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Dynamical diffraction patterns were calculated for 25 nm slabs of silicon with �001�, �111�, and �110� faces
for a 120 keV electron beam. The calculation used the mixed dynamical form factor in the dielectric formu-
lation. Dielectric matrices with wave vector and frequency dependence were calculated within the local density
approximation using the random phase approximation. The energy losses, 10–25 eV, span the plasmon peak.
Near the zone axes, the results show the preservation of elastic contrast and both excess and deficit Kikuchi
lines.
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I. INTRODUCTION

A fast electron passing through a solid is most likely to
lose energy to plasmons. The energy loss is proportional to
−Im�1 /��q� ,���, which is often determined from optical
measurements; this function has a prominent plasmon peak
for nearly all materials. Here, ��q� ,�� is the complex dielec-
tric function as a function of wave vector q� and frequency �.
The phenomenon of diffraction by fast electrons in solids is,
at least, as well known: the Davisson-Germer and Thomson-
Reid experiments demonstrated that electrons are waves be-
cause they diffract from surfaces. The experiments were
given a basis within quantum mechanics by Bethe,1 which
played a significant historical role in the acceptance of the
notion that electrons were waves.

Both energy loss and diffraction may occur simulta-
neously. The preservation of diffraction contrast in the pres-
ence of electron energy loss was shown theoretically by
Howie.2 The theory was cast in terms of the mixed dynami-
cal form factor �MDFF� by Rose3 and later reviewed by Kohl
and Rose,4 with further development and calculations by Du-
darev et al.,5 by Schattschneider et al.,6 and by Allen et al.7,8

Recently, the MDFF was used to observe magnetic moments
with non-spin-polarized electrons by considering spin-orbit
coupling.9

Although the dielectric formulation of the MDFF is not
new, there does not appear to have been a calculation of
dynamical diffraction in the plasmon regime. Such a calcu-
lation is of interest from a fundamental point of view be-
cause it is necessary to consider both the wave function of
the fast electron and the band structure of the solid through
its dielectric function. Previous studies have tended to con-
sider the solid through atom-based calculations, particularly
for core levels. The local-field corrections to the dielectric
matrix in electron energy loss in the plasmon regime have
been calculated and observed for TiO2, but without consid-
ering diffraction.10

For an application, consider nanotomography. To obtain
chemical sensitivity, it is natural to consider electron energy
loss spectra. Moreover, it is natural to consider energy loss in
the plasmon regime for thin samples because the interaction
length is less than for other energy losses. In small samples,
diffraction is a key issue. One response is to recognize the
wave mechanical nature of the signals and to perform phase

retrieval. Using the oversampling method, three-dimensional
phases with atomic resolution have been recovered in elec-
tron microscopy.11 Another avenue is to use analysis methods
based on incoherent illumination. If the samples are amor-
phous, as may frequently be achieved in biology, the sample
itself ensures that the signals are incoherent. In materials
science, the samples often contain crystallites. Sampling
away from conditions of strong diffraction may be sufficient
in this case. A recent example using electron energy loss in
the plasmon regime is the tomographic reconstruction of a
Si /SiO2 system.12 A final strategy is to use illumination con-
ditions which are sufficiently incoherent. Recently, Levine
and Dunstan proposed tapered solid-cone illumination which
leads to a mutual coherence function considerably more lo-
calized than hollow-cone illumination.13 Tomography based
on projections may then be used so long as the number of
voxels through the sample is smaller than the reciprocal of
the full cone angle. In this work, I will generate some dif-
fraction patterns with energy loss in the plasmon regime. It is
part of an ongoing program to understand how such patterns
may be used—possibly with incoherent averaging, possibly
with phase retrieval—to obtain tomographic reconstructions
of nanoscale objects.

II. THEORY AND COMPUTATION

I have implemented the dielectric formulation of the
theory as given by Dudarev et al.5,14 Their formulation, fol-
lowing Kohl and Rose,4 assumes that the induced electron
density in the solid is related to the induced scalar potential
by the Coulomb equation, which implies that the random
phase approximation �RPA� dielectric function should be
used. In solid-state physics, such an assumption is known as
the RPA including local-field corrections. The theory was
introduced by Adler and Wiser.15,16 A considerable body of
work exists on more sophisticated dielectric functions, in-
cluding exchange-correlation corrections,17 self-energy cor-
rections in the form of the scissors operator,18 the Bethe-
Salpeter equation,19 and long-range corrections to adiabatic
time-dependent local-density-functional theory.20 Recently,
several of these theories have been applied to newly acquired
data of the dynamic form factor for silicon in the plasmon
regime from inelastic x-ray scattering.21 To couple a more
sophisticated dielectric function into the formalism would
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require some reformulation. The use of such a dielectric
function may result in changes on the order of a factor of 2,
but the qualitative features will almost surely be captured
within the existing theory.

The principal elements of the theory are as follows: the
fast electron is treated within single-particle nonrelativistic
quantum mechanics. The sample is treated as a quantum me-
chanical system within band theory. Their interaction is the
Coulomb interaction, neglecting exchange effects �valid if
the fast electron energy is above about 1 keV� and any mag-
netic or relativistic effects �valid below about 200 keV�.
There is single scattering event, so the theory is limited to
slabs thin compared to the mean free path for a volume plas-
mon interaction which is greater than 100 nm for 120 keV
electrons in silicon. Thermal diffuse scattering is neglected.

The differential inelastic cross section is given by Eq.
�DPW 21� of Ref. 5. With a slight change of notation, it is

d3�

d�d�
=

k

4�2k0
� dr�dr���k�k�0

�0� �r���
k�k�0

�0�*�r���s̄�r��,r�,�� . �1�

The outgoing wave vector is k�, the incoming wave vector is
k�0, d� is the differential solid angle specifying the direction
of the outgoing wave vector, and � is the energy loss. I adopt
atomic units �m=�=e=1; in this system, the unit of length is
the Bohr radius and the unit of energy is the Hartree�. The
exchange charge is

�k�k�0

�0� �r�� = 	
k�
�0�*�r��	k�0

�0��r�� . �2�

The wave function 	
k�0

�0��r�� is a Bloch wave. It is discussed

later.
The function s̄�r�� ,r� ,�� is the real-space MDFF. Equation

�DPW 7� of Ref. 5 relates it to the k-space MDFF, written
here as

S�q� ,q��,�� =
q2q�2

�4��2 � dr�dr��e−iq� ·r�+iq��·r��s̄�r�,r��,�� �3�

with atomic units; in atomic units, the electric constant 
0,
found in Eq. �DPW 7� of Ref. 5, equals �4��−1. The connec-
tion to solid-state physics is given by Eq. �DPW 30� of Ref.
5, written here as

S�q� ,q��,�� =
i

8�2 �q2�−1�q� ,q��,�� − q�2�−1�q��,q� ,��*� . �4�

The zero-temperature case is appropriate because we con-
sider the excitation of plasmons. Phonons are not considered
except that the static lattice potential is reduced by the
Debye-Waller factor of Si at 300 K.22 In the case of a crystal,
the dielectric matrix � and, hence, the MDFF are nonzero

only if q� −q��=G� for some reciprocal lattice vector G� . In this
case, the inverse dielectric function reduces to the form
�

G� G� �

−1 �q� ,��, with q� in the first Brillouin zone. By analogy, we
may write the nonzero terms of the reciprocal space mixed-
dynamical form factor as SG� G� ��q� ,��. Equation �1� may be
recast as

d3�

d�d�
= 4

k

k0
�
G� G� �

�G�q��

�q� + G� �2
SG� G� ��q� ,��

�
G� �

* �q��

�q� + G� ��2
�5�

using Parseval’s theorem and periodicity. Equation �5� is
evaluated in the code for a grid of q� which spans the first
Brillouin zone.

In the first stage of the calculation, a self-consistent local-
density approximation �LDA� potential using pseudopoten-
tials in a plane wave basis was found using a code described
in Ref. 23, taking the silicon lattice constant a to be 543 pm,
the energy cutoff to be 16 Ry, and the k-point mesh to be
4�4�4. Next, the first 200 bands were determined at each
of the 512 k points in the Brillouin zone. To ensure that no
degenerate manifold was partially included, band 200 and
any bands degenerate with it were excluded. Hence, 197–199
bands were retained. For each of the 8�8 possible trans-
verse momentum transfers within the projected Brillouin
zone, 32 longitudinal momentum transfers were calculated in
the range �

2�
a Cn̂, where C=2, �3, or �2 for the �001�, �111�,

and �110� cases, respectively. Sets of 512 k points for the
four valence bands were computed with the meshes offset in
q� for a total of 222 or about 4�106 wave functions. The
valence bands were offset by −q� rather than offsetting the
conduction bands by q� because there are many fewer valence
bands.

Given the offset wave functions, the dielectric matrix was
formed for 8�8�32=2048 value of q� . The dielectric matrix
rank was chosen to be 462–464 depending on the value of q� ,
which is about the same size as those considered to be fully
converged by Hybertsen and Louie.17 The matrix was evalu-
ated using a sum-over-states method. Following the imple-
mentation in ABINIT,24 Fourier transforms were used to

evaluate the matrix elements �nk� −q� 	eiG� ·r�	mk�
 for all G� at
once. Specifically, the code first makes the product �nk�

−q� 	r�
�r� 	mk�
, where �r� 	mk�
 is the periodic part of an unoc-
cupied wave function in real space at a point k� in the Bril-
louin zone and �r� 	nk� −q�
 is the corresponding function of an
occupied state at a point k� −q� . Then, the product is Fourier
transformed to reciprocal space to make the matrix elements.
The same technique is also used to make �

k�k�0

�0� �r�� from the

Bloch functions. The imaginary part was chosen to be
0.1 eV, which is appropriate given the density of k points in
the Brillouin zone. Results for individual matrix elements of

G� G� ��q�� agreed with Hybertsen and Louie, Engel and Farid,25

and Shirley26 to about 2% for q� at the 
 point and the X point
of the Brillouin zone.

Given the dielectric matrices, the MDFF was determined.
In detail, the relevant momentum transfer includes the longi-
tudinal change at the interface as determined by the dynami-
cal diffraction equations as well as by the specified trans-
verse momentum change. Because it was necessary to know
the MDFF at a large number of closely related values, one-
dimensional interpolation over the longitudinal momentum
was performed for each element of �.

Next, the Bloch waves �i.e., the wave functions for the
fast electron� were determined. These functions are widely
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used for elastic scattering.14 It is sufficient to solve a one-
electron Schrödinger equation because the fast electron does
not have a significant exchange interaction with the medium.
The wave functions satisfy the dynamic diffraction equations
given initially by Bethe,1 reviewed by Humphreys,27 and also
presented by Spence and Zuo28 as well as by Spence29 and
Peng et al.14 The principal steps in the derivation are the
following: begin with a one-electron Schrodinger equation
for the fast electron in a plane wave basis. The potential seen
by the fast electron is taken to be the Coulomb potential
arising from the charge of the nuclei and the electrons of the
solid. The equation supports both forward scattering and
backscattering solutions. However, backscattering is ne-
glected, which is appropriate for transmission studies, and so
the rank of the equations is halved. In band theory, the stan-
dard procedure is to obtain an eigenvalue equation in the
energy for fixed crystal momentum k�. Here, the boundary
conditions are for fixed energy and fixed component of the
incident �or exiting� crystal momentum parallel to the sur-
face. By invoking the small angle approximation,29 a renor-
malization term may be neglected, leading to an eigenvalue
equation for the momentum transfer normal to the surface.
The equation used in the program is

�
G� �

�1

2
k0

2�G� G� � + V�G� − G� ���C
G� �

�j�
= k0��j�C

G�
�j�

, �6�

which differs negligibly from Eq. �5.38b� of Ref. 29. In Eq.
�6�, k0 is the magnitude of the wave vector of the incident
electron outside the sample.

Writing the surface normal as n̂, the wave vector of a
Bloch wave in the crystal is k� +� jn̂. The Bloch waves are of
the form

	k��r�;G� 0� = eik�·r��
jG�

CG� 0je
−i�jtC

jG�
−1

eiG� ·r�, �7�

where t=0 at the entrance face, t is the thickness at the exit
face, and C is an orthogonal matrix, which are the eigenvec-
tors of the dynamical diffraction equation. For the incident
wave, k� =k�0 and G0=0 is selected. For the outgoing waves

undergoing elastic scattering, the various G� 0 represent the
diffraction spots. For inelastic scattering, this is still true with
the proviso that the outgoing wave vector differs from the
incident wave vector by q� and, possibly, a reciprocal lattice

vector as well, i.e., k�0+q� =k� +G� 0.
The potential seen by the fast electron was taken to be a

sum of atomic Hartree-Fock potentials calculated by Shirley
and arranged on the crystal lattice. These were fitted to the
functional form

V�q� = −
4�Z

1 + q2 + �
n=1

11

an exp�− 0.025�1.8�nq2� , �8�

where Z=14 is the atomic number, an are in Hartree, and q is
in inverse Bohr radii. The coefficients an are given in Table I.
This form of the fit was influenced by the work of Doyle and
Turner30 and Peng et al.22 as well as the notion of even-
tempered Gaussians used in quantum chemistry.31 In the

limit of large q, the fit reduces to the unscreened nuclear
potential. The mean inner atomic potential was 16.7 eV,
compared to 12.2–13.8 eV reported earlier based on density-
functional calculations.32 The exchange charge was deter-
mined from the fast electron wave functions using Eq. �2�.

The Bloch states were represented by a basis of 113 plane
waves �or “beams”� about its central value. This value is
sufficient to represent diffraction out to about three primitive
lattice vectors. Spot checks with 59 plane waves revealed
little difference in the common portion. The same energy is
used for the various outgoing states regardless of their en-
ergy. For the energies used in this study, this represents the
neglect of the difference between an electron with a kinetic
energy of 120.000 keV and that of an electron with
119.975 keV.

Finally, the inelastic cross section was obtained by inte-
grating the exchange charge and the MDFF according to Eq.
�5�. The calculation was rerun for a set of 64 wave vectors
throughout the projected first Brillouin zone. The diffracted
wave vectors were accumulated at the same time. The code
computes cross sections for several incident angles using the
same mixed-dynamical form factor up to the final interpola-
tion.

III. RESULTS

The calculations presented in this paper are for the inelas-
tic differential cross section of crystalline silicon slabs 25 nm
thick with parallel �001�, �111�, or �110� faces. The fast elec-
tron energy is chosen to be 120 keV, a common energy for
electron microscopy, but one which is still well in the non-
relativistic regime.

The differential cross section d3� /d�d� �k̂in ;E , n̂ , t� is a
five-dimensional function which exists for each value of the
primary beam energy E, crystal face normal n̂, and thickness
t. I can only present a tiny fraction of the potential cases
here, although hopefully enough to understand the essential
features of the results. Additional examples are available.33

The analogous function in elastic scattering d2� /d�

�k̂in ; n̂ , t� is known as a Kikuchi map.
In Fig. 1, I present optical data34 for −Im�1 /
�q� 
0,���

vs the present calculation for the seven frequencies which

TABLE I. Coefficients an �in Hartrees� of the fit to the atomic
Hartree-Fock potential used in Eq. �8�.

1 0.06100684636710776

2 0.3398684920695597

3 11.120934703306748

4 18.200208894138253

5 24.350051615531278

6 10.766050998069177

7 16.8737604880308

8 2.7542799447703095

9 10.23543772722582

10 −2.8423939740790876

11 2.3456589378063715
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were used in this study, namely, 10–25 eV in steps of
2.5 eV. The RPA on LDA calculation gives a good account
of the plasmon peak. The full width of the data at half-
maximum is 3.4 eV, so 2.5 eV is a reasonable sampling in-
terval.

In Fig. 2, −Im�1 /
�q� ,��� is presented for the particular
value of q=0.8a0

−1 along �111�. Weissker et al. performed an
x-ray scattering experiment as well as a RPA calculation.21

For the present calculation, two values for the full width at
half-maximum parameter 
 are used, namely, 0.1 and
1.1 eV. The former value was used throughout the rest of the
study. The latter value was used by Ref. 21. There are other
differences between the present calculation and that of Ref.

21. For example, 512 vs 2048 k points, 113 vs 51–89 G� for

the dielectric matrix, 464–483 vs 89–259 G� vectors for the
wave function, and 197–199 vs 70–200 bands for the present
calculation vs that of Ref. 21, respectively. The results sug-
gest that the present calculation could be subject to correc-

tions of up to a factor of 2 if a fully converged numerical
result were obtained or if a more advanced dielectric func-
tion were used. However, qualitative features are given cor-
rectly, including, in particular, the q�-dependent position of
the plasmon peak.

In Fig. 3, I present the differential cross section for the
�001� surface, with the beam at and near the surface normal.
The preservation of diffraction contrast2 relative to elastic
scattering is seen. The diffraction spots are always commen-
surate with the lattice. The angular scale is given by the ratio
of the projected reciprocal lattice vector to the incident wave
vector. For the �001� faces, the former is 23.15 nm−1 vs
1774 nm−1 for a fast electron energy of 120 keV, so the char-
acteristic angle is 13 mrad. The incident wave vector must
change by this amount for there to be a large change in the
diffraction pattern. Calculations performed with steps of
0.2 mrad showed minimal variation.33 For the �111� and
�110� faces, the characteristic angle is smaller by a factor of
�3 /2 and 1 /�2, respectively.

The diffraction spots are strongest at the peak of the plas-
mon near 17.5 eV, and diminish for both higher and lower
energies. The second prominent feature is the presence of
lines which shift relative to the lattice as the incident angle is
varied. These lines are known as Kikuchi lines and are usu-
ally studied in the context of thermal diffuse scattering. The
intensity of the Kikuchi lines peaks near 22.5 eV, suggesting
that the dispersion of the plasmon35 plays a role. The additive
Kikuchi lines are more common, but certain diffraction pat-
terns presented here contain Kikuchi deficit lines. Examples
are the highest two energy losses �top two rows� for an inci-
dent wave vector in the �0.0066, 0, 1� direction �column 3 of
Fig. 3�.

Wang has also calculated the diffraction pattern for a
�100� silicon slab 54.3 nm thick, with an electron at normal
incidence and an electron energy loss, using a semiempirical
model for the dielectric function and the multislice method.36

The Kikuchi lines appearing between the elastic diffraction
spots are also a feature of his calculation, as shown in Fig.
10�a� of Ref. 36, which is similar to the case of a 15 eV
energy loss in the first column of Fig. 3.

The features described above are characteristic of both the
�001�-cut slab and �111�-cut slab �shown in Fig. 4�; namely,
the preservation of diffraction contrast, the additive and sub-
tractive Kikuchi lines, the peak of the elastic-preserving scat-
tering at a lower energy than the peak intensity of the Kiku-
chi lines. The images at normal incidence or 3 mrad for a 15
or 17.5 eV loss are similar to the experimental image pre-
sented in Fig. 8�c� of Ref. 37 for a 16 eV loss through a
50 nm slab of �111�-cut silicon.

The effect of the off-diagonal terms of the MDFF on the
cross section is 1% or less. The Frobenius norm of the diag-
onal elements of the matrices SG� G� ��q�� for a given q� is from
70% to 84% of the Frobenius norm of the full matrix. Hence,
it is somewhat surprising that the effect on the cross section
is not larger. However, Howie2 determined that elastic con-
trast should be preserved in plasmon energy loss, which is
consistent with the present calculation. Presumably for more
complicated unit cells, the local-field effects will be larger
and the off-diagonal terms of the MDFF will become more
prominent. The off-diagonal terms in the dielectric matrix
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Γ=0.1 eV

FIG. 1. The electron energy loss function −Im�1 /
�q� ,��� for
q� 
0 from an optical experiment �Ref. 34� and the present calcula-
tion at the seven frequencies used in the paper.
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FIG. 2. The electron energy loss function −Im�1 /
�q� ,��� for
q� =0.8a0

−1 along the �111� direction, from an x-ray scattering experi-
ment �Ref. 21�, a RPA calculation �Ref. 21�, and the present calcu-
lation at the seven frequencies used in the paper, with two values
for the full width at half-maximum 
. The value of 0.1 eV was used
throughout this work. The value of 1.1 eV matches the calculation
of Ref. 21.
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G� G� ��q�� �i.e., local-field effects� are included even in the di-
agonal elements of the MDFF via 


G� G� �

−1 �q��, similar to the
calculations of Vast et al.10 and Weissker et al.21

Note that Figs. 3 and 4 are centered on the incident beam.
If two panels were excited simultaneously with incoherent
incident beams, the resulting images would appear on a de-
tector offset relative to each other. This leads to the possibil-
ity of incoherent averaging of the diffraction contrast in cer-
tain circumstances.13 The elimination of diffraction contrast
would require averaging over incident beam angles on the
order of a reciprocal lattice vector divided by the incident
wave vector.

The case of the �110� surface normal is shown in Fig. 4 in
the final column. The increase of the intensity of the diffrac-
tion spots at the plasmon peak is the most prominent feature.
Away from normal incidence, the interpretation is compli-
cated by the strong elastic diffraction. The features are not so
clearly identifiable in this case, although the preservation of
elastic contrast and the Kikuchi lines certainly play a role in
understanding the images.

IV. CONCLUSIONS

Differential cross sections with electron energy loss for
the scattering of a 120 keV electron through 25 nm thick

FIG. 3. �Color� Differential
cross sections for the �001�-cut
slab with a logarithmic scale bar
given at the right. Each set of im-
ages is normalized to the maxi-
mum value in the figure as a
whole. The minimum value is set
to 10−6 of the maximum value. In
each column, the angle of inci-
dence is fixed, from normal inci-
dence to 23.1 mrad in the �100�
direction in steps of 3.3 mrad. In
each row, the electron energy loss
is fixed from 10 eV at the bottom
to 25 eV at the top, in steps of
2.5 eV. The bright spots are coin-
cident with the projected recipro-
cal lattice, which sets the scale of
the momentum transfer �see text�.
The horizontal and vertical axes in
the figure represent a momentum
transfer to the outgoing beam in

the �11̄0� and �110� directions,
respectively.

FIG. 4. �Color� Differential
cross sections for the �111�-cut
and �110�-cut slabs with conven-
tions as in Fig. 3. The normaliza-
tion is performed separately for
each slab. The angle of incidence
goes from the �111� axis toward

the �11̄0� direction in steps of
�2�2 /3�3 mrad
2.83 mrad ex-
cept for the �110� results shown in
the final column, which has nor-
mal incidence. The label omits the
prefactor. The horizontal and ver-
tical axes in the figure represent a
momentum transfer to the outgo-

ing beam in the �11̄0� and �112̄�
directions, respectively, for the

�111� case, and in the �11̄0� and
�001� directions for the �110� case.
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slabs of silicon have been calculated. The theory used the
dynamical diffraction equations to generate elastic scattering
states known as Bloch waves. Pseudopotentials and plane
waves were used to generate the dielectric function of the
solid which, in the RPA, is sufficient to determine the MDFF.
The Bloch waves undergo a single scattering event, includ-
ing energy loss, as mediated by the MDFF. The diffraction
patterns near the normal directions are dominated by the pre-
served elastic contrast. The characteristic angle for large

changes in the patterns as a function of the incident direction
of the crystal is given by the ratio of a projected primitive
reciprocal vector to the incident wave vector.

ACKNOWLEDGMENTS

I am pleased to acknowledge assistance from Douglas Al-
lan, Sergio Dalosto, Denis Lehane, John Henry Scott, and
Eric Shirley.

1 H. A. Bethe, Ann. Phys. 87, 55 �1928�.
2 A. Howie, Proc. R. Soc. London, Ser. A 271, 268 �1963�.
3 H. Rose, Optik �Jena� 45, 139 �1976�; 45, 187 �1976�.
4 H. Kohl and H. Rose, Adv. Electron. Electron Phys. 65, 173

�1986�.
5 S. L. Dudarev, L.-M. Peng, and M. J. Whelan, Phys. Rev. B 48,

13408 �1993�. Equations �DPW 7�, �DPW 21�, and �DPW 30�
refer to equations in this reference with the corresponding num-
ber.

6 P. Schattschneider, M. Nelhiebel, H. Souchay, and B. Jouffrey,
Micron 31, 333 �2000�.

7 L. J. Allen, S. D. Findlay, A. R. Lupini, M. P. Oxley, and S. J.
Pennycook, Phys. Rev. Lett. 91, 105503 �2003�.

8 M. P. Oxley, E. C. Cosgriff, and L. J. Allen, Phys. Rev. Lett. 94,
203906 �2005�.

9 P. Schattschneider, S. Rubino, C. Hebert, J. Rusz, J. Kunes, P.
Novak, E. Carlino, M. Fabrizioli, G. Panaccione, and G. Rossi,
Nature �London� 441, 486 �2006�.

10 N. Vast, L. Reining, V. Olevano, P. Schattschneider, and B. Jouf-
frey, Phys. Rev. Lett. 88, 037601 �2002�.

11 J. Miao, T. Ohsuna, O. Terasaki, K. O. Hodgson, and M. A.
O’Keefe, Phys. Rev. Lett. 89, 155502 �2002�.

12 A. Yurtsever, M. Weyland, and D. A. Muller, Appl. Phys. Lett.
89, 151920 �2006�.

13 Z. H. Levine and R. M. Dunstan, J. Opt. Soc. Am. A 24, 2402
�2007�.

14 L.-M. Peng, S. L. Dudarev, and M. J. Whelan, High-Energy Elec-
tron Diffraction and Microscopy �Oxford University Press, Ox-
ford, 2004�, Chaps. 3, 4, and 7. My Eqs. �1�, �3�, and �4� are
their Eqs. �7.35�, �7.58�, and �7.59�, respectively.

15 S. L. Adler, Phys. Rev. 126, 413 �1962�.
16 N. Wiser, Phys. Rev. 129, 62 �1963�.
17 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585 �1987�.
18 Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 �1989�.
19 L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. B 57,

R9385 �1998�.

20 S. Botti, A. Schindlmayr, R. D. Sole, and L. Reining, Rep. Prog.
Phys. 70, 357 �2007�.

21 H.-C. Weissker, J. Serrano, S. Huotari, F. Bruneval, F. Sottile, G.
Monaco, M. Krisch, V. Olevano, and L. Reining, Phys. Rev.
Lett. 97, 237602 �2006�.

22 L.-M. Peng, G. Ren, S. L. Dudarev, and M. J. Whelan, Acta
Crystallogr., Sect. A: Found. Crystallogr. A52, 456 �1998�.

23 E. L. Shirley, L. J. Terminello, J. E. Klepeis, and F. J. Himpsel,
Phys. Rev. B 53, 10296 �1996�.

24 X. Gonze et al., Comput. Mater. Sci. 25, 478 �2002�.
25 G. E. Engel and B. Farid, Phys. Rev. B 47, 15931 �1993�.
26 E. L. Shirley �private communication�.
27 C. J. Humphreys, Rep. Prog. Phys. 42, 1825 �1979�.
28 J. C. H. Spence and J. M. Zuo, Electron Microdiffraction �Ple-

num, New York, 1992�.
29 J. C. H. Spence, High-Resolution Electron Microscopy, 3rd ed.

�Oxford University Press, Oxford, 2003�, pp. 111–113.
30 P. A. Doyle and P. S. Turner, Acta Crystallogr., Sect. A: Cryst.

Phys., Diffr., Theor. Gen. Crystallogr. A24, 390 �1968�.
31 M. W. Schmidt and K. Ruedenberg, J. Chem. Phys. 71, 3951

�1979�.
32 M. Y. Kim, J. M. Zuo, and J. C. H. Spence, Phys. Status Solidi A

166, 445 �1998�.
33 See EPAPS Document No. E-PRBMDO-77-049808 for the re-

sults in numerical form as well as additional cases. For more
information on EPAPS, see http://www.aip.org/pubservs/
epaps.html.

34 C. Tarrio and S. E. Schnatterly, J. Opt. Soc. Am. B 10, 952
�1993�.

35 A. J. Forsyth, T. W. Josefsson, and A. E. Smith, Phys. Rev. B 54,
14355 �1996�.

36 Z. L. Wang, Acta Crystallogr., Sect. A: Found. Crystallogr. A48,
674 �1992�.

37 L. Reimer, I. Fromm, and I. Naundorf, Ultramicroscopy 32, 80
�1990�.

ZACHARY H. LEVINE PHYSICAL REVIEW B 77, 125314 �2008�

125314-6


