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INTRODUCTION

Terahertz and far-infrared �far-ir� absorption in insulators
because of single, ir-active phonons is a well known effect,
although it usually only involves phonons near the Brillouin-
zone center and does not occur in materials with sufficiently
high symmetry. Direct coupling of phonon oscillator pairs to
light, on the other hand, which results from higher-order
Born effective charges, occurs at sums and differences of
phonon frequencies and, in principle, involves phonons ev-
erywhere in the Brillouin zone. This was discussed, for in-
stance, in the classic work by Lax and Burstein.1 In materials
such as Si and Ge, two- �and other multi-� phonon absorption
is the chief cause of absorption for wavelengths longer than,
say, 3 �m. Such absorption spectra can have rich, multi-
peaked structure because of Van Hove singularities. How-
ever, to be on a sound footing, their detailed interpretation
usually requires theoretical calculations yielding definitive
replicas of spectral features. Thus, as an analytical tool, ab-
sorption spectroscopy complements other methods, including
inelastic neutron scattering and Raman scattering. To this
end, theoretical modeling of absorption spectra is a good
indicator to differentiate intrinsic absorption features from
extrinsic ones in the two-phonon spectral region.

Despite the wealth of past studies, many of which are
cited here and/or reviewed by Birman,2 modern electronic
structure calculation methods have undergone sufficient re-
cent improvements to warrant further analysis of two-phonon
absorption spectra. In particular, density-functional perturba-
tion theory �DFPT�3 permits �in simple materials� routine
accurate calculations of dynamical matrices everywhere in
the Brillouin zone, and third-order DFPT �using the “2n+1
theorem” of Gonze and Vigneron,4 as implemented by De-
bernardi and Baroni5 and Dal Corso and Mauri6� permits
reasonable calculation of anharmonic couplings and second-
order Born charges. In an earlier work, Deinzer and Strauch7

studied the far-ir absorption spectra of Si and Ge using
DFPT.

In this work, we carry out calculations along the same
lines as Deinzer and Strauch.7 We find theoretical replicas of
a very large number of absorption features in Si and Ge in
our two-phonon absorption spectra and their temperature de-
pendences. Because of the level of detail we obtain, we go

beyond earlier work by carrying out critical-point analysis to
assign a large number of distinct absorption features in both
materials. We assert that the present assignments are more
rigorous than earlier ones, if only because of the available
modern electronic structure methods, including the calcula-
tion of coupling matrix elements. The results suggest that
similar analyses can be carried out for other materials. This
should be useful for quantitatively testing the understanding
of phonon dispersion in solids and benchmarking the accu-
racy of electronic structure calculations.

In what follows, we first introduce the formalism used
here to describe one- and two-phonon effects in absorption
spectra. For simplicity, we restrict much of the discussion to
materials with isotropic properties, but this restriction can be
lifted in future work with modest elaboration. We describe
details of our particular implementation of second- and third-
order DFPT, with an emphasis on Brillouin-zone sampling.
We then present absorption spectra along with experimental
spectra taken from the literature. Finally, we describe and
implement a scheme to carry out critical-point analysis, a lot
of which was done largely automatically. This led to identi-
fying many critical-point features in Si and Ge, except near
the strongest peaks, where several points are so closely
spaced that assignment of observed features could be am-
biguous and was not attempted. We hope that in some in-
stances, reinvigorated experimental effort will increase the
benefit of the present critical-point analysis to characterize
phonon spectra at previously unachieved levels of detail.

FORMALISM AND DERIVATION OF DIELECTRIC
FUNCTION

To start, say that a crystal has Bravais lattice �R� with
unit-cell volume �0. An atom in the cell belonging to lattice
vector R is located at R+�A+dA,R, so that �A is the basis
vector for sublattice A and dA,R is the atom’s displacement
from equilibrium. One can introduce the discrete Fourier
transform sA,k=N−1/2�Re−ik·RdA,R, where N is the number of
unit cells in the crystal, and also the number of values of k.
This implies dA,R=N−1/2�ke+ik·RsA,k. In the harmonic ap-
proximation, the dynamical matrix is
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Dij
0 �k� = �mimj�−1/2 �2E

�si,−k�sj,k
, �1�

where E is the total energy. �All derivatives are to be under-
stood as being evaluated at zero displacement and zero elec-
tric field.� D0�k� has eigenvalues ��k�

2 �, where � specifies a
phonon branch and �k� is the harmonic frequency, and or-
thonormal eigenvectors �ek��, and an index i or j specifies a
sublattice and Cartesian coordinate.

The potential energy of a crystal has an expansion of the
form

U = U0 +
1

2�
kij
��mimj�1/2si,−ksj,k�Dij

0 �k� + �
p

up
�Dij�k�

�up
�	

+ ¯ . �2�

Dij
0 �k� includes harmonic terms, and accompanying terms go

1 order beyond the harmonic approximation. We consider
two such terms. One term describes anharmonic coupling of
a zone-center optical mode to phonon pairs. Such a pair can
be two phonons with opposite momenta, which are simulta-
neously emitted or absorbed, or two phonons with equal mo-
menta, of which one is absorbed and one is created. The
other term describes coupling of a macroscopic electric field
to such pairs. Hence, up is either a zone-center normal-mode
coordinate or a field strength. We do not consider higher
derivatives of the Born-Oppenheimer surface or third deriva-
tives involving three oscillators of which none is at the zone
center. In writing the potential energy as above, Dij�k� is a
generalization of the dynamical matrix, whereas Dij

0 �k� is its
�harmonic� value at zero sublattice displacement and electric
field.

One can quantize the normal-mode harmonic oscillators,
for which we use the following notation. A normalized pho-
non eigenvector has components describing atomic displace-
ments of the form qRi,k�=N−1/2eik·Rei,k�, with phonon fre-
quency �k� and raising and lowering operators ak�

+ and ak�.
The lattice kinetic energy is

T =
1

4�
k��

�k��a−k� − ak�
+ ��a−k�

+ − ak�� , �3�

while the harmonic lattice potential energy is

Uh = U0 +
1

4 �
k���

��k��k���
−1/2�

ij

�ei,k��*Dij
0 �k�ej,k��

��a−k� + ak�
+ ��a−k��

+ + ak��� . �4�

In the harmonic approximation and at zero electric field, the
Hamiltonian is H0=T+Uh=U0+�k��k��ak�

+ ak�+1/2�. Cou-
pling of phonon pairs to an electric field or zone-center op-
tical phonon is given by the replacement Dij

0 �k�→Dij
0 �k�

+�pup
�Dij�k� /�up� in Eq. �4�. This also furnishes the matrix
elements.

Henceforth, we assume a two-atom cubic- or tetrahedral-
symmetry crystal structure with cubic or tetragonal site sym-
metry such as diamond, zinc blende, rocksalt, or cesium
chloride. In each cell, the atom at site �1 has Born effective
charge −Zef f, and the atom at site �2 has Born effective

charge +Zef f. We can specify the zone-center optical-phonon
coordinate in terms of the average relative sublattice dis-
placement, x=N−1/2�s2,k=0−s1,k=0�. It is now standard to use
DFPT to calculate Dij

0 �k�, �Dij�k� /�x�, and �Dij�k� /�E�. We
provide further details of our implementation and references
in the next section. One can use the derivatives to construct
the coefficients

bk���
� = �

ij
� ei,k�

�2�k��1/2�*�Dij�k�
�x�

� ej,k��

�2�k���
1/2� �5�

and

mk���
� = �

ij
� ei,k�

�2�k��1/2�*�Dij�k�
�E�

� ej,k��

�2�k���
1/2� . �6�

These expressions describe coupling of zone-center phonons
and electric fields to phonon pairs, giving the total crystal
Hamiltonian,

H = H0 +
1

2 �
k���,�

�bk���
� x� + mk���

� E��

��ak�
+ + a−k���a−k��

+ + ak��� . �7�

For simplicity, if one treats the zone-center optical phonon
and radiation field classically, one has

�ẍ�t� = F�t� . �8�

Here, � is the reduced mass. The driving force ±F on each
atom �equal and opposite for members of the two sublattices�
arises from the harmonic restoring force, the electric field,
and anharmonicity:

F��t� = − ��0
2x��t� + Zef fE��t� − �2N�−1 �

k���

bk���
� �ak�

+ + a−k��

��a−k��
+ + ak���

= − ��0
2x��t� + Zef fE��t� − �2N�−1 �

k���

bk���
� Ak����t� .

�9�

The induced polarization is

P��t� = �0
−1�Zef fx��t� − �2N�−1 �

k���

mk���
� Ak����t�	 .

�10�

Above, Ak����t� is a scaled product of normal-mode coordi-
nates for certain phonon pairs, such as a pair with indices k�
and −k��. The potential energy’s mixed second derivative
with respect to such a pair’s normal-mode coordinates is pro-
portional to

Qk����t� = bk���
� x��t� + mk���

� E��t� , �11�

as implied by Eq. �7�.
The frequency-dependent dielectric tensor may be found

according to the following sequence of definitions and sub-
stitutions. Let the following notation indicate the time depen-
dence of the electric field and other quantities:
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E�t� = �
−�

+� d�

2	
E���exp�− i�t� . �12�

From linear-response theory, statistical-mechanics consider-
ations, and appropriate notice of Bose statistics for phonons
in the harmonic approximation, the ratio of Ak������ to
Qk������ is given by

Ak������

Qk������
=

1 + nk� + nk��

� − �k� − �k�� + i

−

1 + nk� + nk��

� + �k� + �k�� + i


+
nk� − nk��

� + �k� − �k�� + i

−

nk� − nk��

� − �k� + �k�� + i

,

�13�

with average phonon number nk�= �exp
�k� / �kT��−1�−1.8 In
what follows, it is convenient to introduce the shorthand
Rk������= �2N�−1Ak������ /Qk������ as well as

z��� = Zef f − �
k���

�bk���
� �*Rk������mk���

� . �14�

This is a complex, frequency-dependent effective charge,
which is treated as a scalar in the present systems. Time-
reversal symmetry allows one to use

�bk���
� �*mk���

� = 
�b−k���
� �*m−k���

� �* �15�

and

Rk������ = R−k������ �16�

to retain only the real part of �bk���
� �*mk���

� .
The electric displacement D���� is related to E���� in a

way that depends on the above lattice-induced polarization
and the electronic polarization. We incorporate the electronic
polarization into the ir dielectric constant �����, which is
real and has very little frequency dependence over the spec-
tral range of interest, while ���� denotes the total dielectric
function. This gives

D���� = ����E���� = �����E���� + �4	/�0��z���x����

− �
k���

�mk���
� �*Rk������mk���

� E����	 . �17�

Using

x���� = 
���0
2 − �2� + S����−1z���E���� = X���z���E���� ,

�18�

with

S��� = �
k���

�bk���
� �*Rk���

���bk���
� , �19�

we find

���� = ����� + �4	/�0��z���X���z���

− �
k���

�mk���
� �*Rk������mk���

� 	 . �20�

In the diamond structure, one has Zef f =0, but anharmonicity
introduces a zone-center optical-phonon self-energy insertion
into the two-phonon propagator. This has a small effect on
optical spectra, which are dominated by second-order Born
charges, but strongly affects the Raman line shape.9 In other
compounds, one can have Zef f �0, and anharmonic coupling
of the ir-active phonon to phonons at ±k broadens the ab-
sorption peak10 and similarly affects the Raman line
shape,11,12 whereas higher-order Born charges can also play a
significant role.

ABSORPTION SPECTRUM CALCULATION

We calculated dynamical matrices following the methods
of Giannozzi et al.13 and Gonze and Lee.14 Perturbations to
wave functions in the presence of an electric field or atomic
displacements were calculated using an explicit sum of ad-
mixtures of the lowest several �eight� conduction bands and
implicit sum of admixtures of all remaining conduction
bands. In this way, solution of the Sternheimer equations
involved inversion of matrices with smaller effective condi-
tion numbers. Calculations were done in the plane-wave
pseudopotential approach15 in density-functional
calculations16 using the local-density approximation17 with
four valence electrons per atom. We used Hamann-Schlüter-
Chiang pseudopotentials18 with Vanderbilt cutoff functions.19

Parameters for scalar-relativistic20 pseudopotentials and lat-
tice constants are tabulated in Table I. It was especially im-
portant to use the theoretical lattice constant in Ge, because
using the experimental lattice constant tends to imply metal-
lic behavior.21,22 Our Ge lattice constant is slightly smaller
than that found by Moll et al.23 when they omitted the non-
linear core correction,24 as have we. A 16 Ry plane-wave
cutoff gave converged results for Si and Ge. Because the
local electron density always corresponded to the Wigner-
Seitz radius rs
1 in the solid, Ceperley-Alder correlation25

was used with the parametrization by Perdew and Zunger,26

whereas the Vosko-Wilk-Nusair parametrization27 was used
when generating the pseudopotentials.

To calculate the desired third derivatives, we used third-
order DFPT. This exploited the 2n+1 theorem for density-
functional theory as derived by Gonze and Vigneron4 as ex-
pressed in the modified form introduced by Debernardi and

TABLE I. Pseudopotential reference configurations, cutoff radii
�bohr�, with local angular-momentum channel indicated by “�loc�,”
and lattice constants a for Si and Ge.

Element Ref. config. rs, rp, rd

a
�nm�

Si 
Ne�3s23p0.53d0.5 1.4, 1.4, 1.3�loc� 0.5360

Ge 
Cu+�4s24p0.54d0.5 1.4�loc�, 1.4, 1.3 0.5524
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Baroni5 and Dal Corso and Mauri.6 Thus, the third deriva-
tives were mixed third derivatives with respect to perturba-
tions in the form of displacement along phonon coordinate at
k, displacement along a phonon coordinate at −k, and dis-
placement along an optical-phonon coordinate at the zone
center or macroscopic electric field.

By treating sublattice displacements and macroscopic
electric fields on an equal footing in the perturbation calcu-
lations, the zone-center dynamical matrix, Born effective-
charge tensors and the macroscopic polarizability were ob-
tained simultaneously as components of a 9�9 tensor at k
=0. We obtained third derivatives related to anharmonicity
and second-order Born charges simultaneously when these
derivatives involved phonon pairs at nonzero ±k. Although
beyond the scope of this present work, this implies the pos-
sibility of calculating the static, nonlinear susceptibility ��2�

and Raman tensor along the same lines as others.6,28,29 For
the derivatives of D�k� of interest in this work, we summed
the same group of terms as Debernardi,30 Deinzer et al.,31

and Deinzer and Strauch.7 Using time-reversal symmetry,
though, we explicitly rewrote their expressions to involve
only derivatives with respect to perturbations at the zone
center and wave vector k, and not wave vector −k �a device
which others may have used implicitly�.

We tested our programs according to the following crite-
ria 
where below we expand dynamical-matrix indices i , j
into sites � ,�� and coordinates �� ,���:

�1� calculation of D0�k� and phonon dispersion �see Figs.
1 and 2�,

�2� satisfaction of the sum rule ���D��,����k=0�=0,
�3� satisfaction of the sum rule ���Zef f

� ���=0,
�4� satisfaction of the sum rule ���D�k� /�sk=0,��=0,
�5� satisfaction of the rule valid in the diamond structure

�D�k=0� /�E�=0,
�6� anharmonic couplings similar to those obtained by

Vanderbilt et al.32 and Debernardi and Baroni,5

�7� zone-center optical-phonon self-energy similar to that
of Deinzer et al.,31

�8� null contribution of overtones to absorption spectra in
the diamond structure, and

�9� several appropriate symmetries of second- and third-
derivative tensors.

In agreement with Giannozzi et al.,13 we foresee the cor-
rect Born effective charges �zero in this case� only in the
limit of infinite Brillouin-zone sampling. This rule held for
first- and second-order Born-effective charges.

In Figs. 1 and 2, we compare phonon dispersions to
neutron-scattering data: in Si by Nilsson and Nelin33 and
Dolling,34 and in Ge by Nilsson and Nelin.35 Because the
calculated dispersion curves rely on the harmonic approxi-
mation, interpreting the present comparison warrants the cus-
tomary caveats.

In Ge, we found that the derivative �D�k� /�E� converged
very slowly with respect to zone sampling. This appeared to
result from a contribution in Brillouin-zone sums over elec-
tron states that arose in DFPT that was strongly peaked when
it involved states near the zone center. This is plausible be-
cause of the small, dipole-allowed local-density approxima-
tion band gap at � in Ge. Likewise, �D�k� /�E� for k near L
�especially along �� in Ge and near the X point in Si con-
verged relatively slowly with respect to Brillouin-zone sam-
pling.

To improve the effective convergence with respect to zone
sampling, we applied the following strategy. First, we calcu-
lated D0�k�, �D�k� /�x�, and �D�k� /�E� on regular n�n
�n grids in the Brillouin zone, which correspond to N=n3

total sampling points, including the zone center. �Symmetry
was used to unfold results obtained within the irreducible
Brillouin-zone wedge.� In Si, we used n=6, n=8, and n
=10. In Ge, we used n=6, n=8, n=10, and n=12. Such
calculations involved sampling electron states on the same
grids, so that k �modulo umklapps� was always a difference
vector between points on the grids.

Next, we carried out the discrete Fourier transform
to obtain the real-space derivatives, M�R ,N�
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FIG. 1. �Color online� Phonon dispersion in Si vs neutron-
scattering data.
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FIG. 2. �Color online� Phonon dispersion in Ge vs neutron-
scattering data.
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=N−1�k exp�ik ·R�M�k ,N�, where M�k ,N� is the
N-dependent D0�k�, �D�k� /�x�, or �D�k� /�E�. D0�k� and its
corresponding phonon dispersion appeared well converged
with respect to N at the largest value of N in each compound.
Thus, we constructed it from �D0�R ,N�� corresponding to
the largest value of N. However, we extrapolated its deriva-
tives to N=� using �M�R ,N�� at two values of N and the
hypothesis

M�R,�� 
 M�R,N� + M1�R�/N , �21�

or using �M�R ,N�� for three values of N and the hypothesis

M�R,�� 
 M�R,N� + M1�R�/N + M2�R�/N2, �22�

where M�R ,�� and �Mi�R�� uniquely satisfy Eq. �21� or Eq.
�22� simultaneously for all values of N used. To do this, we
retained �M�R ,N�� only for values of R within the boundary
of the smallest n�n�n supercell. From �M�R ,���
��M�R��, we constructed an interpolated dynamical matrix
or its derivatives at any wave vector along the lines of Gian-
nozzi et al.13 �The extrapolation based on three values may
be considered especially robust, because it can correct any
combination of linear and quadratic convergence with re-
spect to 1/N.�

The above extrapolations do not reflect the asymptotic
behavior expected in the large-N limit. Instead, we selected
them to counter the convergence difficulties mentioned pre-
viously and observed apparent behavior over the germane
range of N. We obtained consistent results from several ex-
trapolations involving two or three values of N. This sug-
gests that our extrapolations capture the main corrections for
using the present range of values of N and provided a robust
method of convergence acceleration. Based on cursory
analysis of the integrands involved in Brillouin-zone integra-
tion, we conjecture that the slow convergence results from a
sharply peaked contribution to an integration over the Bril-
louin zone arising at a high-symmetry point that is always
included on the grid and weighted in a manner proportional
to 1/N.

Our final results for the derivatives were extrapolated
based on the three largest values of N in each semiconductor.
We estimate convergence of results for the absorption spec-
trum to be better than 5% of the absorption coefficient, and
convergence of the phonon self-energy damping to be even
better. Finally, we calculated self-energies and absorption
spectra using 200�200�200 Brillouin-zone sampling of
the interpolated dynamical matrix and its derivatives, which
proved to be well converged.

RESULTS AND COMPARISON TO EXPERIMENT

Figures 3 and 4 show the calculated absorption spectra for
Si and Ge compared to measurements by Ikezawa and
Ishigame36 and Johnson37 in Si and Ikezawa and Nanba38

and Fray et al.39 in Ge. The designation “low temperature,”
which applies to the lower curve�s� in the top and bottom of
each figure, includes a theoretical spectrum with T=6 K and
experimental spectra with T�20 K, the latter of which
should be similar over that range. Likewise, “room tempera-

ture,” which applies to the upper curve�s� in the top and
bottom of each figure, includes a theoretical spectrum with
T=293 K and experimental spectra with 292K�T�295 K,
the latter of which should be similar over that range. The
spectra are plotted vertically offset, not to disguise the dif-
ferences between theory and experiment, but to ease com-
parison of their corresponding features. Calculated spectra
presumably lack some broadening, because of other anhar-
monicity that we ignore, especially around the strongest fea-
tures near 610 cm−1 in Si and 350 cm−1 in Ge.

The calculations predict shapes and approximate positions
of many features well, and their heights are reasonable. The
theoretical spectra lack three-phonon features, particularly
around and above 2�TO, where �TO is the zone-center
optical-phonon frequency �517 cm−1 in Si and 302 cm−1 in
Ge as measured�. Also, critical-point features in Si arising
from difference bands, predicted to be at 330 and 389 cm−1

�but observed at 315 and 374 cm−1�, are far too strong.
Critical-point analysis �described in the next section� sug-
gests that these features arise from critical points near X and
U /K for the lower peak and L for the higher peak. Perhaps
the calculation’s exaggerated flattening of the transverse
acoustic phonon dispersion near those points contributes to
their overestimated strength.

CRITICAL-POINT ASSIGNMENT OF SPECTRAL
FEATURES

We applied critical-point analysis to identify branches and
wave vectors of phonon combinations and differences giving
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FIG. 3. �Color online� Absorption spectra for Si, taken from
experimental references and calculated, at temperature discussed in
the text. The top half of the figure �with an offset base line� shows
experimental spectra, with the blue, higher family of curves corre-
sponding to room temperature and the red, lower family of curves
corresponding to low temperature. The bottom half of the figure is
the same, but for theoretical spectra.
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rise to several spectral features. While the calculations do not
improve on the accuracy of measurements, critical-point
analysis can complement measurements and help one obtain
more information from them. Critical-point analysis is dis-
cussed in several references cited below, and described in
great detail in Birman’s papers40,41 and book.2 In the follow-
ing critical-point analysis, we seek to assign discontinuities
of slope of the spectra, resulting from local extrema or saddle
points of �k�±�k��. Critical points help one determine fre-
quency sums and differences at discrete places in the Bril-
louin zone, although the absorption spectra are continua. Be-
cause a sum or difference is stationary with respect to small
changes in k at a critical point, a critical-point energy is
close to a frequency sum or difference in a region of the
Brillouin zone, and identifying the point’s precise location
can be subtle. In particular, truncation of �D0�R�� with re-
spect to R could induce Gibbs’ oscillations that perturb the
crystal momenta of theoretical critical points without
strongly affecting their spectral signature.

At a given k, frequency sums and differences for two
branches � and �� contribute to the absorption spectrum with
matrix elements equal except for thermal factors. However,
critical points for the sum and difference can occur at differ-
ent k. High-frequency sums typically exhibit small tempera-
ture dependence at low T, and only sums occur at very low T
because of phonon oscillator Bose statistics. While special-
purpose calculations of different portions of the absorption
spectrum can isolate sum and difference contributions, the
temperature dependence of measured spectra helps differen-

tiate them as well. For all of these reasons, we have carried
out separate critical-point analyses for combinations and dif-
ferences.

To help identify critical points, we introduce the quantities

C���+��� + C���−��� = − �4	/�0��
k

�mk���
� �*Rk������mk���

� ,

�23�

such that C���+��� includes terms with frequency sums and
C���−��� includes terms with frequency differences. We note

Im ���� 
 �
���s

Im C���s��� . �24�

Here, s indicates a sign. Deinzer and Strauch7 also consider
such decomposition, whereas others have often used the
�thermally weighted� two-phonon sum- and difference-
frequency densities of states contributing to Im �kRk������
in critical-point analysis without matrix elements. Plotting
Im C���s��� on the same scale as Im ���� helps establish
more rigorously how strongly various combinations and dif-
ferences couple to light and the energies at which branches
cross in various regions of the Brillouin zone. For instance,
the “fifth” branch can be a “transverse optical” or “longitu-
dinal optical” phonon, depending on k. Rather than insisting
on maintaining the latter imprecise labels, we merely note
the numerical values of a probable k, �, and �� for the vari-
ous critical points, so that degeneracies and symmetries can
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imply other equally valid designations. We restrict this en-
deavor to strong, isolated spectral features, and especially
�though not entirely� those with observed counterparts. It
would be surprising if future high-resolution measurements
could confirm predicted critical points not yet detected ex-
perimentally. The relative ease of absorption measurements
in these spectral regions for Si and Ge should, however, mo-
tivate continual examination of such excellent crystals.

If the above analysis identifies two branches as candidates
contributing to a given critical-point feature, a scatter plot of
G���±�k�= ��k��k�±�k����

2 vs �k�±�k�� for all k helps re-
veal the true critical points. We sampled G���±�k� on a three-
dimensional wave-vector grid with spacings of 0.005 bohr−1

along each Cartesian direction, and evaluated it using first-
order perturbation theory by differentiating D0�k� numeri-
cally. This prevented spurious effects from branch degenera-
cies or crossings. We did not carry out second-derivative
analysis of the critical points to completion �to distinguish
maxima, minima, and saddle points�, but our partial analysis
suggests that it would be wise to use second-order perturba-
tion theory to evaluate second derivatives in order to prevent
similar spurious effects.

Isolation of results with vanishing G���±�k� confirms pre-
vious insight into the energy and location of critical points in

the irreducible Brillouin-zone wedge.37 Three-dimensional
rendering of their locations suggests that critical points in Si
and Ge are disproportionately located, with increasing like-
lihood, near the �1� faces of, �2� high-symmetry lines �in-
cluding LW� and edges of, and �3� vertices of the wedge.
This is fitting, because such entities can lie within the corre-
sponding number of intersecting reflection planes. In dia-
mond and certain other structures, this is tempered by the
structure factor and concomitant forbidden reflections.

Figure 5 illustrates critical-point analysis for sum frequen-
cies involving branches 3 and 4 in Si. Between 700 and
850 cm−1, this combination couples to light over a portion of
the Brillouin zone, as the comparison of �2���, 2 Im C34+���,
and �34+��� indicates. Analysis of G34+�k� indicates three
theoretical critical points suggested by measured spectra, in-
cluding a saddle point at or near W �718 cm−1�, a saddle
point between X and L on the surface of the wedge
�743 cm−1�, and a local maximum at or near L �798 cm−1�.
�Note that the signed distribution of the relative variation of
�k�±�k�� near a critical point can indicate an extremum vs
saddle point. Second-derivative analysis would be the pre-
ferred method for a definitive indication.� Experimentally,
the features are at slightly different energies and have
slightly different heights from those calculated, even after
allowing for three-phonon effects.

Figures 6 and 7 show transposed theoretical spectra with
many critical-point features assigned using the above
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FIG. 6. �Color online� Assignments of critical-point features in
Si as discussed in text. The hashes on the right side indicate posi-
tions of closely spaced unassigned points.
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FIG. 7. �Color online� Assignments of critical-point features in
Ge as discussed in text. The hashes on the right side indicate posi-
tions of closely spaced unassigned points.
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scheme. The points chosen for assignment are those that ap-
pear most identifiable in observed spectra. In particular, we
leave most critical-point features over two ranges unas-
signed: 565–710 cm−1 in Si and 310–390 cm−1 in Ge. In
these ranges, critical points are closely spaced and/or lack
individual, identifiable experimental counterparts, but their
energies are indicated by dashes on the right side of each
figure. Several other critical points that may appear visible
also remain unassigned, either because of a lack of a clear
experimental counterpart or difficulty in making a likely as-
signment. For the above two ranges, we merely note that
they tend to emphasize combinations of optic and acoustic
phonons near the zone boundary �where the acoustic
branches tend to flatten�.

For the assigned critical points, the labeling includes the
theoretical critical-point wave number, 1 /��cm�, approxi-
mate Cartesian location in units of 2	 /a, where a is the
lattice constant, a possible branch combination or difference,
and a qualitative description of a familiar geometrical entity
�e.g., X� near the critical point. An entity can be a point, line
segment �indicated by its end points�, or a polygonal facet of
the irreducible wedge �indicated by its vertices�. We separate
equivalent features with a solidus. In Si and Ge, most of the
critical points appear to lie on or within 0.03 bohr−1 of the
wedge surface.

Figures 8 and 9 show the locations of a larger set of
�theoretically� ir-active critical points on or projected onto
the nearest surface of the wedge. In the top part of each
figure, the location of each labeled critical point is indicated
by showing a scatter of points with G���±�k� below some
value that compromises localization and visualization of

constant-G���±�k� surfaces in the figure. �The locations are
already indicated in Figs. 6 and 7.� In the bottom of each
figure, approximate locations of all other critical points cal-
culated to have ir activity are indicated. The figures could be
cut and folded into the shape of the wedge surface to illus-
trate the locations in three dimensions. In Si and Ge, many

TABLE II. Critical-point assignments in past work �this work�
for Si.

Reference
1/�

�cm−1� Assignment

II 375±10 �389.4� TO−TA,L��5−�2 ,L�
313±9 �329.2� TO−TA,X��5−�1 ,X�

KBW 467 �473.0� �3+�1 ,LKW�v3+v1 ,LU /LK�
520 �see text� �1+�4 ,LKW �see text�
711 �717.8� �3+�4 , 
0.94K��4+�3 ,W�
738 �742.9� v3+�4 ,K��4+�3 ,�XUL ,near XL�
818 �817.4� �3+�5 ,K�v6+v3 ,LW�
908 �919.5� �4+�6 ,L��6+�4 ,L�

J 740 �742.9� LO+LA,−��4+�3 ,�XUL ,near XL�

JL 917 �919.5� TO+LO,L��6+�4 ,L�
800 �798.5� LO+LA,L��4+�3 ,L�

BN 965 �952.0� TO+TO,W��6+�5 ,W�
902 �919.5� TO+LO,L��6+�4 ,L�
780 �798.5� LO+LA,L��4+�3 ,L�
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FIG. 8. �Color online� For Si: �a� location of assigned critical
points projected onto the surface of the irreducible Brillouin-zone
wedge and �b� location of unassigned critical points projected onto
the surface of the irreducible Brillouin-zone wedge.
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critical points are on the line segment LW, which is the mir-
ror axis of the LUWK kite. This justifies featuring LW in
phonon and band dispersion plots.

Several papers present critical-point analysis for two-
phonon features in Si and Ge: the works by Johnson,37

Johnson and Loudon,42 Balkanski and Nusimovici,43 Fray et
al.,39 Kress, et al.,44 and Ikezawa and Ishigame,36 indicated
by acronyms J, JL, BN, FJQW, KBW, and II in Tables II and
III that are discussed below. Johnson’s paper contains a fairly
thorough review of aspects of critical-point analysis in earlier
work. Many of these works focus on high-symmetry points
or use the technique of plotting sum and difference frequen-
cies on line segments at the intersection of two or more mir-
ror planes in order to locate turning points. As an example, in
this work, the 435.5 cm−1 feature in Ge and 742.9 cm−1 fea-
ture in Si are both clearly visible in Figs. 1 and 2 when one
considers �3+�4 on LX.

In Tables II and III, we note the points of agreement or
near agreement with others’ work. We indicate the previous
work, wave numbers �ours in parentheses�, and stated aspects
of the assignments �ours in parentheses�. In some cases, de-
generacy can resolve apparent branch-label discrepancies.
Also, slight discrepancy regarding location is suggestive of
two-phonon dispersion topologies that are similar to ours on
a coarse scale yet different on a fine scale. There are many
disagreements and features assigned by others that we have
not attempted to assign, for which we refer readers to those
references. Conversely, to our knowledge the present work
features a relatively extensive assignment of difference fea-
tures. The fact that several features assigned by others are
not assigned here reiterates our fear that further assignments
based on our results could be dubious. �We also caution that,
because assignments are aided by theoretical input, it is pos-
sible that the agreement of our assignment with an earlier
work occasionally involves similar defects in two indepen-
dent calculations.�

A remarkably detailed agreement with Johnson for Si is
found on p. 271 of that article, which reads as “The mini-
mum at 80 mm−1 on the high energy side of the band at
74 mm−1 attributed to longitudinal optic and acoustic
phonons may be due to the fact that this combination is
forbidden near the zone boundary in the 100 direction.”
Johnson’s conjecture is precisely in keeping with our critical-
point analysis and the scenario detailed in Figs. 1, 5, and 6.
From our work, it appears that �3+�4 exceeds 800 cm−1

chiefly in the region described by Johnson, where the pairs’
coupling to light vanishes. A corresponding scenario occurs
in Ge. Deinzer and Strauch also discuss the features resulting
from the combination �3+�4 in both materials.

The critical point at 520 cm−1 reported by Kress et al. in
Si also appears in the spectra of Ikezawa and Ishigame and is
suggested in other work. While we did not find this to be a
critical point, the combinations �1+�3 and �2+�3 do appear
to have a near leveling of the dispersion near W and at a
similar energy, suggesting that a potential critical point may
possess spurious incipiency in our results. Nonetheless, there
is nearly a kink at about the right wave number in Fig. 3, so
the signature is still apparent in our spectrum. Also, because
of the similarity of this energy to that of the zone-center TO
phonon, we also confirmed robustness of this feature in our
spectra with respect to including or omitting anharmonic
coupling in the calculation.

CONCLUDING REMARKS

In summary, we have used the 2n+1 theorem within
third-order density-functional perturbation theory to compute
coupling of two-phonon oscillators to a macroscopic electric
field, including some effects because of anharmonic coupling
to zone-center phonons. This leads to a reasonable account-
ing of the terahertz and/or far-ir absorption spectra of Si and
Ge. Using critical-point analysis, we have been able to iden-
tify branches and crystal momenta for the best resolved,
prominent critical-point features in both compounds. The re-
sults suggest that similar analysis could be profitable in other
materials. At present, we are considering studying polar ma-
terials, where zone-center ir-active phonons can also couple
to the light and couple to phonon pairs through anharmonic-
ity. In principle, this allows for interference between such an
indirect channel for light coupling to phonon pairs and the
direct channel central to the present work.
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TABLE III. Critical-point assignments in past work �this work�
for Ge.

Reference
1/�

�cm−1� Assignment

KBW 265 �272.7,276.1� �1+�3 ,LKW��3+�1 ,LU /LK ,LW�
311 �321.7� v2+v3 ,W��4+�1 ,XW near W�
396 �396.4� �2+�5 ,near LW��5+�2 ,near LW�
417 �420.3,420.5� �4+�3 ,near W��4+�3 ,at/near W�
475 �475.5� �5+�3 ,LKW��5+�3 ,LW�
505a �511.2� �4+�5 ,�XWK��6+�4 ,U /K�

FJQW 563 �562.9� TO+TO,−��6+�5 ,W�
423 �420.3,420.5� LO+LA,−��4+�3 ,at/near W�
315 �325.2� LO+TA,−��4+�1 ,LW�

JL 460 �473.6� LO+LA,L�v4+v3 ,L�
280b �286.1� LA+TA,L��3+�2 ,L�

aStated to involve a “very flat region” ranging from �0.625,0.625,0�
to �1,0.25,0�.
bFrom neutron scattering.
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