984 0.098560.0025 0.098160.0008
y31 0.1274 0.128960.0023 0.128260.0010

QD (K) a 564.0 563.0 563.1

Quasi-isotropic polycrystalline elastic constants
obtained by Voigt–Reuss–Hill averaging

Cl (GPa) 100.2 97.14 100.7
B (GPa) 37.67 37.74 37.69

G (GPa) 46.91 44.55 47.23
E (GPa) 99.45 95.91 99.95

y 0.0600 0.076 44 0.058 01

aComputed numerically from theCi j by averaging the sound velocities from
the Christoffel equations’ 23 472 directions.
J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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FIG. 2. Predicted versus measured resonance frequencies. Predicted
based on a purely elastic model, neglecting piezoelectric stiffening.

TABLE III. Measured and calculated resonance frequencies~in MHz! for
quartz sphere.

Mode vm vc Diff. ~%! Group

1 0.062 046 0.062 085 0.06 1
2 0.062 046 0.062 085 0.06 4
3 0.063 338 0.062 987 20.55 2
4 0.063 338 0.062 987 20.55 3
5 0.072 716 0.072 871 0.21 1
6 0.072 847 0.072 929 0.11 3
7 0.073 886 0.074 004 0.16 1
8 0.073 886 0.074 004 0.16 4
9 0.083 449 0.083 408 20.05 4

10 0.087 210 0.087 468 0.30 1
11 0.087 210 0.087 468 0.30 4
12 0.091 391 0.090 919 20.52 3
13 0.091 391 0.090 919 20.52 2
14 0.095 250 0.095 285 0.04 3
15 0.095 361 0.095 513 0.16 2
16 0.095 908 0.096 041 0.14 4
17 0.101 855 0.101 206 20.64 3
18 0.101 855 0.101 206 20.64 2
19 0.107 530 0.107 857 0.30 3
20 0.108 727 0.109 350 0.57 1
21 0.109 526 0.109 801 0.25 2
22 0.109 526 0.109 801 0.25 3
23 0.113 717 0.113 633 20.07 4
24 0.113 717 0.113 633 20.07 1
25 0.115 216 0.114 980 20.21 3
26 0.115 216 0.114 980 20.21 2
27 0.115 955 0.115 728 20.20 4
28 0.115 955 0.115 728 20.20 1
29 0.121 118 0.120 943 20.14 4
30 0.124 481 0.124 158 20.26 3
31 0.124 684 0.125 763 0.87 2
32 0.130 591 0.129 580 20.77 1
33 0.131 800 0.131 770 20.02 1
34 0.131 800 0.131 770 20.02 4
35 0.132 240 0.132 335 0.07 2
36 0.132 240 0.132 335 0.07 3
37 0.133 352 0.134 049 0.52 2
38 0.133 352 0.134 988 1.23 3
39 0.134 091 0.134 988 0.67 2
40 0.136 039 0.136 227 0.14 4
41 0.137 910 0.137 576 20.24 1
42 0.137 910 0.137 576 20.24 4
43 0.139 353 0.139 167 20.13 3
44 0.139 687 0.139 777 0.06 2
45 0.139 687 0.139 777 0.06 3

al
647Heyliger et al.: Elastic constants of natural quartz
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FIG. 3. Deformation diagrams for selected resonances. The three labels for each figure indicate group number, frequency within the group, and thentation
of the viewing perspective. For example, Fig. 1 shows the first mode from group 2 as seen looking toward the origin of the sphere~and coordinate system!
along the direction@1,1,1#. ~a! 1-1-001,~b! 1-1-010,~c! 1-1-111,~d! 1-2-001,~e! 1-2-010,~f! 1-2-111,~g! 1-3-010,~h! 1-3-100,~i! 1-3-111,~j! 2-1-001,~k!
2-1-010,~l! 2-1-111,~m! 2-2-001,~n! 2-2-010,~o! 2-2-111,~p! 3-1-001,~q! 3-1-111,~r! 3-2-100,~s! 3-2-111,~t! 4-1-001,~u! 4-1-111,~v! 4-2-100,~w! 4-2-111.
r
f

be

ng
ll

ct
it

t
ta
th

%
a
c
u
d
e
tw

er

tu

s

tal

-
,

pen-
-

the

red-
-

the
ith
x-

cul-
mall

nt
ported in detail elsewhere.6,20 Measurement uncertainties fo
the natural crystal fall in the same range as those shown
the cultured crystals. Figure 2 shows the relationship
tween measured and predicted resonance frequencies
provides a basis for neglecting the piezoelectric stiffeni
Thus, for quartz, piezoelectric stiffening is relatively sma
For other materials, for example, LiNbO3,21 much larger dif-
ferences arise between elastic and piezoelectric-diele
predictions. In piezoelectric crystals, waves propagate w
velocities determined byCi j

E , E designating constan
electric-field intensity, which would be obtained if the crys
were plated with a conductor. Nonplated crystals yield
Ci j

D , D designating constant electric displacement.
Our fitted frequencies yielded a rms error of 0.36

slightly higher than typical values for higher-symmetry m
terials, but still in an acceptable range. Probably, the prin
pal error arises from the specimen’s slight nonsphericity. O
fitted frequencies, along with the percentage error and mo
group, are shown in Table III. Most frequencies show exc
lent measurement–model agreement, with only one or
exceptions.

The first ten resonance peaks showed an average int
friction Q21 of 4.731024.
Table II also shows the Debye characteristic tempera
QD calculated from the elastic constants.
Figure 3 shows deformation diagrams for selected re
nances.
648 J. Acoust. Soc. Am., Vol. 114, No. 2, August 2003
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V. DISCUSSION

First, we consider the internal frictionQ21, which arises
from various lattice defects. The averageQi j

21, 4.731024, is
approximately what we reported for a cultured-quartz crys
with a high dislocation content,Q2151.931024,6 but much
higher~by a factor of 34! than the average found for a high
quality ~low-dislocation-content!, cultured-quartz crystal
1.431025.20 Further study of this spherical crystal~strain
dependence, frequency dependence, temperature de
dence! should identify the source of its higher internal fric
tion. Because ofQ21 values as small as 1026 found for
other quartz crystals with the same apparatus, we believe
higherQ21 reflects the specimen, not mounting losses.

Second, we consider the natural-quartz versus cultu
quartz elastic constants~Table II!. Within measurement er
rors, no remarkable differences appear. NeglectingC14, the
average difference is 0.8%, corresponding closely with
natural crystal’s lower mass density and consistent w
higher defect content and higher internal friction. Thus, e
cept for a mass-density difference, natural quartz and
tured quartz possess the same elastic constants within a s
fraction of 1%, except forC14, where the natural-quartz
value is lower by about 5%.

The large specimen-to-specimen variation inC14 may
result from the lower symmetry of the 32 trigonal poi
group. When viewed along thec axis, @0001#, the crystal
structure shows ion shifts away from sixfold symmetry.~See
Heyliger et al.: Elastic constants of natural quartz
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Fig. 2.32 in Kingeryet al.22! These shifts give rise to th
additional elastic stiffnessC14. This distorted, or derivative
structure possesses a degree of freedom~the exact ionic po-
sitions! that can easily vary among different quartz crysta
Ikeda20 describedC14 as the order parameter for the beta
alpha phase transformation. Order-parameter thermodyn
ics was treated in detail by Landau and Lifshitz.23

Our Debye characteristic temperatureQD5564 K, cal-
culated as described elsewhere,24 agrees favorably~but not
exactly! with those given by Anderson.25 QD5545, 585, 585
K. The spread among the four values~63.4%! is surprising
because if theCi j are measured within 1%~a simple feat!,
then QD should vary only 0.5%. At zero temperature, t
elastic and specific-heat Debye temperatures are theoreti
identical.26 For quartz, Barron and colleagues27 gave a
specific-heat value ofQD5558 K66 K. BecauseQD varies
as G1/2 ~G denotes effective shear modulus!, we used the
shear modulus to correct ourQD to zero temperature, and w
obtainedQD

0 (elastic)5567 K, 1.5% higher than the Barro
et al. value and 0.5% above their estimated upper bou
564 K.

VI. CONCLUSIONS

~1! One can solve the problem of macroscopic vibrat
frequencies of a trigonal-crystal-symmetry sphere. And o
can use this analysis to determine the complete ela
stiffness tensorCi jkl of a material such as quartz.

~2! Natural quartz shows a high internal friction,Q21

'531024, but only slightly higher than shown by a poo
grade of cultured quartz with moderate dislocation conte

~3! Natural and cultured quartz possess nearly ident
Ci jkl when corrected about 1% for mass density, except
C1123(C14), which is about 5% lower in natural quartz. W
hypothesize that this difference originates in the extra deg
of freedom associated withC14, the effective order param
eter for theb–a phase transition.

~4! The elastic Debye temperature agrees with
specific-heat Debye temperature within about 1% when
elastic constants are adjusted to 0 K.
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APPENDIX: COEFFICIENT MATRICES

Rectangular Cartesian Coordinates. The elements of the
coefficient matrices are given by

Ki j
115E

V
S C11

]w i
u

]x

]w j
u

]x
1C55

]w i
u

]z

]w j
u

]z
1C56

]w i
u

]z

]w j
u

]y

1C56

]w i
u

]y

]w j
u

]z
1C66

]w i
u

]y

]w j
u

]y DdV, ~A1!
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Ki j
125K ji

215E
V
S C12

]w i
u

]x
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