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A population of cells in culture displays a range of phenotypic responses even when those cells are

derived from a single cell and are exposed to a homogeneous environment. Phenotypic variability can

have a number of sources including the variable rates at which individual cells within the population

grow and divide. We have examined how such variations contribute to population responses by

measuring cell volumes within genetically identical populations of cells where individual members of

the population are continuously growing and dividing, and we have derived a function describing the

stationary distribution of cell volumes that arises from these dynamics. The model includes stochastic

parameters for the variability in cell cycle times and growth rates for individual cells in a proliferating

cell line. We used the model to analyze the volume distributions obtained for two different cell lines and

one cell line in the absence and presence of aphidicolin, a DNA polymerase inhibitor. The derivation and

application of the model allows one to relate the stationary population distribution of cell volumes to

extrinsic biological noise present in growing and dividing cell cultures.

Published by Elsevier Ltd.
1. Introduction

Observations of cells in culture typically reveal a noticeable
diversity of phenotypes within individual cells across the popula-
tion (Bar-Even et al., 2006; Raser and O’Shea, 2005). This diversity
of phenotypes occurs even when cells have identical DNA (single
cell clones) and are cultured in a homogeneous environment.
With imaging cytometry of individual cells, we have observed
reproducible distributions in cell spread area, green fluorescent
protein expression, cytoskeleton staining, and fluorescent im-
muno-staining (Bhadriraju et al., 2007; Langenbach et al., 2006;
McDaniel et al., 2007) within monoclonal populations under
highly controlled extracellular matrix conditions (Elliott et al.,
2005). The diversity of cellular responses within a population of
cells can also be observed in flow cytometry experiments that
measure immunofluorescent-staining, expression of a fluorescent
protein or cell volume. For example, flow cytometers that utilize
the Coulter principle (Shapiro, 2003), which is based on an
impedance change as an individual cell passes through an orifice,
allow the distribution of cell volumes in a population to be
measured. As with data collected by imaging cytometry, the
distribution of cell volumes of continuously cultured mammalian
cells appears to be stationary in that the shape of the distribution
is highly reproducible over many population doublings and can be
recovered after perturbation (Anderson and Petersen, 1967;
Ltd.

; CV, coefficient of variation.
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Conlon and Raff, 2003). This suggests that these distributions
are a characteristic of the cell population. One likely source of cell-
to-cell variability within a population comes from stochastic
fluctuations within the intracellular signaling pathways through
which cells respond to environmental conditions (Elowitz et al.,
2002; McAdams and Arkin, 1997; Mettetal et al., 2006; Pedraza
and van Oudenaarden, 2005; Volfson et al., 2006). These
fluctuations can be global in nature (extrinsic) or pathway specific
(intrinsic) (Ramanathan and Swain, 2005; Raser and O’Shea,
2005).

In this report, we describe how the stationary distribution of
cell volumes within a population could arise due to variations in
the rates of cell growth and cell division both of which are
functions of variability in gene expression. We explicitly consider
the role of random fluctuations in rates of cell growth and
division. The model proposed here describes an asynchronous
population of continuously growing and dividing cells in terms of
four parameters: a mean cell cycle time, the variance in cell cycle
time, a mean growth rate, and the variance in growth rates. The
model is expressed as an analytic function and we demonstrate its
use to evaluate cell volume distribution data to estimate these
four parameters. Each of these parameters is a measurable
quantity, potentially allowing validation of the model. This model
provides a tool for evaluating cell cultures and for determining
changes in growth or division rates within the culture that may
arise due to changes in culture conditions (i.e. drug treatments or
infection) or aging of the culture after many passages. The
stochastic components of the model allow two different cell
cultures to be compared on the basis of the relative noise in the
growth and division processes in each of the cultures.

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.10.031
mailto:michael.halter@nist.gov
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2. Materials and methods

2.1. Application of the cell volume distribution model

The cell culture and cell volume distribution measurement
protocols are described in the Supporting information. Cell volume
vs. frequency data obtained from the electronic sizing instrument
was fit to the cell volume distribution model (Eq. (1) below) using
non-linear least squares analysis (MathCad, Needham, MA). The
fitting routines are also available in an open-source environment,
‘cellVolumeDist’ package (R Development Core Team, 2008). In the
analysis, the doubling time was calculated from

td ¼
logð2Þ � T

log Nf

No

� � (1)

The doubling time, td, is determined from the number of cells
seeded (No) and the number of cells (Nf) after time, T. The cell
doubling time, td, and average cell cycle time, t, were assumed to
be equivalent, though this assumption is not strictly true (Painter
and Marr, 1967) (Supporting information). Four volume distribu-
tion measurements were curve fit for each of the NIH 3T3 and A10
vSMC cultures. In Table 1, the parameter value for t and its 95%
confidence interval was determined from cell counts over four
consecutive passages. The parameter value for st was 0.3� t,
which is an estimate based on reported live cell microscopy
measurements (Shen et al., 2006). The parameter values for r and
sr and the 95% confidence intervals for r and sr were determined
from the non-linear least squares curve fitting analyses. Particles
smaller than 470mm3 were considered non-cellular and discarded
from the curve fitting analysis. The integral in Eq. (8) was
calculated in the interval from 0 to 6� t. Increasing the interval
over which the integral was calculated did not affect the fitted
parameters. The coefficient of variation in the growth rate was
determined as sr/r and the 95% confidence interval for this
quotient was determined by propagating the errors in r and sr.
3. Results

3.1. Some characteristics of cell volume distributions

Our assumptions for the model are based, in part, on the
following experimental observations. First, cells in culture divide
into two daughter cells at the end of the cell cycle and thus
exponentially increase in number with time. Secondly, the distribu-
tion of cell volumes in a continuously cultured population remains
invariant when measured over long periods of time. Fig. 1 is a plot of
cell volumes measured using a commercial cell sizing instrument
that measures the volume of individual cells (Shapiro, 2003). Data
for two different continuously cultured mammalian cell lines, NIH
3T3 mouse fibroblasts and A10 rat vascular smooth muscle cells
(vSMCs), are depicted in this figure. Seven volume distributions
measured at consecutive passages are shown for each cell type. It is
apparent that even though the two cell lines were subjected to the
same culture conditions (see Methods), they exhibit distinct
distributions with respect to both the shape and position of the
distributions on the volume axis. This suggests that genetic or gene
expression variations between the cell types are likely determinants
of the features of the distribution. In fact, the cell volume
distribution appears to be characteristic of the cell line; cryopre-
served cells can be thawed and cultured, and within a few passages,
demonstrate an identical distribution to that shown in Fig. 1.

In the inset of Fig. 1 is a schematic of the growth and division
processes that might give rise to the measured distribution.
Variations in growth rate and cell cycle times will occur within
the population due to stochastic fluctuations in the coupled
biochemical reactions that regulate cell growth and division.
These variations will contribute to the width of the measured
volume distribution. The position and the shape of the distribu-
tion will also likely be influenced by environmental factors such as
availability of nutrients and compounds that influence cellular
growth and division.
3.2. Model description

The model we present describes the distributions of cell
volumes such as those shown in Fig. 1 in terms of four
parameters: the mean cell cycle time, the variance in cell cycle
times, the mean growth rate over the cell cycle, and the variance
in growth rates within the population. The model assumes that an
individual cell increases in volume at a constant rate throughout
the cell cycle, and that at division a cell divides into two equally
sized daughter cells. While these assumptions are simplistic, they
are close approximations to data that has been measured
previously for growing mammalian cells (Conlon and Raff, 2003;
Dunn and Zicha, 1995; Popescu et al., 2008) and facilitate the
calculations. The volume of an individual cell when it has finished
growing and is ready to divide is a function of that cell’s volume at
‘birth’ plus the increase in volume that occurs during its growth.
Growth occurs between the time a daughter cell arises following
division (its ‘birth’) and the time that it divides; that intervening
time is its cell cycle time.

We assume that each cell in the population has a cell cycle
time that comes from a normal distribution of cell cycle times
with a mean for that population (t) and a standard deviation (st).
Each cell also has a growth rate that comes from a normal
distribution of growth rates with a mean (r), and a standard
deviation (sr). We assume normal distributions for cell cycle times
and growth rates based on empirical observations (Miyamoto
et al., 1973) and because these assumption allows for a model that
is analytically tractable.

To describe the model, we use the common nomenclature
for describing microbial population dynamics (Painter and
Marr, 1968). The terms c(V), f(V), and l(V) are distributions
that describe newly divided cells, cells ready to divide, and the
entire cell population, respectively. Below, we derive the simple
case where the distribution of volumes is only dependent on
the average cell growth rate and the variation in cell cycle times
to facilitate the description of the model construction. The
derivation for the more complete model which also includes
variability in growth rates is presented in the Supporting
information.

The derivation begins by stating the often used relationship
between the volume distributions of newly divided cells (c(V))
and cells ready to divide (f(V)), which comes from the realization
that a population of newly divided cells has one-half the mean
and standard deviation of a population of cells immediately prior
to division (Painter and Marr, 1968).

c
V

2

� �
¼ 2fðV Þ (2)

Eq. (2) assumes a conservation of volume at division and that
cells divide into precisely two daughter cells of equal volume.
The next expression describes the growth of cells within the
population where all cells increase in volume with the same
growth rate, r:

fgrowthðV Þ ¼
1

r � st
ffiffiffiffiffiffi
2p
p exp

�ðV � r � tÞ2

2ðr � stÞ2

" #
(3)
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Fig. 1. Cell volume distributions plotted from Coulter size measurements made over seven consecutive passages of continuously cultured NIH 3T3 cells and A10 smooth

muscle cells. The mean and standard deviations for the NIH 3T3 volume distribution and the A10 smooth muscle cell distribution are m ¼ 2300mm3 and s ¼ 650mm3 and

m ¼ 5800mm3 and s ¼ 1800mm3, respectively. INSET: schematic that describes the growth and division process that gives rise to the distribution of cell volumes.
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In Eq. (3), fgrowth(V) is a Gaussian probability density function
and physically represents the distribution of volumes that newly
divided cells will increase by before they divide. It takes the form
of a diffusion process in cell volume space plus a constant drift
term (Gardiner, 2004). For cultures of continuously growing and
dividing cells, the increase in volume of any individual cell due to
growth during that cell’s growth cycle is given by r� t. Because
cell cycle time, t, has a Gaussian distribution with a standard
deviation, st, fgrowth(V) is also a Gaussian distribution with mean,
r� t, and standard deviation, r�st. The following integral
equation then describes how the population of newly divided
cells, c(V), in the population will increase in volume through
growth and populate a distribution of cell volumes at division,
f(V).

fðV Þ ¼
Z 1
�1

cðV aÞfgrowthðV � V aÞdV a (4)

Eq. (4) is a convolution integral that assumes the increase in
volume of a cell as it grows prior to dividing is independent from
or uncorrelated with its ‘birth’ volume. The term Va is introduced
to compute the convolution integral over all volumes. By
substituting Eqs. (2) and (3) in Eq. (4), the distribution of cell
volumes in a population of newly divided cells can be expressed in
terms of r, t, and st (the details of the derivation are presented in
the Supporting information) as shown below:

cðV Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3ðr � stÞ

2
q

�
ffiffiffiffiffiffi
2p
p eð�ðV�rtÞ

2
Þ=2ð1=3ðr�stÞ2 (5)

The expression in Eq. (5) describes the probability of a newly
divided cell having a volume, V, when all of the cells in the
population increase in volume with a single growth rate, r. Eq. (5)
can also be used to describe the distribution of cell volumes in a
population of cells of a certain age, t, by replacing t with t+t,
where t is the time after cell division. With the generalization to
cells of all ages, t ¼ 0 to t ¼N, it is now possible to describe the
distribution for all cells within the asynchronous population, not
just newly divided cells.

The probability that a newly divided cell will not divide in time
t, is then given by

Oðjt� tjÞ ¼ 1

2
erfc

jt� tj
st �

ffiffiffi
2
p

� �
(6)

As cells in culture continue to grow they are more likely to
divide. At division, the dividing cell is removed from the
population and two new daughter cells are generated. Since we
assume that cells in the population exhibit a normal distribution
of cell cycle times, the right hand side of Eq. (6) has the form of a
complementary error function centered at the average cell cycle
time, t. Using Eqs. (5) and (6) allows us to describe the entire
distribution of cell volumes l(V) as a function of r, t and st as
shown:

lðV Þ ¼ A
Z 1

0
2�t=t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 ðr � stÞ

2
q

�
ffiffiffiffiffiffi
2p
p eð�ðV�rðtþtÞÞ

2
Þ=2ð1=3ðr�stÞ2Þ

0
B@

1
CA

� ðOðjt� tjÞÞdt (7)

In Eq. (7), the term A before the integral is a multiplicative
constant used to normalize the area under the distribution for
computing probabilities and curve fitting, and the factor 2�t/t

accounts for the process whereby one larger cell generates two
smaller cells through division (Kubitschek, 1969). Kubitschek
(1969) constructed a similar function representing the entire cell
population, l(V), by integrating over functions for the ‘birth’
volume distribution and the probability that a newly divided cell
will not divide in time t. Our function is distinct compared to the
function derived by Kubitschek as it relates l(V) to the cell cycle
times and growth rates of cells in the population. With this
function, the effect of variability in either cell cycle time or growth
rates on the volume distribution of an asynchronous cell
population can be examined. Hannsgen et al. derived several
functions for the ‘birth’ volume distribution, c(V), in terms of
growth rates and division times (Hannsgen et al., 1985), but their
approach did not yield expressions that were amenable to the
analyses of the entire cell population, l(V).

Eq. (8) shows the more complete function for l(V) with the
additional term, sr, which describes the variability of growth rates
across the population of cells (see Supporting information for
derivation).

lðV Þ ¼ A
Z 1

0
2�t=t

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 ðr � stÞ

2
þ 1

3 ðt � srÞ
2
þ ðt � srÞ2

q
�
ffiffiffiffiffiffi
2p
p

0
B@

� eð�ðV�rðtþtÞÞ
2
Þ=ð2ð1=3ðr�stÞ2þ1=3ðt�srÞ2þðt�srÞ2ÞÞ

1
CAðOðjt� tjÞÞdt (8)

The effect of the variations in cell cycle time and individual cell
growth rates (st and sr) on the shape of the distribution predicted
by this function is shown in Fig. 2A and B, respectively. Both sets
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Fig. 2. Predicted volume distributions for different levels of variance in the cell

cycle times and growth rates. (A) Eq. (7) is plotted for t ¼ 30 h, r ¼ 100mm3/h using

three different values for st ¼ 3 (blue), 6 (red), and 9 (green). The coefficient of

variation (CV) for each of these cases is 10%, 20%, and 30%, respectively. (B) Eq. (8)

is plotted for t ¼ 30 h, r ¼ 100mm3/h, st ¼ 6 (CV cell cycle time ¼ 20%) using three

different values for sr ¼ 0 (red), 15 (purple), and 30 (brown). The CV for the growth

rate in each of these cases is 0%, 15%, and 30%, respectively. The CV is the standard

deviation divided by the mean for the distribution. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

Table 1
Parameter values estimated by fitting Eq. (8) to cell volume distribution data..

Cell typea tb (h) st
c (h) rd (mm3/h) sr

d (mm3/h) (sr/r)e

NIH 3T3 19.570.7 5.9 8774 2976 0.3470.07

A10 2973 8.7 140720 5277 0.3770.07

A10 (50 nM) 3673 10.8 139715 5776 0.4170.06

A10 (100 nM) 5078 15 115723 51710 0.4370.12

a A10 vSMCs were continuously cultured in the absence or in the presence of

50, and 100 nM aphidicolin, as indicated.
b Cell cycle times (mean795% confidence interval) estimated from the seeding

density and cell counts at each of the four passages (see Methods for details).
c Cell cycle time variability estimates were assumed to be 0.3 of the mean cell

cycle time (Shen et al., 2006).
d Estimates for r and sr were made by fitting Eq. (8) to each of the four volume

distributions to calculate the mean795% confidence interval.
e The estimate for the coefficient of variation in growth rate (sr/r) was made

using the corresponding estimates for r and sr, then propagating the error in the

measurement to calculate the mean795% confidence interval.
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of curves compare well with cell volume distributions obtained by
simulating a population of cells growing and dividing with
identical parameters (Supporting information). As indicated in
Fig. 2A and shown explicitly in the Supporting information, the
distribution has a finite width even as the ‘noise’ terms become
small. In the limiting case where st and sr approach 0, the
coefficient of variation of the distribution is E0.52. This shows
that even when the growth rates and division times are identical
for all cells, the distribution has significant width caused
exclusively by the asynchronous, cycling population. Increasing
the noise levels in either cell cycle time or growth rate (st or sr)
increases the tail region to the left and to the right of the average.
The distributions in Fig. 2 have longer tails on the right, which is
also true for the measured cell volume distributions in Fig. 1.
3.3. Application of the cell volume distribution model

To test the model and demonstrate its application, we
measured cell volume distribution data for NIH3T3 cells under
standard culture conditions, and A10 vSMCs under standard
culture conditions and conditions under which cell growth and/or
division time was perturbed with drug treatment. When the DNA
polymerase inhibitor aphidicolin was added to A10 vSMC cultures
at 50 and 100 nM concentrations, the cells continued to
proliferate, but exhibited longer cell cycle times that we attribute
to an increase in the length of S-phase. For example, the mean
doubling time of the A10 vSMCs increases from 29 to 36 h and
56 h for 50 and 100 nM aphidicolin treatments, respectively (see
Table 1).

The effect of the aphidicolin treatment on the A10 vSMCs is
shown in Fig. 3. After several passages under the aphidicolin
treatment, the mean cell volume of the A10 vSMC increased to
new values that remained stable for several additional passages
(Fig. 3A). This stability suggests that the population distributions
have achieved a new stationary state. Fig. 3B shows the mean cell
volume plotted against the mean doubling time and indicates that
the increasing doubling time with aphidicolin concentration
corresponds to an increase in the mean cell volume. The standard
deviation of the cell volume distributions vs. mean doubling time
is plotted in Fig. 3C. This figure shows that the width of the
distribution of cell volumes increases as the doubling time of the
cell population increases. These results are consistent with
previous observations that aphidicolin treatment can significantly
increase the cell cycle time without out apparently influencing the
growth rate of individual cells (Conlon and Raff, 2003).

Fig. 4 shows the measured distributions of cell volumes for NIH
3T3 cells and for A10 vSMCs in the absence or presence of
aphidicolin, and the best fit distributions generated from Eq. (8)
using the measured mean doubling times and assuming a 30%
coefficient of variation in cell cycle times for each of the cultures
(Shen et al., 2006). These plots indicate the fitted distributions
show good correspondence with the measured distributions.
Values for the mean growth rate of cell populations and the
standard deviation in growth rate obtained from non-linear least
squares fitting of the measured distribution data to Eq. (8) are
shown in Table 1. Comparing the results for untreated A10 vSMCs
with the results for untreated NIH 3T3 cells indicate that the
growth rate (i.e., the rate of increase in cell volume), r, of A10
vSMCs is significantly higher than that for the NIH 3T3 cells
(140mm3/h720mm3/h for the A10 vSMCs vs. 87mm3/h74mm3/h
for the NIH 3T3 cells). While the variability in growth rate, sr, is
also greater for the A10 vSMCs compared to the NIH 3T3 cell line
(52mm3/h77mm3/h for the A10 vSMCs vs. 30mm3/h76mm3/h for
the NIH 3T3 cells), the coefficients of variation (sr/r) for the
growth rate variability are similar (0.3470.07 for the A10 vSMCs
vs. 0.3770.07 for the NIH 3T3 cells).

When the untreated A10 vSMCs are compared with A10 vSMCs
treated with aphidicolin, the results in Table 1 indicate that the
untreated cells and the cells treated with 50 nM aphidicolin
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Fig. 4. Solid black lines represent best fits to the measured cell volume

distributions with Eq. (8) using the parameter values shown in Table 1. (A) The

NIH 3T3 volume distribution (purple circles) is the average of the distributions

measured for a population of cells at seven different passage times (same data as

in Fig. 1). (B) The A10 volume distributions (red, green, and blue circles, where the

aphidicolin concentration is indicated) are the average of distributions measured

for a population of cells at four different passage times (same data as in Fig. 3). (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Summary statistics for cell volume distributions measured from A10 vSMCs

cultured in the presence of aphidicolin and 10% FBS. (A) The mean cell volumes are

plotted for cultures grown in 0, 50, and 100 nM aphidicolin. The cell volumes were

measured four times over a period of 11 days. (B) Volume data from (A) plotted

against the doubling times (n ¼ 4) (Methods) for each of the three cultures. (C)

Standard deviations (n ¼ 4) were calculated from the cell volume distribution data

collected for (A) and plotted against the doubling times for each of the three

cultures.
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have similar growth rates (140mm3/h720mm3/h vs. 139mm3/h7
15mm3/h), and that the growth rate is reduced when cells are
treated with 100 nM aphidicolin (115mm3/h723mm3/h). Despite
the reduction of the growth rate, the coefficients of variation (sr/r)
for the growth rate variability for the A10 vSMCs with no
aphidicolin, 50 nM aphidicolin, and 100 nM aphidicolin are similar
(0.3770.07, 0.4170.06, and 0.4470.12, respectively). This sug-
gests that the biochemical mechanisms responsible for the
variations in growth rate appear to scale with the mean growth
rate from the cell.
4. Discussion

Many population models have been developed for the analysis
of cell size distributions (18,20) and several attempts have been
made to deduce the mean growth behavior of cells as a function of
their volume (Bell and Anderson, 1967; Collins and Richmond,
1962; Koch and Higgins, 1982) and to understand whether
cells increase in volume exponentially or at a constant rate
(Kubitschek, 1969). Observations made from cells growing in
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culture resulted in the ‘transition probability model’ (Smith and
Martin, 1973), where cell cycle progression depends on the
completion of a probabilistic A-phase (similar to a G1 cell cycle
phase) which cells can exit with a constant probability per unit
time before entering a B-phase (similar to a combined S, G2 and M
phase) for a deterministic length of time that ends with cell
division. Hannsgen et al. reported a detailed mathematical
description for several aspects of the cell volume distributions
that would result when cell cycle times follow the ‘transition
probability’ model (Hannsgen et al., 1985; Hannsgen and Tyson,
1985).

Although our model borrows many of the conventions and
assumptions used in these earlier models, it differs from these
models with the use of four cell-based parameters, mean growth
rate, mean cell cycle time, variance in growth rate and variance in
cell cycle time to describe the stationary distributions of cell
volumes that arise from continuously growing cell cultures. These
parameters are directly related to the physical processes that give
rise to the distribution of cell volumes. While other distribution
functions such as a log-normal have been used to generate
parameters that are characteristic of cell cultures (Kaneko and
Furusawa, 2008), the model presented here has the advantage of
being based on parameters with inherent physical meaning.

One of the parameters in the model that could be useful for
characterizing cellular responses is the average growth rate of
single cells in the culture. Single cell growth rates are difficult to
measure in adherent mammalian cells and therefore are infre-
quently used to characterize cell populations. The analysis above
provides comparative data on two cell lines and indicates that on
average A10 vSMCs increase in volume approximately 1.7 fold
faster than NIH 3T3 cells. Many processes are likely to control the
rate at which cells increase in volume including glucose uptake,
protein biosynthesis, and other metabolic functions. While the
molecular origin of the growth rate differences between the A10
vSMCs and the NIH 3T3s is unclear and is probably quite complex,
this method provides a quantitative method for comparing the
rates of cell growth between different cell lines.

The model can also be used to characterize changes in growth
rate or doubling times of a cell line in response to changes in
culture conditions. The addition of low doses of aphidicolin to A10
cells apparently increases both the doubling time and the mean
cell volume (Fig. 3B). Applying the model in Eq. (8) to the volume
distributions indicates the growth rates calculated for the non-
treated A10 vSMCs and the cultures grown in the presence of
50 nM aphidicolin were comparable, even as cell division times
and cell volumes increased (see Table 1 and Fig. 3A). Interestingly,
the volume growth rate of the A10 vSMCs cells treated with
100 nM aphidicolin is apparently reduced to approximately 80% of
the growth rate for the non-treated cells and those treated with
50 nM aphidicolin (see Table 1). As with the comparison between
the A10 vSMCs and the NIH 3T3 cell lines, the molecular origin of
the growth rate differences is unknown. It is likely that one or
several of the pathways known to regulate cell growth and
division such as PI3K, mTOR, Akt, and Myc (Proud, 2007) are
affected when A10 vSMCs are cultured in 100 nM aphidicolin.
These results demonstrate that changes in cell volume distribu-
tions can likely provide indication of, and insight into changes in
the growth and division process of a cell line due to age,
phenotype and perturbations to the culture conditions.

The model presented here also allows estimation of the noise
in cell cycle times and in cell growth within a clonal population.
The noise terms, st and sr, appear to influence the shape of the
distribution of cell volumes as illustrated in Fig. 2. Therefore, the
model can be used to evaluate the level of noise present in
the cellular processes that give rise to the cell volume distribution.
Biological noise is an inherent property of cellular systems
because of the coupled biochemical reactions and feedback
signals that organize cellular processes including progression
through the cell cycle and the synthesis of cellular material. In the
analysis shown in Fig. 4 and Table 1, a 30% coefficient of variation
in cell cycle time is used as an estimate based on previously
reported observations (Shen et al., 2006). While it is likely that the
actual variations in cell cycle times are different between the
cultures used in this study, this assumption allows the compar-
ison of the relative noise in the growth rates (sr/r). The values for
sr/r (Table 1) are similar for the NIH 3T3 cells, the non-treated A10
vSMCs, the 50 nM aphidicolin treated A10 vSMCs, and the 100 nM
aphidicolin treated A10 vSMCs. This suggests that under all
conditions examined, the cultures have similar levels of relative
noise in the growth and division process, which is interesting
considering the cell cycle times and growth rates vary signifi-
cantly between all of the cultures. Furthermore, the noise
parameters that are calculated from fitting the model to cell
volume distribution data could be compared with or used to guide
the noise parameters used in more detailed cellular systems
biology models, such as those used for cell signaling pathways
where stochastic terms are included.

There are several caveats related to interpreting the noise
terms in Eq. (8). The first is that the cell cycle time and growth
rate distributions are represented as simple Gaussian distribu-
tions in the model. Although more sophisticated models that
explicitly account for specific molecular components and inter-
actions could be integrated in the future, this assumption of
Gaussian distributions allows derivation of an analytical solution
that can be applied to routinely collected cell volume distribution
measurements. Secondly, there is no term that accounts for the
asymmetric division of cells. Any asymmetry in the division
process will lead to an increase in the width of the distribution
size of newly divided cells. This increased ‘noise’ in the system
would be expected to increase the predicted values in the st and
sr terms. A third caveat is that the model cannot be used to extract
all four parameters simultaneously from a single volume
distribution measurement. This is because cell cycle time
variability and growth rate variability have similar effects on the
overall shape of the distribution (Fig. 2). However, each of the
noise terms can be measured independently. Cell cycle time
variability can be measured by timelapse microscopy of cells in
culture (Killander and Zetterberg, 1965; Shen et al., 2006) and,
though studied less frequently, growth rate variability can be
measured using interference microscopy techniques (Dunn and
Zicha, 1995; Zicha et al., 1999). Therefore, if either of the
parameters is measured independently, then the other noise
parameter can be estimated using the model.

In this study, we developed a model based on a constant rate of
volume increase throughout the cell cycle, though the rate can
vary between cells in the population, and applied the model to the
analysis of cell volume distributions. We chose to analyze volume
distributions because of the ease with which the data can be
collected with conventional cell sizing instruments and the
potential for these data to be used as a practical approach for
characterizing cells in culture. It is important to note that this
model can also be applied to cellular fluorescence distribution
data measured by flow cytometry or automated microscopy. Live
cell imaging experiments have shown that at least some proteins
appear to be synthesized at a constant rate over the cell cycle
(Sigal et al., 2006), and in those cases the model described here
could be used to calculate parameters directly linked to the
production rate of protein expression from measured steady-state
distribution data. Furthermore, measured distributions that
cannot be well fit to the model described here likely indicate that
the production rate of the protein of interest is not constant
throughout the cell cycle.
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5. Conclusions

The growth and division of cells in culture is inherently ‘noisy’
because of the stochastic nature of biochemical reactions that
govern cell cycle progression and growth. We derived an
expression that relates the stationary cell volume distribution
exhibited by continuously cultured mammalian cells to the cell
cycle times and growth rates of individual cells in the culture. An
expression is derived that relates cell volume distributions to the
mean cell cycle time, standard deviation of cell cycle times,
growth rates, and standard deviation of growth rates. By fitting
the model to measured cell volume distributions, parameters can
be calculated that are related to the physical processes that give
rise to the distribution. The analysis of cell volume distribution
data can indicate changes in the growth and division behavior of
cultures, and the model described here provides a conceptual
framework for the interpretation of these measured distributions.
Such information could be used to quality control culture systems,
to complement molecular biology techniques for understanding
signaling pathways that effect growth and division, and to
quantify the noise in cell cycling and growth. The variables
generated with this model may also be useful as a starting point
for more complex models of noise associated with specific
pathways which also are influenced by cell cycle and growth.
Appendix A. Supplementary material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2008.10.031.
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