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We investigate the propagation dynamics of a two-mode probe field traveling with ultraslow group veloci-
ties. We show that a strong cross-beam coupling occurs between the two modes of the probe wave in the
presence of a two-mode control laser field that maintains two-photon resonance excitations in a three-levelL

system. In the adiabatic limit and under appropriate conditions, both modes can travel with matched temporal
profiles, amplitudes, and greatly reduced group velocities, and one mode can grow and take on features of the
other mode. When only one mode of probe field is injected, the generation and growth of the second mode has
the characteristics of four-wave mixing, resulting in a tunable, ultraslow four-wave mixing field with nearly
100% photon flux conversion efficiency. We further show a type of induced transparency resulting from an
efficient one- and three-photon destructive interference. This is to be contrasted with the conventional one-
mode, three-level electromagnetically induced transparency where the interference involves two one-photon
pathways.
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I. INTRODUCTION

Ultraslow propagation of optical waves in highly resonant
and ultracold media under electromagnetically induced trans-
parency(EIT) [1] conditions has been considered as one of
the promising candidates for quantum information manipula-
tion [2]. This has motivated several recent studies that have
demonstrated ultraslow propagation[3]. In addition, some
very efficient nonlinear processes using EIT techniques have
also been proposed[4–14]. Despite this progress, a system-
atic treatment and understanding of group-velocity-matched
ultraslow propagation of multiple fields using a single-specie
three-level medium is not available in the literature. Here we
investigate the propagation dynamics of a two-mode[15]
ultraslow wave in a single-specie three-stateL system[16].
We show that in this two-mode configuration a strong cross-
beam coupling between the two weak probe beams occurs.
In the adiabatic limit, each probe pulse breaks up into two
pulses that propagate at different group velocities. With ap-
propriately chosen parameters, however, this pulse breakup
can be eliminated, resulting in a two-mode temporally, am-
plitude, and group velocity(TAG) matched ultraslow probe
wave in a single-specie three-level medium[17]. In addition,
we show that at a suitable propagation distance, where the
components of the fast decaying waves in both modes have
become negligible, an effective multiphoton destructive in-
terference occurs[18], resulting in an interference which
leads to a new type of highly efficient induced transparency.
We further extend our treatment to the case of two tempo-
rally delayed input probe pulses of different frequencies and
show that group-velocity-matchable propagation of such a
delayed pulse pair can also be achieved in the same single-
specie three-level medium. The realization of such a TAG-
matched ultraslow pulse pair in a single-specie three-level
medium may have important applications in high-fidelity
quantum information storage, photon pair entanglement, and
quantum computing. When only a single-frequency probe

field is injected into the medium, we show that the two-mode
configuration has the characteristics of a four-wave mixing
(FWM) process and can achieve near unity photon flux con-
version efficiency from one mode to the other[19] without
the requirement of having maximum atomic coherence[4].
Thus, by adjusting one of the two one-photon detunings, one
can obtain a highly efficient yet tunable coherent source.

II. FOUR-WAVE MIXING IN A L SYSTEM

We consider a lifetime-broadened three-levelL system as
depicted in Fig. 1. A two-mode, pulsed(pulse lengtht at the
entrance of the medium) probe field and a two-mode con-
tinuous wave(cw) control field complete the respective exact
two-photon resonance excitations between statesu1l and u3l.
Let us assume that the probe lasers are weak so that almost
all of the population remains inu1l. Using this assumption
and neglecting cross-mode-stimulated emission, we obtain
the equations of motion for the atomic response and probe
fields:

FIG. 1. Energy-level diagram for a three-state system interacting
with a two-mode probe field and a two-mode control field.dp1 and
dp2 are the two one-photon detunings,Vpn and Vcn sn=1,2d are
half of the Rabi frequencies for the probe and control fields.

PHYSICAL REVIEW A 70, 063813(2004)

1050-2947/2004/70(6)/063813(8)/$22.50 063813-1



S ] A2
s1d

] str/td
D

z

= idp1tA2
s1d + iVc1

* tA3 + iVp1
* t, s1ad

S ] A2
s2d

] str/td
D

z

= idp2tA2
s2d + iVc2

* tA3 + iVp2
* t, s1bd

S ] A3

] str/tdDz

= id3tA3 + iVc1tA2
s1d + iVc2tA2

s2d, s1cd

S ] Vpn
* t

] z
D

tr/t
= ik12tA2

snd sn = 1,2d. s1dd

Here A2
snd sn=1,2d is the part of stateu2l ’s amplitude that

carries the polarization at angular frequencyvpn, dpn=dpn
+ ig2/2, dpn is the detuning of thevpn mode probe laser from
the u1l→ u2l resonance, andg2 is the decay rate of stateu2l.
In addition, A3 is the amplitude of stateu3l, d3=d3+ ig3/2,
with d3=vp1−vc1=vp2−vc2 being a two-photon detuning
between statesu1l andu3l andg3 being the decay rate of state
u3l [20]. In the following calculation we will assume that the
two-photon resonances are always maintained so thatd3=0.
Finally, Vpn and Vcn are the half-Rabi frequencies of the
probe and control fields for the relevant frequency mode and
k12=2pNvpnuD12u2/ s"cd, with N and D12 being the concen-
tration and the dipole moment for the transitionu1l→ u2l,
respectively. In deriving Eqs.(1a)–(1d) we have takenA1
.1, definedtr = t−z/c, and also made the necessary phase
transformation to remove all of the complex phase factors.

The steps for solving Eqs.(1a)–(1d) begin with assump-
tions that udpntu@1, udp2u@ uVpnu sn=1,2d , on=1

2 uVcntu2/
udpntu@1, anduVpnu! uVcnu. These conditions ensure that the
ground state is undepleted and the adiabatic processes re-
main effective. The latter requirement is the key for possible
analytical solutions to Eqs.(1a)–(1d). Let a2

snd anda3 be the
time Fourier transforms ofA2

snd andA3, h be the dimension-
less time Fourier transform variable, andLpn

* be the time
Fourier transforms ofVpn

* , respectively. We obtain
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where D=sdp1t+hdsdp2t+hdsd3t+hd− uVc1tu2sdp2t+hd
− uVc2tu2sdp1t+hd. Equations(2a)–(2d) can be easily solved,
yielding
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The remaining step is to take the inverse Fourier transform
of Eq. (3) using the above-defined quantities so that physical
insight can be gained. In general, this is difficult because of
the complex expressions of these quantities. In the following
we will first examine regimes that are important to highly
efficient wave-mixing processes, yet also allow insightful
analytical solutions of the field equations. Later, we compare
these analytical solutions with a full numerical inverse trans-
form of Eq. (3) to establish the validity of the analytical
solutions in the regimes under study. We will show that the
analytical solutions obtained agree well with numerical solu-
tions under the conditions specified. We note that the major
approximations in obtaining these analytical solutions are the
undepleted ground state and the neglecting of far-off-
resonant terms such as cross-mode-stimulated emission with
nonvanishing two-photon detunings(these approximations
should always be accurate if the fields atvp1 and vp2 are
sufficiently weak). Beyond these no other approximations
have been made in our semi classical theory.

III. APPROXIMATE ANALYTICAL SOLUTIONS
TO THE FIELD EQUATIONS

Although in general detailed solutions of the field equa-
tions require numerical evaluation of Eq.(3) using the com-
plex quantities defined thereafter, much physical insight can
be gained if the exponents—i.e.,ap±L—can be approxi-
mated as linear or quadratic functions ofh. The linear de-
pendence onh will correctly predict the propagation veloci-
ties of the two probe fields, whereas the inclusion of the
quadratic terms inh provides corrections to both the field
amplitude and group velocity due to pulse spreading and
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additional pulse attenuation. We note that the quadratic ap-
proximation can be quite accurate even wheng2t is rela-
tively large, as with the lowestS→P transitions in alkali
elements. Typically, when the linear or quadratic approxima-
tion to ap±L is accurate, it is sufficiently accurate to simply
evaluate the coefficients in the expression ofW±

snd evaluated
at h=0. This is a consequence of the linear and quadratic
terms being small corrections to a much larger constant term
in these coefficients. With these approximations we have(de-
fining uVtu2= uVc1tu2+ uVc2tu2
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s1d =
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In arriving at Eqs.(4a)–(4d) we have assumed thatuVcntu2
@ usdpnt+hdsd3t+hdu (for n=1,2) and uJu@ usdp1t+hdsdp2t
+hdsd3t+hdu.

We first consider the limit where adiabatic behavior of
A2

snd is expected to be a good first approximation and the
assumption of nondepleted ground-state population is valid.
This is the limit where the validity of Eqs.(4a)–(4d) and the
assumptions leading to these equations are ensured. Under
these assumptions the series expansion inh converges rap-
idly and excited-state amplitudes remain small. In this limit
we use Eqs.(4a)–(4d) and retain only the constant and linear
terms inh in the exponents of Eq.(3). This allows analytical
evaluation of the inverse Fourier transform of Eq.(3). We
thus obtain
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whereVg
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and r =expf−g3z/ s2Vg
s−ddg. We note that it is the eigenvalue

ap−L that leads to the very slow decay as a function of
propagation distance and also leads naturally to a group ve-
locity that has the conventional EIT functional form—i.e.,
Eq. (6b).

Equations (5) and (6) indicate that each probe mode
breaks up into two groups of pulses, each traveling at a dif-
ferent group velocity. One way to optimize the generated
FWM field (i.e., the vp2mode) and obtain identical group
velocities for the two components is to chooseuVc1u= uVc2u
and dp1=0 together with udp2u@g2/2. With these
choices, J.dp2tuVtu2/2 and sdp1t−dp2td2uVc1u2uVc2u2
.sdp2td2uVtu4/4.J2. Thus, we have closely matched group
velocities for the various pulse components:

1
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k12

uVu2
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Vg
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If we assume that initially there is no field in thevp2 mode at
the entrance to the medium[i.e., Vp2s0,td=0], by maximiz-
ing the amplitude of the generated FWM field(vp2 mode)
and by maintaining group velocity matched, we have

Vp1
* sz,t/td =

1

2
frVp1

* s0,t − z/Vg
s−dd + e−i2k12t z/sdp2t+ig2td

3Vp1
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s−dd − e−i2k12t z/sdp2t+ig2td
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* s0,t − z/Vg
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We note that ifg3t!1, as is the case when stateu3l is a
member of the ground-state manifold, then when
exps−2k12g2z/d2

2d is close to unity the amplitudes of the two
terms in Eq.(8a) [and also in Eq.(8b)] are nearly the same.
In this case, if 2k12z/d2=mp andm is an odd integer, we get
Vp1

* sz,td=0 andVp2
* sz,td=Vp1

* s0,t−z/Vg
s−dd. Therefore, with

an appropriate medium thickness, the field that exits the
resonant medium will only be the FWM field(i.e., thevp2
mode) with an amplitude nearly equal to that of thevp1
mode probe field at the entrance of the medium. Since the
frequencies of the two fields are nearly equal in the system
discussed here, this represents a 100% conversion of the
probe field(vp1 mode) to a FWM field (vp2 mode). On the
other hand, ifm is an even integer, the FWM field is zero and
the amplitude of thevp1 mode field is nearly the same as its
initial value. Thus, as the two interacting fields propagate
through the medium, the state of the probe field oscillates
between the two field modes as a function of propagation
distance. Note that in this problem there can be nearly 100%
conversion efficiency, but there are certainly no conditions or
restrictions on having maximum coherence. Indeed, there is
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almost no s!1d excited-state population in this problem.
This is very different from other high-efficiency frequency
converters based on a Raman double-L system[4].

We further note that bothVp1
* andVp2

* [see Eqs.(5a) and
(5b)] have a velocity component(i.e., theVg

s+d component)
that decays in exactly the same way. In the case where only
Vp1

* s0,td is nonzero this feature has very interesting implica-
tions. From Eqs.(5a) and (5b) and at largez where the fast
decaying part is negligible, we get a TAG ultraslow matched
pulse pair(when uVc1u= uVc2u)

Vp1
* sz,t/td = r

uVc1u2

uVu2
Vp1

* s0,t − z/Vg
s−dd, s9ad

Vp2
* sz,t/td = r

Vc1Vc2
*

uVu2
Vp1

* s0,t − z/Vg
s−dd. s9bd

This leads to

Vp1
* sz,t/td

Vp2
* sz,t/td

=
Vc1

*

Vc2
* . s10d

The interesting consequence of this result is thatLp1
*

=sVc1
* /Vc2

* dLp2
* . Using this result on the right-hand sides of

Eqs. (2a) and (2b) and assuminguVcntu2@ uhdpntu (for n
=1,2), we immediately get

a2
s1d + a2

s2d =
hsdp1t + dp2tVc2

* /Vc1
* dLp1

* t

uVc1tu2sdp2t + hd + uVc2tu2sdp1t + hd
. 0.

This implies that at a sufficient depth into the medium where
Eqs. (9a) and (9b) are valid the amplitude ofA2 is strongly
suppressed by a destructive interference between a one-
sVp1

* d and threesVc1
* ,Vc2

* ,Vp2
* d photon pathways to drive the

u1l→ u2l transition. Consequently, a new type of induced
transparency is established and the medium becomes highly
transparent to the pair of ultraslow probe pulses. This type of
destructive interference has been pointed out earlier in an-
other highly efficient FWM process by Payne and Deng[13].
As a consequence of this three-photon destructive interfer-
ence, if two matched pulses satisfying Eq.(10) are injected
into the medium, they will propagate with identical temporal
profiles, amplitudes, and group velocities and suffer very
little distortion or attenuation.

The above results are the consequence of the linearization
of the coefficients and exponents permitted by the assump-
tion of good adiabatic behavior in the atomic response. Cor-
rections to such a strict adiabatic theory of atomic response
can be derived analytically to account for probe pulse
spreading and additional attenuation. Such corrections due to
higher-order nonadiabatic contributions play an important
role when the control laser Rabi frequencies are significantly
reduced, as required for achieving steep group velocity re-
duction in a conventional three-levelL-type EIT operation.
To include these corrections we take

ap + L = ib0 + ib1h + ib2h2, s11ad

ap − L = ic0 + ic1h + ic2h2, s11bd

where

b0 = −
k12t

2J
uVtu2, b1 = − b0
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2

k12t

uVtu2
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2

g3t
,

c2 = c1
dp1tuVc1tu2 + dp2tuVc2tu2

uVtu4
.

Substituting Eqs.(11a) and(11b) into Eq. (3) and taking the
inverse transform, one arrives at expressions for both modes
of the probe field that properly include attenuation and pulse
spreading under these conditions. To be more specific, we
now consider two probe pulses with the initial shapes

Vp1
* s0,t/td = Vp1

* s0,0de−2t2/t2
, s12ad

Vp2
* s0,t/td = Vp2

* s0,td/tde−2st − tdd2/stfd2. s12bd

In this case the two probe fields at the entrance of the me-
dium sz=0d have different widths and amplitudes and may
even peak at different times via a time-delay parametertd.
The control over the width of the second probe field is
through the parameterf. Following the procedure described
above, we obtain the probe pulse in thevp1 frequency mode:

Vp1
* sz,tr/td = Vp1+

* sz,tr/td + Vp1−
* sz,tr/td, s13ad

where

Vp1+
* = Vp1

* s0,0deib0z uVc2u2

uVu2Î1 – 8ib2z
expS−

2str/t − b1zd2

1 – 8ib2z
D

− Vp2
* s0,td/tdeib0z Vc2

* Vc1

uVu2Î1 – 8ib2z/f
2

3expS−
2fst − tdd/t − b1zg2

f2 − 8ib2z
D , s13bd

Vp1−
* = Vp1

* s0,0deic0z uVc1u2

uVu2Î1 – 8ic2z
expS−

2str/t − c1zd2

1 – 8ic2z
D

+ Vp2
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uVtu2Î1 – 8ic2z/f
2

3expS−
2fst − tdd/t − c1zg2

f2 − 8ic2z
D . s13cd

Equations(13a)–(13c) indicate thatnonadiabatic corrections
contribute to both pulse spreading and attenuation.The
pulse breakup cannot be avoided because of the pulse delay
and the difference in pulse lengths. TheVp1+

* component,
however, can be significantly reduced by properly choosing
parameters that yield a large Imfb0g, leaving two pulses[i.e.,
Vp1−

* components in Eq.(13c)] of different widths, separated
by a delay oftd, traveling at thesamegroup velocity. An
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expression forVp2
* can be obtained similarly.

IV. COMPARISON WITH NUMERICAL CALCULATIONS

In this section we demonstrate the validity of the above-
described analytical solutions by numerical calculations of
the inverse transform of Eq.(3). Examples shown in this
section are appropriate to ultracold87Rb atomic vapors
where Doppler broadening is negligible. Typical densities of
such ultracold and Bose-Einstein-condensed atomic vapors
range from a few times 1013 cm−3 to a few times 1014 cm−3

[20,21]. With these experimentally achievable parameters,
we now demonstrate that it is possible to observe the high
efficiencies discussed in the present study.

Let us choose u1l=5S1/2sF=1,MF=−1d, u2l=5P1/2sF
=2,MF=0d, and u3l=5S1/2sF=2,MF=1d. The splitting be-
tween the 5P1/2sF=1d and 5P1/2sF=2d levels is 816 MHz, so
we choosedp2=1.2563109 s−1 s.200 MHzd anddp1=0 for
group velocity matching. Since the lifetime of the 5P1/2 level
is 27.7310−9 s, we haveg2=3.613107 s−1. We consider co-
propagating beams with the probe and control lasers having
s+ and s− polarizations, respectively. TakingD12=2.20
310−18 esu cm, D23=3.81310−18 esu cm, and N
=1014 cm−3, we havek12=2.2831011 cm s−1. If we choose a
matched group velocity ofVg=40 m/s, we obtainuVcnu
=2.143107 s−1. Finally, we assume a Gaussian input pulse
shape with a full width at 1/e of t. In particular, we choose
t=10−4 s. We further assume that the decay rate of the co-
herence between statesu1l and u3l is g3=500 s−1. Thus the
set of parameters used in the following numerical calcula-
tions is

uVcntu = 2136, g2t = 3610, k12t = 2.283 107 cm−1,

dp2t = 1.2563 105, g3t = 0.05, dp1t = 0,

Vg
s−dt = 0.4 cm.

We first consider the case whereVp1s0,0dt=1 and
Vp2s0,0dt=0. Here we are interested in demonstrating the
possibility of high photon flux conversion efficiency from
the vp1 mode of probe laser to the FWM field(i.e., vp2
mode). To find the propagation distance where the first de-
structive interference occurs we set[see Eqs.(8a) and (8b)]
2k12t z1/ sdp2td=p and find z1=0.008 65 cm. Thus we
choose the maximum medium thickness to bezm=z1
=0.01 cm. Using the parameters shown above, we plot, in
Fig. 2, Eqs.(8a) and(8b) (solid and dashed lines) along with
the numerical inverse transforms of Eq.(3) (dotted and dot-
dashed lines). The results from Eqs.(8a) and (8b) are so
close to the results from Eq.(3) that they cannot be distin-
guished on the graph. The difference in these results is less
than 2% at all points except near the zeros of the functions.
Note that the largest value foruVp2sz,tr /tdu2/ uVp1s0,0du2 is
nearz=0.0865 cm, as predicted. This value is slightly larger
than 0.91, implying a conversion efficiency of 91%. Most of
the difference from 100% is due to the decay of the second
term (e.g., the factor expf−2g2tk12t z/ sdp2td2g). Thus, at the
peak, instead of havings1/4ds2d2=1 at the point of construc-

tive interference, we haves1/4df1+exps−0.0902dg2=0.9156.
Note that if the concentration had been taken to beN=5
31014 cm−3, then the constructive interference would have
occurred atz=0.0018 cm, which is well within the range of
parameters that have already been demonstrated in laborato-
ries for ultracold atomic vapors.

In the second example we show how small the attenuation
of the slowly decaying terms in Eqs.(3), (8a), and (8b) ac-
tually are after the one- and three-photon destructive inter-
ference has become effective. In Fig. 3 we replot Fig. 2 for
zm=1 cm, even though currently there is no ultracold system
that can reach this length yet still have a density ofN
.1014 cm−3. This figure shows that after almost 300 times

FIG. 2. Normalized peak intensity of thevp1 mode(solid line)
andvp2 mode(dashed line) as a function ofz/zm for a given me-
dium length. Parameters used:uVc1tu= uVc2tu=2136,dp1t=0, dp2t
=1.2563105, uVp1s0,0dtu=1, uVp2s0,0dtu=0, g2t=3610, d3t=0,
g3t=0.05, f =1, td/t=0, k12t=2.283107 scm sd−1, and zm

=0.01 cm. Each curve contains two curves: one obtained from Eq.
(3) and the other obtained from Eqs.(8a) and (8b). The agreement
between the two equations is excellent and the curves cannot be
distinguished.

FIG. 3. Same as Fig. 2 exceptzm=1.0 cm. As in Fig. 2, the
agreement between solutions obtained from Eqs.(3), (8a), and(8b)
is excellent and the curves cannot be distinguished. Although the
large propagation depths are not available experimentally, this fig-
ure demonstrates just how transparent the medium is over such
great depths when Eq.(10) is satisfied.
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the propagation distance(in comparison with Fig. 2) the am-
plitudes of the slowly decaying part of Eqs.(3), (8a), and
(8b) have only decayed by a factor of expf−g3zm/ s2Vg

s−ddg
.e−0.0625=0.94 from 0.25 which is the maximum
(i.e., 100%) photon flux conversion efficiency for the initial
condition Vp2s0,0d=0. Again, as shown in Fig. 3, the ap-
proximate solutions Eqs.(8a) and (8b) agree well with the
numerical evaluation of Eq.(3).

We now demonstrate what one should expect when Eq.
(10) is satisfied. We start with the case where all parameters
are the same as in Fig. 3, exceptVp1s0,0dt=Vp2s0,0dt=1.
In this case we expect that the medium will be transparent to
both fields for the entirezm=1 cm propagation distance even
at a concentration of 1014 cm−3. Thus, except for the factor of
expf−g3zm/ s2Vg

s−ddg, we expect the amplitudes of both modes
to remain near unity. Figure 4 again shows the results from
Eqs. (3), (8a), and (8b) for both modes. In this figure we
have four curves that cannot be distinguished, demonstrating
the agreement between the analytical solutions[Eqs.(8a) and
(8b)] and the numerical evaluation of Eq.(3).

We now present numerical calculations using Eqs.(11)
and (13a)–(13c). To be specific, we take the field profiles,
Eq. (12) and compare analytical solutions based on the qua-
dratic approximation, Eqs.(11) and(13a)–(13c), and the nu-
merical solution by directly integrating using Eqs.(1a)–(1d).
The parameters used here are different from those used in the
linear approximations. Here we have purposely chosen the
parameters such that the adiabatic approximations are not
very robust to demonstrate yet still very good agreement
between the analytical treatment and rigorous numerical cal-
culations. We first takeuVc1tu= uVc2tu=50, dp1t=200, dp2t
=250, uVp1s0,0dtu=1, uVp2s0,0dtu=1/2, andg2t=10, with
f =1 andtd/t=0. In Fig. 5, we have plotted the normalized

probe intensity(modevp1) as a function oftr /t for a given
medium length. The solid curve is obtained by direct numeri-
cal integration of Eqs.(1a)–(1d), and the dashed curve was
obtained using the analytical expression resulting from the
quadratic approximation, Eqs.(11) and(13a)–(13c). The lat-
ter predicts a large peaksVp1−d at tr /t=1.6, corresponding to
a group velocity of 103 m/s, and a small peaksVp1+d at
tr /t=0.01. The excellent agreement between these two meth-
ods indicates the validity of the quadratic approximation un-
der the conditions specified.

Finally, we consider the case whereVp1s0,0dt=1 and
Vp2s0,0dt=0 in the quadratic approximation. As have been
discussed before, this single-probe two-control configuration
converts the photons from theVp1 field to theVp2 field via a
FWM process. With the detuningdp1 fixed, changing the
detuningdp2 results in a tunable FWM fieldsVp2d with a
high photon flux conversion efficiency. This is a potentially
very useful narrow-band tunable coherent source. Taking the
parameters given in Fig. 6 our analytical treatment predicts a
large peaksVp1−d at tr /t=1.6, corresponding to a group ve-
locity of 1.63103 m/s (for t=10−5 s andz=1 cm), and a
small peaksVp1+d at tr /t=0.01. This can be seen in Fig. 3
where the normalized intensity of the FWM field as a func-
tion of tr /t is plotted. We have chosen the parameters such
that the fast wave has nearly zero amplitude. It is seen that
the numerical results agree well with the above theoretical
predication. Further numerical calculations have shown that
under the conditions specified, the results are in very good
agreement with the analytical solutions of Eq.(13a)–(13c) .
In fact, typical errors between these methods are,2%.

FIG. 4. Same as Fig. 3 exceptuVp2s0,0dtu=1. In this case, a
highly efficient multiphoton destructive interference creates an in-
duced transparency that renders the medium highly transparent
when the intensity of the two modes satisfies Eq.(10) . There are
four curves in the figure with two for each mode(solid line and
dash-dotted lines forvp1, dashed line, and dotted line forvp2) using
Eqs.(3), (8a), and(8b). The lower three curves are results of adding
0.2, 0.4, and 0.6 offsets, respectively, for better viewing. Without
these offsets, the four curves cannot be distinguished, indicating the
excellent agreement between Eqs.(3), (8a), and(8b).

FIG. 5. Normalized intensity of thevp1 mode probe wave as a
function of tr /t for a given medium length. The calculation is based
on quadratic approximations Eqs.(11) and(13a)–(13c) for the field
profiles, Eq. , and parameters are chosen for less robust adiabatic
process. Parameters used:uVc1tu= uVc2tu=50, dp1t=200, dp2t
=250, uVp1s0,0dtu=1, uVp2s0,0dtu=1/2, g2t=10, d3t=0, g3t
=0.01, f =1, td/t=0, and k12t z=8000. Solid curve: numerical
evaluation of Eqs.(1a)–(1d). Dashed curve: analytical results based
on the quadratic approximation of Eq.(13a)–(13c). The analytical
treatment predicts a large peaksVp1−d at tr /t=1.6(corresponding to
a group velocity of 1.63103 m/s for t=10−5 s andz=1 cm) and a
small peaksVp1+d at tr /t=0.01. We have intentionally chosen the
parameters so that theVp1+

* part of the wave is still visible.
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V. SUMMARY

We have proposed a two-mode, single-specie three-level
L system to achieve TAG matched pairs of ultraslow waves
and have shown a type of induced transparency process that
is established by a multiphoton destructive interference. In
the linear and quadratic approximation, we have shown that
after a characteristic propagation distance both probe modes

evolve into a TAG matched pulse pair which travels without
distortion and attenuation in a highly dispersive medium
with an atomic density as high as 1014 cm−3. This is a re-
markably efficient transparency scheme, and we have dem-
onstrated nearly 100% photon flux conversion efficiency
from one mode to another. In addition, we have shown that
the proposed scheme does not require maximum atomic co-
herence. Indeed, there is very little atomic coherence
s!0.5d in the system we studied. This is to be contrasted to
other schemes where maximum atomic coherence is required
[4].

We have also compared out linear and quadratic approxi-
mations with numerical calculations for several example us-
ing experimental achievable parameters. These comparisons
have shown that the analytic solutions agree well with nu-
merical calculations under the conditions specified.

Generation of TAG matched ultraslow waves using a
single-specie three-level medium may have important appli-
cations. The concept applies to multiwavelength schemes
and is readily scalable to single-photon regimes. This may
open possibilities of quantum entanglement of ultraslow pho-
ton pairs and quantum computation using ultraslow optical
fields. The FWM characteristics of the two-mode ultraslow-
wave scheme also opens the possibility of multiple-wave
mixing in ultraslow propagation regimes. With a single probe
field Vp1 as the input, adjustingdp2 will generate a tunable
FWM field Vp2 with near 100% photon flux conversion ef-
ficiency.
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