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Part I [D.J. Morris and R.F. Cook, J. Mater. Res. 23, 2429 (2008)] of this two-part
work explored the instrumented indentation and fracture phenomena of compliant,
low-dielectric constant (low-�) films on silicon substrates. The effect of film thickness
and probe acuity on the fracture response, as well as the apparent connection of this
response to the perceived elastic modulus, were demonstrated. These results motivate
the creation of a fracture model that incorporates all of these variables here in Part II.
Indentation wedging is identified as the mechanism that drives radial fracture, and a
correction is introduced that adjusts the wedging strength of the probe for the
attenuating influence of the relatively stiff substrate. An estimate of the film fracture
toughness can be made if there is an independent measurement of the film stress; if
not, a critical film thickness for channel-cracking under the influence of film stress
may be estimated.

I. INTRODUCTION

Part I of this work outlined some of the phenomena of
radial crack initiation and propagation in low-dielectric
constant (low-�) films at contacts by sharp probes.1 It
was shown that the conventional analysis for estimation
of fracture toughness by indentation is inapplicable due
to the clear dependence of the indentation fracture re-
sponse on the film thickness and the apparently complex
crack-length–indentation-load scaling involved. Further-
more, one of the core physical assumptions of the con-
ventional indentation fracture model (volume conserving
plastic deformation) is likely broken for low-� films, as
the incorporation of porosity for low-dielectric constants
will almost necessarily result in densification being the
dominant irreversible deformation mode.

This paper develops concepts and a model that attempt
to capture the important physics of the indentation frac-
ture response of thin, porous films. With this, a method
for the estimation of the fracture toughness of low-�
films is presented. Section II modifies the “wedging”
radial crack development model of Morris and Cook2 for
the presence of a stiff, constraining substrate in two
ways: by consideration of the constraint of the substrate
on crack shape and on the attenuation of the indentation
crack-driving stresses within the film by the substrate.

Section III outlines the effect of pre-existing film stress
on the fracture response. In Sec. IV, the complete frac-
ture model is developed and compared with experimental
data. Simulation of fracture responses in Sec. V shows
the way that all three substrate effects (crack shape
change, indentation stress attenuation, and film stresses)
play a role in the fracture response.

II. INDENTATION CRACK DRIVING FORCES

A. Indentation stress-intensity factors for
different crack shapes

Estimation of fracture properties in small volumes, or
on samples ill-suited to conventional fracture-specimen
preparation, requires a local mechanical property probe
such as indentation. In most ceramics and glasses, the
hoop-tensile residual stress field caused by the reaction
of the plastically deformed zone just below a Vickers
indentation impression drives fracture that extends radi-
ally from the impression center.3 The stress-intensity fac-
tor (SIF) at the radial cracks after the indenter is unloaded
is the residual SIF KR:

KR = �R
P

c3�2 , (1)

where P is the indentation load, c is the crack surface
trace length, and �R is a semi-empirical stress-field
amplitude:

�R = �R �E

H�1�2

, (2)
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where E is the elastic modulus, H is the indentation hard-
ness, and �R is a calibrated material-invariant (but in-
denter-geometry dependent) constant. Equation (2) may
be derived by consideration of volume-conserving plastic
flow underneath the indenter. Many ceramics and glasses
(such as soda-lime glass) satisfy this requirement, and
reasonable estimates of the fracture toughness, T, may be
made on unknown brittle materials with Eqs. (1) and (2)
and invocation of fracture equilibrium, KR � T.4

The low-� organosilicate materials in this work have a
low-dielectric constant due to incorporation of porosity
into what can be thought of as essentially amorphous
silica. Amorphous silica glass (fused silica) is well
known as a material that has an open structure.5 The open
structure in fused silica is responsible for the accommo-
dation of permanent deformation at an indentation by
densification instead of volume-conserving plastic
flow6,7; this alternative plastic deformation mechanism
greatly weakens the strength of �R and would lead one to
overestimate the toughness of silica by Eq. (1). Since the
toughness of bulk homogeneous fused silica cannot be
estimated by the conventional indentation fracture
model, it is extremely unlikely that any reliable tough-
ness estimations could be made of low-� materials, even
if obtainable in bulk form, with a Vickers indenter.

Fortunately, recent work has shown that radial crack
evolution for the much more acute cube-corner indenter
geometry is dominated by the elastic field of the probe,8,9

which is composed of two parts: an elastic contact (flat-
punch like) component and a “wedging” component. The
wedging stress field is so named because it pries open the
radial cracks only when the indenter is in contact. The
residual elastic-plastic field could be ignored in describ-

ing the evolution of radial cracks for the cube-corner
geometry, even for soda-lime glass. The elastic-contact
and wedging stress fields are insensitive to plastic defor-
mation mechanisms, which explains why the fracture be-
havior of fused silica and soda-lime glass is so similar for
cube-corner indentation10,11 but different for indentation
by the much less acute (and consequently poor wedge)
Vickers or Berkovich indenters. Therefore, the indenta-
tion wedging model of Morris and Cook11 for radial
crack propagation and stabilization will be used in this
work.

One consequence of the dominant wedging mecha-
nism of the cube-corner is that after the indenter has been
unloaded, the indentation driving force for cracking has
disappeared, in contrast to the residual elastic-plastic
mechanism. What is observed after the indentation event
is the metastably trapped (unhealed) crack, and so the
problem is to estimate the maximum indentation SIFs
that were attained in the indentation cycle. The experi-
mental evidence is that the point of maximum SIF hap-
pens sometime between peak load and complete un-
load.11 While crack growth during loading to peak load is
believed to be well understood, the crack growth during
unloading, so far, has not been modeled precisely.2,9 Ex-
perimentally, however, it is found that the maximum
crack length is nearly attained at peak load; during un-
loading, there is no more than 10% crack extension.11

Therefore, for tractability of the current problem, it is
assumed that the cracks reached their final shape at peak
indentation load.

Figure 1(a) is a representative scanning-electron mi-
crograph (SEM) of a cube-corner indentation on a low-�
film. From micrographs such as this, the impression

FIG. 1. (a) Scanning electron image of a cube-corner indentation on a low-� film with the contact dimension a and surface crack length c defined.
(b) Schematic cross-sectional diagram of a partially cracked film; the crack depth c�, film thickness tF, and a and c are defined. (c) Schematic
cross-sectional diagram of a one-dimensional channel crack with surface crack length c.
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center-to-corner distance a and surface crack length c
may be measured. Figure 1(b) is a cross-sectional sche-
matic diagram of the crack geometry expected at the
smallest indentation loads; that is, when the radial cracks
are contained well within the film and any subsequent
crack extension may occur down toward the substrate
and away from the axis of indentation. The impression
center-to-corner distance a, crack length c and subsurface
crack depth are shown on Fig. 1(b). The SIFs at load P
for the wedging and elastic-contact stress fields in a ho-
mogeneous material are2

KPC
W = �PC

W
P

c3�2 , (3)

KPC
E = �PC

E
P

c3�2 ln�2c�a� , (4)

where �W and �E are semi-empirical amplitude terms
relating stress-intensity factors to probe acuity and the
Poisson’s ratio � of the material. The subscript PC
(partially cracked, referring to the depth of the radial
cracks in the film) has been appended to the stress-
intensity factors and stress-intensity factor amplitudes.
Equations (3) and (4) can be derived by approximating
the radial cracking system as a circular crack with a
radially symmetric stress distribution of the type 1/r3 for
the wedging stress field and 1/r2 for the elastic-contact
stress field.2

The presence of a stiff, tough substrate, normally sili-
con for low-� films, is a severe constraint on the shape
evolution of radial cracks that is not present in a homo-
geneous material. This constraint can give rise to two
fundamentally different crack geometries when radial
cracks are contained within the low-� film and delami-
nation has been avoided at or near the interface: that of
the partially cracked film, and that of the fully cracked
film. Figure 1(c) is a schematic diagram of the fully
cracked film, or channeling-crack, geometry; the crack is
constrained by the tougher, stiffer substrate and may only
extend in one dimension—outward through the film.

A channeling-cracked film differs from the homoge-
neous material or partially cracked film primarily by the
loss of a characteristic crack dimension, and so the sim-
plest way to account for this change in crack geometry is
to approximate the channel crack as a straight-fronted
one-dimensional crack. The weighting function SIF ex-
pression for a stress distribution acting over a one-
dimensional crack is12

K =
2

�1�2 c1�2�
a

c ��r�

�c2 − r2�1�2 dr , (5)

where r is the radial coordinate, and the edge of the
contact zone a is chosen as the inner boundary of the

crack. The characteristic stress distributions (1/r3 and
1/r2 for wedging and elastic-contact, respectively) are
substituted into Eq. (5) to derive the forms for the one-
dimensional (channeling) crack:

KCH
W = �CH

W
P

c3�2 �c

a
+

a

c
ln�2c�a�� , (6)

KCH
E = �CH

E
P

c3�2 �c

a� . (7)

(The approximation c2 k a2 has been used to arrive at all
of these SIFs.) The subscript CH denotes application to
channeling cracks. All four indentation-derived stress-
intensity factors [Eqs. (3), (4), (6), and (7)] retain an
essential P/c3/2 character with modifications by a dimen-
sionless function of c/a. Both �CH values are expected to
be of the same magnitude as, but not equal to, that of �PC.
This is explored further in Sec. IV.

B. Substrate attenuation

A common problem in nanoindentation is measure-
ment of the plane-strain modulus, Ē � E/(1 − �2) of thin
films, where E is Young’s Modulus. It is frequently dif-
ficult, even with the most sensitive instruments, to per-
form an experiment that is assured to sense the plane-
strain modulus of the thin film, ĒF, alone. The apparent
plane-strain modulus ĒA (the perceived modulus from
appropriate interpretation of the indentation experiment)
will differ from ĒF at any finite indentation depth. A
robust experimental approach is to perform the indenta-
tions over a range of depths and then to extrapolate ĒA to
an indentation depth of zero via an appropriate contact
mechanics model.13–16

In the companion paper,1 the Xu–Pharr model14 for
indentation of a coated substrate was simplified to the
case of a compliant film ĒF � ĒS to yield the relation

ĒA = ĒF�I0 . (8)

I0, the fraction of the total indentation strain energy con-
tained in the film, is a unique function of the contact-
radius-to-film-thickness ratio a/tF. The (somewhat com-
plex) expression for I0 is derived in Gao et al.13 and
reproduced in Part I.1 Remarkably, Eq. (8), with only one
adjustable parameter (ĒF), was able to describe the com-
posite indentation elastic response of all four low-� film–
silicon substrate systems listed in Table I. In the context

TABLE I. Properties of low-dielectric constant materials.

Material � tF (�m) �F (MPa)
HF

(GPa)
Ē F

(GPa)

LKA 2.8 2.0, 1.5, 1.0, 0.5 58.2, 61.2, 63.6, ��� 1.5 9.3
LKB 2.2 2.4, 1.6, 1.2 ��� 0.4 3.1
LKC-1 2.4 1.0 ��� 0.5 3.8
LKC-2 2.0 1.0 ��� 0.2 1.8
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of the indentation fracture model developed in this work,
finding an accurate extrapolative form for ĒA data is not
the primary concern. The utility of Eq. (8) is that it allows
us to connect measurable quantities, ĒA and ĒF, to the
proportion of indentation strain energy lost to the sub-
strate.

The indentation SIFs implicitly assume that a homo-
geneous material is being indented, and therefore the
crack-driving stress fields at the material surface are self-
similar with respect to the load on the punch. This cannot
be the case when indenting a film that is elastically mis-
matched to a substrate. By strain compatibility at a film-
substrate interface, the stresses outside the contacted area
in an infinitely thin (a k tF) bonded film are reduced (for
a compliant film) from the surface stresses in the sub-
strate by a factor of ĒF/ĒS. Of course, in this case, the
indentation strain energy is almost entirely contained in
the substrate (I0 → 0). Conversely, when a K tF, the
mechanical response is that of the film only, I0 → 1, and
the indentation stresses in the film are unaffected by the
substrate. In between these two limiting cases, there will
be some reduction in the magnitude of the stresses in the
film from those occurring at a modulus-matched film–
substrate system.

Therefore, some correction is needed for the wedging
and elastic contact stresses (and by extension, the in-
dentation stress-intensity factor amplitudes) for the ra-
dial cracks in the film. Compensation for the stress-
attenuating influence of the substrate is made by weight-
ing the indentation SIFs linearly by the fraction of strain
energy in the film I0, which is experimentally estimable
as the ĒF/ĒA ratio. A better, or “true” SIF weighting need
not be linear in I0, but the linear assumption appears to
work well at this stage. The effect of substrate attenua-
tion on the film fracture response is discussed in Sec. V.

III. FILM-STRESS CRACK DRIVING FORCES

A. Partially cracked film

Many low-� films have a preexisting tensile stress �F

at room temperature, providing an additional driving
force for crack propagation. In this work, the film-
fracture results of Beuth are used to estimate the contri-
bution of the pre-existing film stresses on the overall
fracture response.17 Results were presented over a wide
range of elastic mismatch between film and substrate,
compactly represented by the bi-material plane-strain
Dundurs parameters, 	 and 
:

	 =
ĒF − ĒS

ĒF + ĒS
, (9)


 =
�F�1 − 2�S� − �S�1 − 2�F�

2�F�1 − �S� + 2�S�1 − �F�
, (10)

where � is the shear modulus, and superscripts F and S
refer to the film and substrate, respectively. 	 as defined
is −1 when the substrate is rigid, a good approximation
for low-� materials on silicon. Numerical results for the
SIF of a plane-strain surface crack propagating toward
the interface of depth c� � tF were represented with the
approximate formula:

KPC
F = 1.1215�F��tF�1�2�c�

tF�
1�2

�1 −
c�

tF�
1�2−s �1 − �

c�

tF� , (11)

where � is a tabulated function of 	 for 
 � 0 and 
 �
	/4 that improves the quality of fit between Eq. (11) and
the numerical SIF results near c� � tF, and s is the
Zak–Williams stress-singularity exponent.18,19

The Zak–Williams stress-singularity exponent arises
from consideration of the stresses ahead of a crack tip
located precisely at, and perpendicular to, a bi-material
interface. The stress field about the crack tip in a homog-
enous material is singular at the crack tip; no matter what
the details of the outer loading of the cracked body are,
the stress singularity is of strength r−1/2.3 However, in the
Zak–Williams problem, the crack-tip singularity will
have a strength of r−s. s is a function of the Dundurs
parameters only and satisfies

cos�s�� − 2
	 − 


1 − 

�1 − s2� +

	 − 
2

1 − 
2 = 0 . (12)

It is easily verified that when (	, 
) � 0, s � 0.5, which
is the usual strength of the crack-tip stress singularity in
a homogeneous stressed body. It should be made clear
that the crack-tip singularity is r−s only at that instant the
crack-tip is at the interface; when the crack tip is in either
material, the stress singularity is still r−1/2. The physical
significance of s in Eq. (11) is to embed elastic mismatch
information (and identify which material is cracked) into
the SIF.

Frequently in discussions of bi-material elastic prob-
lems, physically admissible conditions are set such that
� > 0 and 0 � � � 1/2, and all possible combinations of
material parameters are contained within a parallelogram
in the 	, 
 plane defined by |	–4
 | � 1.19,20 Like
Beuth’s results, many published results for bi-material
fracture problems primarily explore the influence of 	,
while limiting 
 to the range 0 < 
 < 	/4.17,21 This is
because 
 is thought to be of secondary importance to 	
for most bi-material elasticity solutions19; furthermore, a
survey of practical composite material combinations
showed that nearly all composite materials fell into the
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range 0 < 
 < 	/4 while spanning the entire range of 	.22

However, as argued below, low-� films on silicon sub-
strates will likely fall well outside of 0 < 
 < 	/4, and the
fracture behavior will in fact be sensitive to 
. Further-
more, 
 depends most strongly on the unknown Pois-
son’s ratio of the cracked film.

Lucas et al.23 have shown with novel three-
dimensional indentation experiments that good estimates
of Poisson’s ratio could be made on known materials by
measuring the ratio of normal to tangential stiffness. Fur-
ther experiments on polymeric low-� films24 showed that
there was a demonstrable relationship between porosity
and �; the perceived Poisson’s ratio of the low-� mate-
rials varied from about � � 0.4 for a fully dense film to
� �–0.05 for an identical precursor material that had a
starting incorporated porogen content of 50%. For
silicate-based low-� materials, the probability that the
Poisson’s ratio is small is even greater. The fully dense
analogue to organosilicate low-� materials, fused silica,
has a Poisson’s ratio of only � � 0.18. Unoccupied
volume in the structure is a crucial component of small
Poisson’s ratio materials, and mechanisms have been
identified specifically in certain foam materials25,26 and
silicates27 that contribute to auxetic (negative Poisson’s
ratio) behavior. It is likely that Poisson’s ratio is in the
neighborhood �F ≅ 0 for the silicate low-� materials used
in this study.

Although auxetic materials are rare, it is pointed out
here that all −1 > � > 0.5 are thermodynamically admis-
sible for isotropic, continuous, elastic media,28,29 and
therefore the Dundurs parameters should really be sub-
ject to the restriction |	 – 8
/3| � 1. Figure 2 shows the
bounding parallelogram in the 	, 
 plane. The top and
bottom bounding lines correspond to extreme mismatch
in Poisson’s ratio, while the bounds on 	 correspond to
extreme mismatch in plane-strain modulus. In fact, any
line crossing the 	, 
 plane from 	 � (+1, −1) is fixed

at its ends by the Poisson’s ratio of the (stiff, compliant)
material. The physical significance of lines and other
geometric constructions in the 	, 
 plane was discussed
much more completely by Dundurs.20 Also drawn in Fig.
2 are the lines 
 � 0 (�F, �S � 1/2) and 
 � 	/4 (�F,
�S � 1⁄3), which correspond to the frequently cited limits
for typical material combinations. Therefore, in the rigid
substrate limit (	 � −1), 
 falls outside of the typical
bounds of 0 and 	/4 if �F is smaller than 1⁄3.

Figure 3 is a map of s according to Eq. (12) in the 	,

 plane within the bounding parallelogram. Lines of con-
stant s all coincide at (1, −1). For large 	, s is primarily
a function of 	, while at small 	, s is primarily a function
of 
. It is seen that s is small and changes rapidly in the
vicinity of 	 � −1 and 
 � −0.5. This makes it clear
that the SIF of the cracked low-� film [by Eq. (11)]
depends crucially on the Poisson’s ratio of the film. This
is not true for a cracked, relatively stiff film; s is insen-
sitive to Poisson’s ratio as 	 → 1. The shaded area in the
lower-left corner is a region where Eq. (12) has no root
in the range 0 � s � 1. In fact, in this region Eq. (12)
may have no roots at all, or one or more negative roots,
and the physical significance of s here is not clear. Par-
ticular to the low-� film systems studied in this work,
Fig. 4 is a map of s as a function of film elastic modulus
EF and film Poisson’s ratio �F, assuming the film is on a
〈100〉-oriented Si substrate (with ESi � 165 GPa and
�Si � 0.1830).

If, in fact, we have a low-Poisson’s ratio film on a
comparatively stiff substrate, s corresponding to that ma-
terial combination will be much different than the elastic
mismatches that Beuth considered explicitly. A reason-
able estimate of KF

PC can be made by Eq. (11) with � �
0,17 and this approximation is necessary for extrapolation
of Beuth’s results to the small s regime. Therefore, the
form of KF

PC used in this work for the partially cracked
film SIF is

FIG. 2. 	, 
 plane with the parallelogram defined by |	 – 8
/3| � 1
bounding the physically admissible isotropic elastic constants.

FIG. 3. Map of the Zak–Williams stress-singularity exponent s on the
	, 
 plane in the parallelogram defined by |	 – 8
/3| � 1.

D.J. Morris et al.: Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model

J. Mater. Res., Vol. 23, No. 9, Sep 2008 2447



KPC
F = 1.987�F�tF�1�2 �c�

tF�1�2 �1 −
c�

tF�1�2−s

. (13)

Within the approximate stress-intensity factor of Eq.
(13), all four independent elastic constants of the bi-
material problem have been mapped on to s. Figure 5
is a plot of a normalized SIF, KF

PC/�F(�tF)1/2, as a func-
tion of normalized crack depth, for various values of 0 �
s � 1⁄2, appropriate for a compliant film. Any s < 1⁄2 will
reduce KF

PC below that of the isotropic SIF at all crack
depths and eventually drive KF

PC to zero as the crack

approaches the interface. The maximum in KF
PC, by

Eq. (13), is at c� � −1/2(s − 1). As s approaches zero
(ĒS → 
 and �F → 0), the maximum in KF

PC tends to the
midpoint of the film. Obviously, from Fig. 5, crack
propagation through a compliant, low-� film [as ex-
pressed by s, Fig. 3(b)] is markedly different from an
elastically matched film. The SIF field for cracked aux-
etic films might be distorted even further, but this is not
explored in this work.

B. Channeling-cracked film

When the propagation of the crack toward the interface
is sufficiently constrained by the tough substrate, the ra-
dial crack loses two-dimensional character and becomes
a one-dimensional crack—a channeling crack. The ap-
propriate SIF from film stress is

KCH
F = �CH�	,
,c��tF��F�tF�1�2 . (14)

KF
CH is a neutral stress-intensity factor; that is, there is no

surface crack-length dependence. The channeling geom-
etry factor �CH is derived from KF

PC by averaging the
mechanical energy release rate G � K2/EF of a partially
cracked film extending toward the interface to a depth c�
through17

GCH =
1

c� �
0

c�

GPC dc� . (15)

It is emphasized that “sufficient constraint” is chosen as
the condition for the transition from partially cracked to
channeling-crack geometries, and not the actual meeting
of the radial crack edge with the film–substrate interface.
In a compliant film under the influence of the film stress
alone, the channeling crack will arrest stably some dis-
tance from the interface because KF

PC tends to zero at the
interface (see Fig. 5). This has been observed experimen-
tally.31 Figure 6 is a plot of �CH for various values of s
as a function of channeling depth. The usual assumption
is that the channeling crack has a depth identical to the
film thickness, such that c� � tF is a good approximation
for the steady-state channeling crack depth. For s � 0
(the most severe test of this assumption), there is only a
6% difference between the maximum �CH (which is at
c� � 3/4tF) and �CH for the fully cracked film (c� � tF).
Therefore, while it is not necessary, or even probable, for
the crack to reach the interface to attain a channeling
geometry, it is a good assumption that the crack has
reached the interface for purposes of estimating �CH.
Figure 7 is a plot of �CH calculated with Eq. (13) for
c� � tF as a function of s. The channeling geometry
factor varies from the homogeneous-material limit
�CH � 1.41 at s � 1⁄2 to �CH � 0.81 at s � 0.

FIG. 4. Map of Zak–Williams stress singularity exponent s as a func-
tion of film elastic modulus and film Poisson’s ratio, assuming the film
is on a silicon substrate (ESi � 165 GPa, �Si � 0.17).

FIG. 5. Normalized stress-intensity factor as a function of normalized
crack depth in a compliant film. When s � 1⁄2, the result for a surface-
located plane-strain crack is recovered, K � c�1/2. s < 1⁄2 distorts the
stress-intensity factor field and drives the stress-intensity factor to zero
as the crack tip approaches the film-substrate interface at c�/tF � 1.
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IV. APPLICATION TO EXPERIMENTAL DATA

A. Complete fracture model

To estimate the fracture toughness of the film, we must
estimate the contribution of all of the SIFs, add them, and
set them equal and opposite to the fracture toughness of
the film; this is a statement of fracture equilibrium. It is
further assumed that the toughness of the film is insen-
sitive to crack length; that is, there is no R-curve behav-
ior. This is likely a good assumption for an amorphous,
brittle material. The fracture equilibrium relationship
may then be rearranged as

KW + KE = T − KF . (16)

The left side of Eq. (16) is interpreted as the total driv-
ing force for fracture introduced by the action of the
indenting probe (KW + KE), and the right side as a
composite resistance to fracture (but not strictly a
“fracture resistance”) caused by the material properties
and configuration, which are the film thickness and
residual stress derived from its attachment to a sub-
strate.

As a practical matter, only the surface dimension of
the radial cracks c can be measured conveniently (for
example, in a conventional SEM or scanning-probe ex-
periment). It is assumed from this point that when the
film is partially cracked, the radial cracks have a constant
aspect ratio � such that c� � �c. With this assumption,
the indentation SIFs, which call for c, and the film-stress
SIFs, which call for c�, may be added. For data-fitting
purposes, the crack aspect ratio � will normally be a free
parameter.

The wedging fracture SIF amplitudes, �E and �W, are
strong functions of the indenter acuity and the material
Poisson’s ratio.2 This could be problematic because the
Poisson’s ratios of the low-� films are unknown. How-
ever, it was also shown that the ratio of these SIF am-
plitudes is insensitive to Poisson’s ratio, especially as
� → 0. This ratio is the probe wedginess, W � –�W/�E,
a measure of the relative flat-punch to wedgelike char-
acter of a punch of fixed acuity. The cube-corner has an
observed wedginess of approximately 1.95.11 By way of
example, the predicted wedginesses of the 49.6°, 58.9°,
and Berkovich probes (at � � 0.0) are 1.56, 1.07, and
0.70, respectively; and of course, a flat punch would have
no wedgelike character, W � 0. Here only cube-corner
results are analyzed because wedginess has been experi-
mentally measured for such a probe. W depends to first
order only on probe geometry, and so the equilibrium
relationship for a partially cracked film may be rewritten,
by substitution of equations, as

ĒF

ĒA�K�W
PC W −

1

W
K�F

PC� = � TF

�PC
W � − 1.987 � �F

�PC
W �

�tF�1�2��c

tF�1/2�1 −
�c

tF�1�2−s

,

(17)

where the K� values are “dry” stress-intensity factors—
SIFs from Eqs. (3) and (4) without any material-derived
SIF amplitudes (�) ascribed to them. The left side of Eq.
(17) is a varying function of c only. Analogously, the
channeling crack fracture relationship is rewritten as

FIG. 7. �CH as a function of stress-singularity exponent s for a fully
cracked film (c� � tF), calculated using the expression for KF

PC in
Eq. (13).

FIG. 6. Channeling-crack geometry factor �CH as a function of nor-
malized channel crack depth for values of s between 0.5 (no elastic
mismatch) and 0.0 (rigid substrate, �F � 0.0). For s < 0.5, a maximum
�CH corresponds to a channeling depth less than the film thickness.
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ĒF

ĒA�K �W
CH −

1

W
K�E

CH� =
1

��� T

�PC
W �

− �PC � �F

�PC
W � �tF�1�2� ,

(18)

where � is an empirical constant such that �CH � ��PC

to compensate for the change in crack geometry. The left
side of Eq. (18) has no dependence on crack length. The
advantage of rewriting the film fracture equilibrium re-
lationship in the manner of Eqs. (17) and (18) is that �PC

(and �) need not be known to make estimates of TF if the
film stress is known, by elimination of �W

PC between the
quantities TF/�W

FC and �F/�W
PC.

In Part I, it was shown that either a “jump” in the c-P
response, or a sudden, sharp increase in ĒA was a signal
that a delamination crack was forming, and that the sur-
face traces of the cracks may not be representative of true
radial fracture. Where either of these conditions were
met, the fracture data at and above that indentation load
were discarded.

B. Results

For convenience, the names and properties of the films
analyzed with the fracture model are reproduced from the
companion paper in Table I.1 They are designated by
generic names of LK (“low-�”) A, B, and C. Each low-�
material, and its SEMATECH-reported film thickness
and film stress (measured by wafer-curvature methods),
indentation modulus ĒF and hardness HF as determined
from Berkovich indentation is listed. Each low-� mate-
rial is coated on a silicon substrate. All three low-� va-
rieties are organosilicate; LKA (� � 2.8) is a chemical-
vapor deposited material, while LKB (� � 2.2), LKC-1
(� � 2.4), and LKC-2 (� � 2.0) are spin-on methyl-
silsesquioxane-based materials. More details about these
materials and the indentation and fracture experiments
are available in the companion paper.1

Figure 8 is a c − ĒA − P plot for cube-corner fracture
on 2.0-�m-thick LKA. This type of plot was used in Part
I to deduce the transition from radial fracture to sub-
surface delamination. The crack length, load, and appar-
ent modulus information in this type of plot may be
transformed into the fracture mechanics variables of Eqs.
(17) and (18) for plotting and data fitting, with the pur-
pose of estimating TF. To estimate s, the Poisson’s ratio
of all films was approximated as �F � 0. This approxi-
mation is justified by the argument made in Sec. III. A;
that is to say, a porous derivative of amorphous silica is
likely to have a small Poisson’s ratio. Then, s was found
with Fig. 4 and the indentation modulus of the film
(Table I).

Figures 9(a)–9(d) are plots of the indentation fracture
SIFs, ĒF/ĒA(KW

PC − KE
PC/W) and ĒF/ĒA(KW

CH − KE
CH/W),

as a function of c for cube-corner indentation on 2.0-,
1.5-, 1.0-, and 0.5-�m LKA, respectively. (These data
are transformed accordingly from data in Figs. 12–15,
Part I1). All crack length data are plotted using partially
cracked and fullycracked film models; we cannot deter-
mine a priori from surface crack lengths which cracks are
of which type, but we can reasonably assume that the
smallest cracks are best described by the former and the
longest cracks by the latter. Finite element simulations
have suggested that a channel crack under the influence
of film stress reaches a steady state after it reaches a
surface length twice the film thickness.32

The fitting and analysis procedure was as follows. Par-
tially cracked fracture data up to c � 1.5 tF were fit to
Eq. (17) by Levenberg–Marquardt least-squares minimi-
zation. The least-squares residuals were weighted by
wi � 1/�i

2, where �i is the experimentally determined
standard deviation (shown on the plot as error bars). All
data for a particular material were fit simultaneously;
TF/�W

PC and s were shared for all data, while �F/�W
PC and

� were allowed to vary for individual film thicknesses.
The quantities TF/�W

PC and �F/�W
PC derived from the best

fit, as well as � and s, are listed in Table II. Uncertainty
bands listed in Table II correspond to the uncertainty
derived from the fitting procedure.

After the short-crack-length data were fit, channel-
cracking data greater than c � 1.5 tF were fit to Eq. (18),
shown as a dashed line. Then from this, the constant �
was found by substitution of TF/�W

PC and �F/�W
PC into Eq.

(18). Values of � are listed in Table II. The associated
uncertainties were found by propagation of the uncer-
tainties from the fit, and from TF/�W

PC and �F/�W
PC.

As film thickness decreases, the decreasing impor-
tance of the film SIF on the total fracture response is

FIG. 8. A c − ĒA − P plot for cube-corner indentation on 2.0-�m-thick
LKA.
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easily seen as an increase in the values of ĒF/ĒA(KW
PC −

KE
PC/W) across the entire crack length range as film thick-

ness decreases. Furthermore, thicker films promote chan-
nel cracking. For example, the 0.5-�m-LKA film never
achieved the channeling geometry before delamination
occurred.

Figure 10(a) is a plot of the indentation fracture SIFs
as a function of c for cube-corner indentation on 2.4-�m-
thick LKB. The value of TF/�W

PC found from the 2.4-�m
LKB film was fixed when fitting the partially cracked

1.6- and 1.2-�m LKB films. Table II demonstrates that
the apparent film stress, �F/�W

PC increases significantly as
film thickness decreases, from �F/�W

PC in the 2.4-�m film
to 189 MPa as the film thickness halves to 1.2 �m. The
indentation fracture SIFs for 1.2-�m LKB are plotted in
Fig. 10(b). In both LKA and LKB, the film stress appears
to decrease with increasing film thickness. Measured
film stresses (Table I) also increase with decreasing film
thickness, but in smaller proportions than the fracture
model suggests.

FIG. 9. Indentation stress-intensity factor for partially cracked films and channel-cracked films as a function of surface crack length for
cube-corner fracture on (a) 2.0-�m-thick LKA, (b) 1.5-�m-thick LKA, (c) 1.0-�m-thick LKA, and (d) 0.5-�m-thick LKA. Fits of the respective
film fracture models for each set of data are shown.

TABLE II. Low-� film indentation fracture fitting results.

Material tF (�m)
T/�W

PC

(MPa m1/2)
�F/�W

PC

(MPa) � s �

LKA 2.0 0.58 ± 0.06 366 ± 42 0.44 ± 0.05 0.12 0.20 ± 0.15
1.5 395 ± 47 0.50 ± 0.01 0.23 ± 0.13
1.0 440 ± 59 0.57 ± 0.03 0.30 ± 0.13
0.5 361 ± 87 0.58 ± 0.15 ���

LKB 2.4 0.25 ± 0.01 145 ± 6 0.48 ± 0.02 0.05 0.28 ± 0.06
1.6 154 ± 8 0.42 ± 0.03 ���

1.2 189 ± 8 0.44 ± 0.02 0.38 ± 0.06
LKC-1 1.0 0.25 ± 0.07 217 ± 76 0.40 ± 0.06 0.06 0.28 ± 0.42
LKC-2 1.0 0.22 ± 0.07 189 ± 68 0.50 ± 0.01 0.02 ���
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The perceived increase in film stress with decreasing
film thickness could be an artifact of the indentation
fracture model, but it is probably not an artifact due to
stress-corrosion cracking after the indentation. Thicker
films (with equal stress) will have more available strain
energy and so would tend to have artificially inflated
crack lengths and therefore a higher perceived stress; this
is the opposite of what is observed here. Stress variations
in nominally similar films may be attributed to normal
processing variability, or to relaxation of stress due to
diffusion of water into the film.33 At this time, the exact
cause is not known.

Figure 10(c) plots the indentation fracture SIFs as a
function of c for cube-corner indentation on 1.0-�m-
thick LKC-1. As mentioned in Part I, the difference be-
tween LKC-1 and LKC-2 is the starting porogen content
of the material before processing, which controls the fi-
nal dielectric constant of the material after processing. It
is interesting that the LKC materials have much more
uncertainty in �F/�W

PC than LKA and LKB; this perhaps
points to some unknown inhomogeneous structural fea-
ture particular to this material’s processing or chemistry.
This is a subject for future study.

V. DISCUSSION

A. Fracture mechanics model

Within the current model, TF can only be estimated
with knowledge of either �W or �F. The toughness of
2.0-, 1.5-, and 1.0-�m-thick LKA may then be calculated
with the SEMATECH-supplied film stresses measured
by wafer-curvature (Table I) and the values of TF/�W

PC

and �F/�W
PC from Table II. For 2.0-�m-thick LKA,

TF � (0.091 ± 0.014) MPa m1/2; for 1.5-�m-thick LKA,
TF � (0.089 ± 0.014) MPa m1/2; and for 1.0-�m-thick
LKA, TF � (0.083 ± 0.014) MPa m1/2. All three values
therefore agree within calculated uncertainties. The mean
fracture toughness is a physically-reasonable number; the
toughness of LKA is about 1/8 that of dense fused silica,
as is the elastic modulus of this film.34 For comparison,
this is roughly the same fracture toughness as ice.35

In recent work by Quinn and Bradt, the one standard

TABLE III. Calculated critical low-� film thicknesses.

Film tF (�m) �CH t F
crit (�m)

LKA 2.0 0.90 3.1 ± 0.9
1.5 2.6 ± 0.8
1.0 2.1 ± 0.7
0.5 3.1 ± 1.7

LKB 2.4 0.85 4.2 ± 0.5
1.6 3.7 ± 0.5
1.2 2.5 ± 0.3

LKC-1 1.0 0.87 1.8 ± 1.7
LKC-2 1.0 0.82 2.1 ± 2.0

FIG. 10. Indentation stress-intensity factor for partially cracked films
and channel-cracked films as a function of surface crack length for
cube-corner fracture on (a) 2.4-�m-thick LKB, (b) 1.2-�m-thick LKB,
and (c) 1.0-�m-thick LKC-1. Fits of the respective film fracture mod-
els for each set of data are shown.
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deviation uncertainty of the micro-scale Vickers inden-
tation fracture toughness test on a NIST Standard Refer-
ence Material for the fracture toughness of ceramics
ranged from 2% to 6%.36 This work also concluded that
the Vickers fracture toughness test did not agree within
experimental uncertainty with standard toughness meas-
urement methods. Because the mechanism of crack
propagation at cube-corner indentations is different from
Vickers indentation (that is, the cube-corner mechanism
is indentation wedging),11 the Quinn and Bradt conclu-
sion does not necessarily apply to the results here. It is
acknowledged that the reliability of the indentation frac-
ture measurement for very acute indenters is unknown
and a subject for future study, if it is ever possible to
fabricate and test standardized fracture specimens for
low-� films.

However, if the film stress is unknown, the critical
thickness37,38 (the maximum thickness of film that may
be deposited before the film shatters under the influence
of film stress) may be constructed from TF/�W

PC and �F/
�W

PC. The condition for propagation of a channel crack
through a blanket film under the influence of only the
film stress is

TF = �CH�F�tcrit
F �1�2 , (19)

where tF
crit is the critical film thickness. TF/�W

PC and �F/
�W

PC can be combined with Eq. (19) to estimate tF
crit as

tcrit
F = � 1

�CH
��PC

W

�F �� T

�PC
W ��2

. (20)

The only quantity in Eq. (20) that cannot be estimated
from partially cracked film data is �CH. tF

crit is not a
material property, but it can be an important component
engineering metric because it is a combination of both
material properties and material configuration (the stress
imposed on the material due to strain constraint by the
substrate). Furthermore, estimation of the critical film
thickness by a method other than actually depositing
films of varying thickness may be better from a perspec-
tive of material comparison, especially if, as suggested
here, film stress may be significantly higher for thinner
films.

B. Simulation of fracture responses and model
interpretation

The previous section showed that transformation of
load, crack length, and apparent modulus data into frac-
ture mechanics coordinates are a convenient way to ana-
lyze thin-film low-� fracture data. However, more physi-
cal insight into the effects of changing material proper-
ties or configuration (stress or chemical changes by
manufacturing processes), or of the phenomena asserted
in creating the fracture model (such as substrate attenu-

ation) can be gained by re-transforming the fracture me-
chanics model back to a c-P response.

Functional forms describing the way in which the con-
tact dimension, a [for calculating SIFs, such as in Eqs.
(4), (6), and (7)], and the substrate attenuation, ĒF/ĒA,
vary with indentation load are needed to simulate the
fracture responses. A simple way to do this is to assume
that the apparent hardness is constant, and that ĒA is a
single function of a/tF, as was shown in Part I.1 With the
constant hardness assumption, P1/2 is linear in a, and ĒF/
ĒA can be any empirical function of P1/2/(tFHF1/2

). For
simulation purposes in this work, the apparent hardness
is always that estimated by Berkovich indentation. ĒF/ĒA

is simply represented as a second-order polynomial func-
tion of P1/2/(tFHF1/2

) over the range of interest.
The fracture relationships of Eqs. (17) and (18) are

complex with respect to crack length and indentation
load, so extraction of the c-P response from the fracture
mechanics description requires numerical solution. There
are possibly multiple equilibrium solutions for a fixed
indentation load, so the stability of the system must be
invoked to find the physical solution. The fracture sta-
bility condition for an ideally brittle material is dKT/dc <
0, where KT � KW + KE + KF is the sum of all stress-
intensity factors. Figure 11 is plot of normalized SIF,
K/TF as a function of normalized crack depth, c�/tF for a
hypothetical indentation + film SIF fracture field. There
are three possible crack lengths that satisfy the equilib-
rium condition, K/TF � 1. Clearly, however, the solution
that must be chosen is the shortest crack that satisfies the
equilibrium and stability conditions.

For a partially cracked film, the fracture stability cri-
terion [with Eq. (17)] leads to the condition

FIG. 11. Normalized SIF, K/TF as a function of normalized crack
depth, c�/tF for a hypothetical indentation + film SIF fracture field. The
shortest stable crack depth is the physically observed one.
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dKPC
T

dc
= −

3

2c�K �W
PC −

1

W
KPC

E � −
1

W

K �W
PC

c

− KPC
F � 1

2c
−

�1�2 − s�

�1 − �c�tF�

�

tF� � 0 .

(21)

The c-P simulations for the partially cracked film were
checked to make sure that Eq. (21) was always satisfied.
The equilibrium channeling-cracked total SIF is always
stable; the combination of the indentation SIFs is always
stabilizing; and the channeling film-stress SIF is always
neutral with respect to the surface crack length.

Figure 12(a) reproduces experimental c-P data for
cube-corner indentation on 2.0-�m LKA. Also shown on
Fig. 12(a) are the partially cracked (solid line) and chan-
nel-cracked (dashed line) simulations of the c-P re-
sponse, using the TF/�W

PC and �F/�W
PC values from Table

II. Channel-cracking solutions are admitted only when
the crack length is equal or greater to the film thickness;
that is, the crack must be at least “square.” The simulated
fracture response reproduces the experimental data, but
perhaps not as well as the fit in fracture mechanics co-
ordinates, a possible artifact of the constant hardness as-
sumption. However, the greatest experimental scatter in
crack length—shown by the error bars of ±1 standard
deviation—is in the region from 0.32 to 0.46 mN, the
same region where the simulated c-P response is most
sensitive to indentation load. Also in Fig. 12(a), crack-
length simulations for film thicknesses of 1.5, 1.0, and
0.5 �m were generated by changing only the film thick-
ness. No channel-cracking line appears for the thinner
films because no channel-crack longer than the film
thickness was possible. These simulations were gener-
ated by changing film thickness only; the apparent in-
creases in film stress (Table II) were ignored so that the
model behavior could be observed when film thickness
was varied.

Figure 12(b) compares all experimental LKA cube-
corner c-P data with simulations generated using the film
stress values in Table II. When film stress is allowed to
vary slightly from film to film, the simulation can repro-
duce features of the experimental c-P responses very
well. Notably, the simulation can reproduce the invari-
ance in crack length with respect to film thickness at
indentation loads less than 0.4 mN; the one exception is
the thinnest LKA film, 0.5 mm thick.

Figure 13 simulates the sensitivity of the fracture re-
sponse to (a) changing the film toughness and (b) chang-
ing the film stress on the indentation fracture responses.
In fact, they are difficult to distinguish; a 10% increase in
film stress changes the fracture response nearly identi-
cally to a 10% reduction in fracture toughness, and vice
versa. It was hoped at the outset of this work that an
estimate of toughness could be made without an accom-

panying measurement of stress, but at this stage of de-
velopment it does not seem possible. However, this does
highlight the potential usefulness of tF

crit, which accounts
for stress and toughness, as a practical measure of a
film’s predilection to failure.

One of the central assumptions of the low-� film frac-
ture model is the existence of the substrate attenuation
phenomenon, as outlined in Sec. II. The effect of sub-
strate attenuation is to progressively dull the indentation
SIFs as the substrate accommodates a larger fraction of

FIG. 12. Crack length versus indentation load simulations for cube-
corner indentation on LKA. (a) The experimental c-P data for 2.0-�m
LKA are shown and compared to the two-crack-shape film fracture
model. Also shown are simulations of the film fracture response for
1.5-, 1.0-, and 0.5-�m films, generated by changing the film thickness
in the simulation only. (b) Simulations of each LKA film thickness,
where the film stress is allowed to individually match that extracted
from the best fit of the fracture data (Figs. 9–11).
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strain energy with increasing indenter penetration. Figure
14(a) shows simulations of the c-P response of a rela-
tively thick film, 2.4-�m LKB, with and without the
effect of substrate attenuation. Figure 14(b) is for a rela-
tively thin film, 0.5-mm LKA. These will be used as
illustrative examples.

Consider the simulated responses with and without
substrate attenuation in Fig. 14(a). The partially cracked
responses are almost identical, but the channel-cracked
lines are different. Of course, at the smallest indentation
loads, tensile film stress inflates the crack length to a
value greater than it would be for a stress-free material.
As seen in Fig. 5, the partially cracked film SIF quickly
decreases to zero as the crack approaches the interface
(that is, c → �tF). By the time there is any significant

substrate attenuation, the c-P response has already be-
come insensitive to indentation load due to a rapidly
decreasing KF

PC and the close approach of the crack to the
interface. Once the channel crack is activated, the con-
tribution of film stress to the fracture response increases
to a level set by Eq. (14) and is invariant with further
crack extension. Therefore, without substrate attenuation,
scaling of the channel-cracked c-P response should re-
sume at about c ∼ P2/3, as seen in the simulation without
substrate attenuation. Indentation-driven channel crack-
ing with substrate attenuation simulates the experimental
fracture response much more realistically. The similarity
between the late-stage partially cracked behavior and the
strongly attenuated channel cracking might suggest that
there is not, in fact, a change in crack shape. Without the
crack-shape transition, however, the slight concave to
convex transition of the c-P response at higher loads in
the thicker films could not be reproduced [see at a load of

FIG. 13. Crack length versus indentation load simulation for cube-
corner indentation on 1.5-�m LKA, with the effect of 10% changes in
(a) toughness and (b) stress in the simulation.

FIG. 14. Crack length versus indentation load simulation for cube-
corner indentation, with and without substrate attenuation on (a)
2.4-�m LKB and (b) 0.5-�m LKA.
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approximately 1.5 mN for 2.4-�m LKB, Fig. 14(a); see
also at loads of 2.2 mN for 2.0-�m LKA and 1.5 mN for
1.5-�m LKA, Figs. 12 and 13 in Part I1]. An upward
point of inflection in the c-P response when the crack
length is greater than the film thickness is indicative of
the transition to channel crack geometry.

Figure 14(a) plots c-P simulations with and without
substrate attenuation for the thinnest film studied here,
0.5-�m LKA. As might be expected, a lack of substrate
attenuation would result in longer crack lengths at fixed
load. Furthermore, without substrate attenuation, a chan-
nel crack could be formed [that is, a solution of Eq. (18)
is possible]. With even a generous estimate of � � 0.4
(see Table II), no channel crack can be formed with a
cube-corner indenter when substrate attenuation is ac-
counted for. The consequence for experimentalists is that
thinner films are even more difficult to study than they
might normally be with indentation fracture because the
range of indentation loads over which radial fracture can
be generated is shortened significantly by substrate at-
tenuation. Indenters more acute than a cube corner could
possibly be used to drive channel cracking in this par-
ticular film, if so desired.

VI. SUMMARY

A fracture and contact-mechanics based model for
measurement of the fracture toughness of thin, low-
dielectric constant films has been derived. This model
combines the wedging mechanism of indentation radial
fracture, the effect of substrate constraint on the inden-
tation crack shape, the contribution of film stresses to the
overall fracture response, and the influence of the sub-
strate on the indentation stress fields. When all of these
effects are accounted for, indentation fracture data for
films of varying thickness and stress can be reconciled
with one value of toughness for the material.

Pre-existing film stresses are considerable contributors
to the overall fracture response. Prior results for the
stress-intensity factors for a stressed, cracked thin film
are extrapolated to the case of a low-Poisson’s ratio,
compliant film on a stiff substrate. It is shown that the
distortion in the stress-intensity factor fields can be large
if this is true. Furthermore, because the indentation
cracks are contained within the film, the distribution of
indentation strain energy between film and substrate
must be taken into consideration. It is shown how the
fraction of indentation strain energy contained in the film
may be experimentally estimated by the apparent inden-
tation modulus. Measurements of crack length and the
indentation modulus at each indentation load can then be
transformed into appropriate fracture mechanics coordi-
nates for analysis.

If there is an independent measure of the film stress,
the fracture toughness may be estimated. One organosili-

cate low-� material was estimated to have a toughness of
about 0.09 MPa m1/2. If film stress is not known, then the
critical film thickness for channel cracking may be esti-
mated from the indentation fracture response. Simulation
of film fracture responses shows that film stress, thick-
ness, and toughness all play different and important roles
when evaluating the indentation fracture response of
these materials.
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