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ABSTRACT
In order to expedite the research and development of robotic

systems and foster development of novel robot configuration, it is
essential to develop tools and standards that allow researchers
to rapidly develop, communicate, and compare experimental re-
sults. This paper describes the Mobility Open Architecture Sim-
ulation and Tools Framework (MOAST). The MOAST frame-
work is designed to aid in the development, testing, and analysis
of robotic software by providing developers with a wide range
of open source robotic algorithms and interfaces. The frame-
work provides a physics-based virtual development environment
for initial testing and allows for the seamless transition of al-
gorithms to real hardware. This paper details the design ap-
proach, software architecture and specific module-to-module in-
terfaces.

1 Introduction and Related Work
The usefulness of simulation for developing control systems

is well established. The role of simulation is to provide convinc-
ing sensor measurements in response to a controller’s actuator
outputs in an environment observable to developers. Ideally the
simulation should be accurate enough so that performance pa-
rameters tuned in simulation work as well in the real world. In
practice, attaining this level of simulation is often more costly
than real-world testing, and simulators that respond plausibly if
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not accurately are acceptable. Plausible simulation then comple-
ments real-world testing to minimize the time and effort needed
to build controllers that work well. Several such simulation sys-
tems exist; several of which are open source, including the Uni-
fied System for Automation and Robot Simulation (USARSim)
[1] and the Stage and Gazebo components of Player/Stage [2].

While the typical simulation system allows one to directly
connect and experiment with servo-level controllers, they in gen-
eral lack any form of intelligence or ability to interpret sensor
readings and issue meaningful commands. For this reason, it is
necessary to connect the simulation engine to a control frame-
work. Several such systems exist in the literature and on the
web. Perhaps the most popular of which is the Player portion of
Player/Stage.

Player/Stage combines a robot server interface, called
Player, with a simulation system, called Stage, so that Player-
enabled robots can be easily interchanged with each other and
their simulated counterparts. The Player interface is installed
on robotic vehicles, providing an interface to the robot’s sen-
sors and actuators over a TCP/IP network. Player was originally
ported to robots in the ActivMedia Pioneer 2 family, but other
robots and sensors are supported. Stage simulates a population
of robotic vehicles and sensors in a 2-D environment. Gazebo is
a 3-D counterpart provided for outdoor simulation. While Player
started as a robot interface with drivers that directly control hard-
ware, it has grown to include several abstract drivers since then.
These abstract drivers use other drivers, instead of hardware, as
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the sources for data and the sinks for commands. Several well-
known algorithms are now included with the system thus pro-
viding services such as way-point navigation and obstacle avoid-
ance.

A new entry to the robot simulation/control arena is Mi-
crosoft’s Robotics Studio [3]. Robotics Studio includes sup-
port for simulation and implements services to control robotic
platforms. These services may be created in a variety of pro-
gramming languages, or by using Microsoft’s visual program-
ming language. While Robotics Studio is not as mature as
Player/Stage, it promises to build a library of services that will
be available to robot developers.

1.1 Adding an Architecture: MOAST
Player and Robotics Studio both focus on the interfaces

to mobile robots that allow developers to build their own con-
trollers, with portability across robots that support Player or
Robotics Studio made easier. Neither Player nor Robotics Stu-
dio defines an overall architecture or high-level interface spec-
ification that guides the development of robot controllers. We
have found that an architecture is essential to the efficient devel-
opment of intelligent systems. An architecture assigns roles and
responsibilities among controllers and dictates what services are
necessary. It defines module timing, data and control interfaces,
and planning extents. An architecture also provides the frame-
work in which the rest of the intelligent system resides and dic-
tates the rules that the modules must follow. For these reasons,
we built the Mobility Open Architecture Simulation and Tools
Framework (MOAST). MOAST begins with a well defined ar-
chitecture, and adds simulations, services, and controllers. The
entire MOAST framework is intended to provide tools to lead a
researcher through all of the phases of development and testing
of an autonomous agent system.

MOAST is made up of the following components:

1. A reference model architecture that dictates how control re-
sponsibilities are divided between modules.

2. Communication interface specifications that dictate how and
what modules will communicate.

3. Sample control modules for the control of a sample simu-
lated robotic platform. These modules include sensor pro-
cessing, world modeling, and behavior generation for 4 lev-
els of the hierarchical architecture and provide a complete
control system.

4. Validated sensors and robot models in the simulation.
5. Tools to aid in development and debug of the control system.

The remainder of this paper will address the components of
MOAST. Section 2 describes the reference model architecture
that is utilized by MOAST. Section 3 describes the various ser-
vices and capabilities that are provided by the framework, Sec-
tion 4 describes where in the architecture these services reside

Figure 1. Generic 4D/RCS Control Node.

and their interfaces. Finally, Section 5 describes future work and
concludes the paper.

2 Reference Model Architecture
The capabilities of the MOAST framework are encapsulated

in components that are designed based on the Four-Dimensional
Real-Time Control System (4D/RCS) Reference Model Archi-
tecture [4] [5]. The 4D/RCS reference model architecture is a hi-
erarchical, distributed, real-time control system architecture that
decomposes a robotic system into manageable pieces while pro-
viding clear interfaces and roles for a variety of functional ele-
ments.

Figure 1 depicts the general structure of each echelon (level)
of the 4D/RCS hierarchy. Each echelon in 4D/RCS has a reg-
ular structure comprised of control nodes that perform the same
general type of functions: sensory processing (SP), world model-
ing (WM), value judgment (VJ), and behavior generation (BG).
Sensory processing is responsible for populating the world model
with relevant facts. These facts are based on both raw sensor data
and the results of previous SP (in the form of partial results or
predictions of future results). WM must store this information,
information about the system itself, and general world knowl-
edge and rules. Furthermore, it must provide a means of inter-
preting and accessing this data. BG computes possible courses
of action to take based on the knowledge in the WM, the sys-
tem’s goals, and the results of plan simulations. VJ aids in the
BG process by providing a cost/benefit ratio for possible actions
and world states.

The principal difference between control nodes at the same
echelon is in the set of resources managed, while the principal
difference between nodes at different echelons is in the knowl-
edge requirements and the resolution of the planning space.

This regularity in the structure enables flexibility in the sys-
tem architecture that allows scaling of the system to any arbitrary
size or level of complexity [6]. Each level within 4D/RCS has a
characteristic range and resolution in space and time. Each level
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has characteristic tasks and plans, knowledge requirements, val-
ues, and rules for decision-making.

Every module in each level has a limited span of control,
a limited number of tasks to perform, a limited number of re-
sources to manage, a limited number of skills to master, a limited
planning horizon, and a limited amount of detail with which to
cope.

2.1 Generic Module
While 4D/RCS provides a reference model for the architec-

ture, MOAST is an implementation of that architecture. There-
fore, specific responsibilities, knowledge requirements, and in-
terfaces have been designed for each control module. Each con-
trol module is based upon a generic core controller that is shown
in Figure 2. The MOAST hierarchical decomposition of in terms
of its control modules is depicted in Figure 3.

The control module core has the following flow:

1. Initialize: The initialization opens any communication
buffers, places the system in a safe known state, and ini-
tializes any control parameters.

2. Read Command: Command information is received, and
the system is prepared to execute the command. When a
new command is received, the old command is immediately
replaced by this command. If the command is not able to
be interrupted, error flags are set and will be reported during
the writing of status.

3. Read Config: Configuration information is received, and
the system is prepared to change its settings. A separate
configuration channel is provided to allow for control pa-
rameters to be changed without interrupting the current con-
troller. For example, a user may want to change a system’s
cycle time without interrupting a complex control function.
The configuration channel is used to change the cycle time
parameters without aborting the control algorithm.

4. Handle Command State Tables: All of the modules run on
a fixed cycle time. Therefore, command functions must ei-
ther guarantee that they finish in under the cycle time, or
provide for being reentrant. Although this text refers to
the command execution as being finite state machine (FSM)
based, search based planning systems have also been imple-
mented under this framework. The searcher simply stores
its current location in the search when its execution time ex-
pires and then resumes searching on the next cycle.

5. Handle Config State Tables: Requests to change configura-
tion settings are carried out similarly to handling command
state tables.

6. Write Status and Settings: The current module status and
the configuration’s settings are sent out over communication
buffers.

Figure 2. Generic core of control module.

2.2 RCS Library
Support for developing software conforming to the 4D/RCS

methodology is provided by the RCS Library [7]. The RCS li-
brary includes portable utilities for creating and synchronizing
real-time tasks following the 4D/RCS architecture. Code genera-
tion and diagnostics tools simplify much of the application setup
and debugging. Communication between RCS control modules
is provided by the Neutral Messaging Language (NML), a soft-
ware library for communication ported to a variety of platforms
including Linux, Solaris, VxWorks, LynxOS, QNX, Windows
and MacOS. Applications using NML define a message vocabu-
lary as C++ classes and call C++ methods to open buffers, read
and write messages. Java bindings are also available. NML ap-
plications running on one platform can communicate with ones
running on any other platform. It is based on message buffers
of a fixed maximum size that can contain messages of variable
length. NML supports blocking- and non-blocking reads, queued
and non-queued writes, polled or publish-subscribe communica-
tion. A uniform application programming interface enables the
same user source code regardless of computing platform; target-
ing new platforms requires recompiling, not recoding. Support
for different communication protocols is provided via configu-
ration files, such as operating system shared memory, backplane
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Figure 3. Modular decomposition of MOAST framework that provides modularity in broad task scope and time.

global memory, TCP/IP sockets and UDP datagrams. New pro-
tocols can be added without affecting application code. NML
converts between processor data formats (big and little endian),
handles compiler structure padding and mutual exclusion. The
location of buffers and processes that connect to them is selected
at run time, and a running application can be extended to com-
municate with new processes dynamically. NML source code is
freely available at [8] and documented in [7].

3 MOAST Provided Functions
The development and maintenance of an advanced mobile

robot requires expertise ranging from sensor processing, path
planning, and communications protocols, to basic auto repair.
While many of the algorithms for accomplishing these functions
are well known, freely available code that implements these func-
tions tends to be incompatible with other code or robotic plat-
forms. This necessitates interface and functional tweaks before
the code modules become useful.

Part of the original design philosophy of MOAST was to
provide “out of the box” functionality that would reduce the
breadth of expertise required to conduct research with mobile
robots. The developers of MOAST have taken many well known
algorithms and implemented them within the 4D/RCS frame-
work. The result is a fully functional framework that allows re-

Table 1. Sensor processing requirements and responsibilities.

Data Out Description

Primitive Echelon laser scan
data

Beam start and hit point

Autonomous Mobility Eche-
lon height map

Cellular map of 2.5D eleva-
tions

Autonomous Mobility Eche-
lon obstacle probability

Cellular map of obstacle
probabilities

searchers and students to immediately begin to experiment with
functional robots in simulated environments. Researchers are
then free to examine the code modules that address functions
in their areas of expertise. The hope is that as improvements
are made, the researchers will contribute the improved modules
back to the community. The basic functionality of the mobile
robot may be broken down in the the areas of sensor processing
and mobility.

3.1 Sensor Processing
The majority of the sensor processing work performed in

MOAST is in the detection of obstacles. The decomposition
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Figure 4. Laser range data from Prim includes the start and end of each
beam.

of this responsibility by echelon in the MOAST framework is
shown in Table 1. For the laser scanner, the Primitive (Prim)
Echelon provides a series of data tuples as shown in Figure 4.
The data is available over the communications interface and in-
cludes the location of the device when the beam was fired and the
beam hit point in vehicle relative coordinates. Under the current
system, the laser is constrained to be fixed mounted and facing
straight ahead of the vehicle in a level orientation. While this
presents an instantaneous snapshot of the environment, the data
tends to be noisy, and encompass a very small region. This data
is further processed to produce a cellular height map of the envi-
ronment as shown in Figure 5. Due to the mounting constraint on
the laser, whenever the vehicle is driving on a flat level surface
the height of every cell that has been observed is either the height
of the floor or the height of the laser above the floor.

While the external representation is transmitted as a cellular
height map, internally, the cell’s height, range, hits history, and
obstacle probability are stored. The model for the terrain being
observed is like a 3D bar chart, where solid blocks of various
heights extend through cells in the XY plane. The height of each
cell records the estimated distance its block extends above the
local XY plane. The height is negative if the top of the block
is below the XY plane. The range of a cell records the largest
distance from which a cell has been seen to contain an obstacle.
Some obstacles are seen only when they are close to the sensor.
It is desired to avoid having the system decide that an obstacle
no longer exists because it is not seen when the system is farther
away than its range. It is expected that if a cell containing an
obstacle is viewed from within the cell’s range, the obstacle will
be seen again, but if the cell is viewed from beyond its range, the
obstacle might not be seen. The range is used in setting the hits

Figure 5. Cellular height map generated from laser data. Yellow repre-
sents cells that have never been seen, and cells that are observed are
shown in shades of aqua based on their height. Due to the mounting
configuration of the laser, only heights of “ground,” shown as very dark
aqua (i.e. black), or heights of above the laser, shown as bright aqua, are
displayed (hard copies of this paper should be printed in color).

Table 2. Mobility planning requirements and responsibilities.

Plan Out Command In Knowledge In

Prim actuator
commands

Constant curva-
ture arcs

Kinematics

AM constant cur-
vature arcs

Way-points Dynamics

Vehicle way-
points

Named location a priori map

Section vehicle
actions

Behaviors Vehicle Capabili-
ties

history, as described below.

The hits for a cell encodes the seven most recent viewings
of the cell. A cell is regarded has having been viewed whenever
a ladar ray passes through it (the cell is not seen) or bounces off
an obstacle in it (the cell is seen).

Obstacle probability is a real number from 0.0 to 1.0. It rep-
resents the system’s best estimate of the chances that the cell is
occupied by an obstacle. A separate map of obstacle probabil-
ity is exported over a communication channel for use by other
modules.
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3.2 Mobility
The mobility functions consist of a family of planning al-

gorithms that are able to compute obstacle free paths for Ack-
erman, skid-steered, and omni-drive ground robot platforms as
well as helicopter-like air platforms and sub-like underwater ve-
hicles. When examining the planning systems, it is useful to note
the knowledge required by each module as well as the module’s
output format, i.e., the form the plan takes. This information is
represented in Table 2.

At the lowest echelon, the output of the planning system
consists of actuator and motor commands that are sent through
MOAST’s generic interface known as SIMware [9]. These com-
mands are platform steering type dependent and consist of such
things as left and right wheel velocities for a skid-steered vehicle
or steering curvature and velocity for an Ackerman steered vehi-
cle. This module requires a series of obstacle free constant curva-
ture arcs as input. In addition to the command input, the module
requires knowledge of the specific robot kinematics. Such items
as wheelbase, tire diameter, and minimum turning radius must
be provided.

Figure 6. Cellular obstacle map generated from obstacle probability
data. Yellow represents cells that are unknown. Green represents free-
space, orange represents the edge of obstacles, and red represents ob-
stacles. The obstacles are grown by half the vehicle width to allow for
the planner to plan on a point-sized robot. The white path represents the
planned path for the platform and the platform’s current location is shown
as the black dot (hard copies of this paper should be printed in color).

An additional way-point interface exists into the planning hi-
erarchy. This interface accepts a series of way-points as its com-
mands and computes a series of obstacle-free constant curvature
arcs as output. This module reads in the obstacle probability map
from the sensor processing chain and also has knowledge of the
vehicle dynamics. A graphical example of this module’s output
is shown in Figure 6.

This planning module has two main strengths. In well-
behaved simulated environments, it quickly plans realistic
smooth paths with appropriate speeds and curve radii while keep-
ing within the allowed deviation and avoiding obstacles. Second,
it plans paths dynamically in environments with moving obsta-
cles (such as other vehicles). Weaknesses of this planner stem
primarily from not getting enough sensory information and not
attempting to use all the information available. Knowing the
slope of the surface on which the vehicle is running is critical
for setting speeds and radii of turns that can be achieved without
having the vehicle slide or overturn. Height data is collected by
sensor processing, but is not currently sent to the planner. The
planner could process height data to create slope data, but there
are currently no functions for generating or using slope data. As
noted below, however, the current method of collecting height
data is not very good. No information on surface properties (such
as coefficient of friction or hardness) is available from sensor
processing, and the planner has no functions for using such in-
formation.

The obstacle information that is available to the planner is
very limited because of the way in which laser range (ladar) data
is being collected. The ladar looks straight ahead of the vehicle
at the height at which the ladar is mounted on the vehicle. As a
result, sensor processing cannot see holes of any sort and cannot
see obstacles lower than the height of the ladar. Thus, the range
of environments in which the plans are realistic is very small,
namely flat surfaces with no holes and on which every obsta-
cle is tall. Better obstacle information would be used effectively
with no change to the planner. Putting the ladar on a pan/tilt plat-
form would allow good height data to be collected and is being
implemented. A different sort of weakness is the inability of the
searcher to include the cost of traversal time while choosing a
path. Time is a critical element of cost. Distance and traversal
difficulty are known before a path is chosen, so they can be used
in finding an optimal cost path. The amount of time taken, how-
ever, cannot be chosen beforehand, since the speed depends on
how sharp the corners are, and the corners are not rounded until
an approximate path has been chosen.

If a priori data is available, then a planning module exists to
take advantage of this data. This module ingests a priori vector
data and computes a visibility graph based plan that starts at the
way-point planner’s planning horizon and terminates at a named
point (for example an address). This system currently reads .mif
formatted vector data. An example of the plan output is shown
in Figure 7. The system accepts a named point as its input and
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Figure 7. Vector-based a priori map used by the a priori planner.
The red areas are obstacle polygons and the white is free space. The
computed path is shown in green, and the robot location is shown with a
large green circle. The small green dots represent the planning horizon
of the way-point planning system.

outputs a list of way-points for the platform to follow.
Finally, a planning system capable of coordinating groups of

vehicles exists. This planner accepts behavior based commands
(i.e. explore, or deliver packages) and coordinates the actions of
several platforms to accomplish the tasks. The system accepts
the behavior command as its input and outputs named points and
tasks for the platforms to accomplish. The system must have
knowledge of individual platform capabilities.

4 Hierarchical Decomposition
This section describes each of the MOAST echelons in de-

tail, beginning at the bottom with the interface to the simulation
system or real robots, and continuing up through increasing lev-
els of abstraction to the Section Echelon, which coordinates mul-
tiple vehicles.

4.1 SIMware
The Servo Echelon in Figure 3 is implemented outside of

MOAST by real or simulated vehicles. To limit the spread of
vehicle-specific source code into MOAST, an external middle-
ware layer was built that bridges different controllers to different
vehicles or vehicle simulations. This Simulation Interface Mid-
dleware, called “SIMware,” defines a software application pro-
gramming interface (API) based on the notion of “skins” that
customize an environment to particular controllers and simula-
tions or real vehicles [9]. Skins are divided into superior skins
that interface SIMware to vehicle controllers, and inferior skins
that interface SIMware to simulations. Programmers build a
SIMware middleware layer by instantiating a particular superior

Figure 8. The SIMware Integration Architecture. SIMware bridges par-
ticular implementations of the Servo Echelon, such as Unreal or Gazebo
vehicle simulations or real vehicles, with controllers such as MOAST or
SPQR from the University of Rome.

skin that interfaces to a controller, instantiating a particular infe-
rior skin that interfaces to a robot and sensor environment, and
defining configuration information specific to each skin.

The SIMware middleware layer is an executing program,
typically with several concurrent threads, that provides a knowl-
edge base that is updated and read via the skin interface.
SIMware itself does not contain any threads of execution; rather,
the skins may spawn threads if needed to help in the conversions.
Typically, a thread in the superior skin will read command mes-
sages, and a thread in the inferior skin will read sensor reports,
and each will query and update the knowledge base.

Typically, a SIMware-based application links in skins for
specific controllers and simulations. It is possible to build skins
that can dynamically switch between different controllers and
simulations, or synchronize parts of a simulation with the real
world. For example, a SIMware user may decide to integrate
all of their simulation skins into a single combined skin, en-
abling run-time switching between various simulations and the
real world. Figure 8 shows the SIMware concept.
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4.2 Prim-Servo
The Prim Echelon interfaces via SIMware’s MOAST su-

perior skin to the Servo Echelon. Messages between Prim and
Servo are divided between mobility, mission packages and sen-
sor processing.

Prim mobility is responsible for planning a series of velocity
states given a list of arcs with tolerances and desired tangential
speeds. The velocity state is a screw of linear and angular ve-
locity that is converted into vehicle actuator setpoints using the
inverse Jacobian function associated with each vehicle type.

Planning is complicated by the unpredictable performance
of the vehicle. For example, the vehicle may have slipped off the
nominal circular arc path due to wet conditions. Prim continu-
ally monitors the navigation state from sensors such as a Global
Position System (GPS) receiver or an Inertial Navigation System
(INS) to determine if the vehicle is within the allowable neigh-
borhood. If not, Prim plans a move directly toward the path in
order to prevent collisions with obstacles presumed to lie outside.

Within Prim, arcs are converted to a series of closely-spaced
way-points based on the tolerance. The tolerance sets a neighbor-
hood around each point within which the vehicle is free to move
toward the next way-point. For the next target way-point, Prim
computes the deviation in heading, and sets the vehicle velocity
and angular velocity according to a cutoff angle θc. Translational
speed is reduced linearly from its desired tangential speed vmax at
zero heading deviation to some minimum speed vmin at the cut-
off angle, and clamped to the minimum beyond that. Angular
speed is set to zero when there is no heading deviation, and in-
creases linearly to its maximum at and beyond the cutoff angle.
In particular we have

ω = max(−ωmaxθ/θc, −ωmax) θ ≥ 0

ω = min(−ωmaxθ/θc, ωmax) θ < 0

v = max(vmax(1−|θ|/θc), vmin)

where θ is the angular difference, θc is the cutoff angle, vmax is
the desired tangential maximum speed, and vmin is the minimum
achievable speed from the constraint vmin = ωrmin for vehicles
with a minimum turning radius rmin. The relationships between
the speed, angular speed and heading deviation are shown in Fig-
ure 9. For skid-steer vehicles that have a zero minimum turning
radius, the minimum translational speed can be zero. Figure 10
shows the behavior of such a vehicle for various values of the
cutoff angle. For heading deviations outside the cutoff angle,
the translational speed is zero and the vehicle rotates until it is
pointed toward the goal, at which point the translational speed
picks up and moves the vehicle. For larger cutoff angles, the
vehicle is free to move when it is pointed far from the goal, and
wide deviations are seen. As the cutoff angle is made smaller, the

Figure 9. Vehicle speed and angular speed relative to heading deviation.
As the deviation between the commanded heading and actual heading in-
creases, the commanded vehicle speed decreases and its angular speed
increases. The increased angular speed is a response that points the
vehicle in the proper direction.

vehicle never deviates far from a direct line to the goal, although
the vehicle speeds are smaller.

Each Prim planning cycle’s v and ω are run through the
vehicle’s inverse Jacobian function to give actuator setpoints.
SIMware provides the vehicle steering type (car-like or Acker-
man steering, tank-like or skid steering) and associated parame-
ters such as wheel radius, wheelbase or skid separation. For car-
like steering, the speed v and angular speed ω are transformed
into a steering angle γ as

γ = tan−1(ωL/v)

where L is the wheelbase length. For skid steering, the speeds v
and ω are transformed into individual left and right wheel speeds
ωl and ωr respectively as

ωl = 1
R (v−ωL/2)

ωr = 1
R (v+ωL/2)

Due to contraints on a vehicle’s minimum turning radius, J−1

may compute infeasible steering angles. For example, a mobil-
ity command with zero translational velocity and some non-zero
angular velocity can only be executed by a vehicle with a zero
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Figure 10. Trajectories for various values of the cutoff angle. Smaller
cutoff angles inhibit translational motion, allowing rotation to point the ve-
hicle more closely toward the goal before translation takes place. As the
cutoff angle increases, the vehicle speed is greater, allowing for faster mo-
tion toward the goal but with broader deviation. If the cutoff angle is too
great, the vehicle may endlessly “orbit” the goal, as seen in the 90-degree
case.

turning radius, i.e., one that can spin in place. Depending upon
system design, the Servo Level may choose to execute the tight-
est turn possible, or stop with a failure status. In either case the
supervisory Prim Level must be prepared to handle deviations
between its requested velocity states and those achieved by the
Servo Level.

Even if the Prim Level assures that the Servo Level can al-
ways compute feasible actuator states, the vehicle may drift from
its nominal expected path due to slipping. Because the Prim
Level is commanding velocities in order to achieve a position
goal, these drifts can accumulate and take the vehicle far from
the Prim Level’s target goals. For this reason, the Prim Level
must close its own control loop. This is unlike trajectory plan-
ning for robot manipulators, where open-loop paths can be exe-
cuted with confidence that the joint servos can make up for any
errors. Prim is also responsible for planning motions of any mis-
sion packages mounted on the vehicle, such as pan-tilt wrists or
robot manipulator arms. SIMware provides Prim with the kine-
matics parameters for the mission packages on board the vehicle,
such as the link type (revolute or prismatic), link parent, link-to-
link transforms and allowable travel limits [10].

Speed or position control are possible in either joint or
Cartesian reference frames. Speed control typically arises from
teleoperated motion using a joystick. Joint speed control is
achieved simply by sending joint speeds to the Servo Echelon.
Cartesian speed control is achieved by transforming the desired

Figure 11. S-curve velocity profiling for position control. This graph
shows speed versus time and the seven phases of motion. The first,
third, fifth and seventh phases are constant jerk. The second and sixth
phases are constant acceleration (or deceleration). The fourth phase is
constant speed. Some phases may be of zero duration. S-curve motion
planning is used for both translational and rotational motion.

Cartesian speed screw through the inverse Jacobian matrix,

[
θ̇
]
= J−1

[
v
ω

]

Joint position control is achieved by computing positions for
each joint according to an S-curve velocity-acceleration-jerk pro-
file as shown in Figure 11, and scaling the joint speeds so that all
joints arrive at their final position at the same time. At each time
step, incremental joint positions are computed and sent to the
Servo Echelon for tracking. Cartesian position control is done
using S-curve profiling for both the translation and rotation por-
tions of the move, where the rotation is considered as an angu-
lar displacement about a rotation vector. Either the translation
or rotation portion is scaled so that both components arrive at
their final target at the same time. At each time step, the inter-
mediate pose is run through the inverse kinematics to get joint
positions for tracking by Servo. The inverse kinematics are com-
puted using an iterative Newton-Raphson procedure [11,12]. An
initial estimate of the joints is run through the forward kinemat-
ics to get an estimate of the Cartesian position. The error trans-
form between the estimated and desired Cartesian positions is
run through the inverse Jacobian to get correcting joint differen-
tials, which are then subtracted from the joint estimates to move
them toward the solution. The R and P rotations and translations
for each link are obtained from the manipulator settings main-
tained by SIMware. Given these, we can incrementally build the
forward Jacobian matrix as

Jv
i+1 =

i+1
i R

(
Jv

i + Jω
i ⊗ i

i+1P
) 0

0
1

 (1)

Jω
i+1 =

i+1
i R Jω

i

0
0
1

 (2)
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Ji+1 =
[

Jv
i+1

Jω
i+1

]
(3)

where ⊗ in Equation (1) is the column-by-column cross product
of the matrix Jω

i with the position vector Pi
i+1.

Each control cycle the instantaneous Jacobian matrix J is
computed out joint-by-joint using Equations (1-3) and inverted
to get J−1. If J is not square and hence not invertible, its pseu-
doinverse is computed. In the overdetermined case where there
are fewer than six joints, the pseudoinverse that minimizes the
least squares error between the desired and resulting Cartesian
motion is used [13],

JI =
(
JT J

)−1
JT (4)

In the underdetermined case where there are more than six joints,
the pseudoinverse that minimizes the sum of the squares of the
joint speeds is used,

JI = JT (
JJT )−1

(5)

The Prim sensor processing responsibility is to transform
readings from vehicle-mounted sensors like range scanners from
the local vehicle-centered coordinate system to the global world
coordinate system. This is done by referencing the continual es-
timate of the vehicle’s pose with respect to the world coordi-
nate system as measured by sensors such as GPS, INS or wheel
odometry and reported by the Servo Echelon through SIMware’s
MOAST superior skin.

4.3 AM-Prim
The Autonomous Mobility (AM) Echelon interfaces to the

Prim Echelon using NML. Messages between AM and Prim are
divided between mobility, mission package and sensor process-
ing.

AM’s mobility responsibility is to generate short-range
obstacle-free paths for tracking by the Prim Echelon. Paths are
comprised of lists of constant-curvature arcs, in which the end of
one arc is tangent to the beginning of the next. This list is con-
tinually replanned at cycle times on the order of half a second.
Strictly periodic replanning is not necessary, since Prim will fol-
low the complete list of arc segments and stop at the end of the
final arc. Replanning allows AM to compensate for Prim’s drift
off of the planned path and ensure that future paths remain free
of obstacles. AM replanning also takes into account moving or
newly-detected obstacles.

Figure 6 shows one such constant-curvature arc path gener-
ated by AM. The path is initially tangent to the vehicle’s heading.

Mission package control by AM allows the pointing of sen-
sors, for example pan/tilt mounts for cameras or ladars. Sensor

pointing can be done via goal pan/tilt angles, for which paths
are smoothly planned by Prim, or via scans, in which a region
of interest is defined by AM. In scanning, Prim plans the raster
paths or other suitable path types that provide sensor coverage
over the region. Prim continually maintains the timestamped po-
sition of the sensor pointing angles, so that sensor outputs can be
registered with AM’s world coordinate system.

4.4 Vehicle-AM
The Vehicle (Veh) Echelon interfaces to the AM Echelon us-

ing NML. There is once again a breakdown of messages between
primarily mobility, mission package, and sensor processing.

Veh’s mobility responsibility is to create plans that accom-
plish a given activity. For example, drive to a given address.The
Veh Echelon has the knowledge required to plan a path from
the vehicle’s current location to the given destination. However,
since the Veh Echelon’s world model is of lower resolution than
AM’s, it is felt that the AM Echelon mobility planner will create
better plans for regions close to the vehicle. Therefore, the flow
of the Veh-AM interaction is more complex than simply a supe-
rior ordering a subordinate to take an action that is later refined
by the subordinate. In this interface, the following interaction
occurs:

1. The Veh Echelon requests that AM prepare to move. This
causes AM to compute a plan (and a cost for the plan) from
the current vehicle location to each of its peripheral nodes.
Where peripheral nodes are defined as regions located at
AM’s planning horizon and form an encompassing rectan-
gle as shown by the dots surrounding the vehicle in Figure
7.

2. The Veh Echelon then uses these costs to “seed” its planning
graph. In a traditional graph-based planning approach, either
the goal location or the vehicle location is taken as the first
open node or root for the search. This node is then the plan
origin and will always be part of the plan. In this modified
search strategy, our planning graph has many roots. Only
one of these roots will be included in any given plan.

3. The successful root (the one contained in the lowest cost
plan) is then sent back to AM as a commanded destination.

4. As AM executes this command, it re-plans the cost of reach-
ing each of its new, shifted peripheral regions. The cycle
then continues at Step 2.

Sensor processing at the Veh Echelon is required to take cel-
lular map data as input and generate a vector representation that
will be stored in the Veh WM and used by the planning system.
This area is under active development, but the basic mechanism
is to perform grouping on the AM obstacle regions and then re-
duce the groups to polygons. This is accomplished by forming
the concave hull around each group. The newly formed polygons
are then merged with any existing polygons with which they in-
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tersect.
A very simple high-level mission package interface exists

for the Veh Echelon. Basically, the Veh wants a task to be per-
formed, but does not specify how that task is to be accomplished.
For example, a region may be specified for surveillance. It is up
to the AM echelon to compute how best to perform the actual
surveillance.

4.5 Section-Vehicle
The Section (Sect) Echelon is the highest echelon of

MOAST that has been implemented to date. Sect operates as
a pure finite state machine, and decomposes its high-level behav-
iors into a series of commands that are executed by it Veh echelon
subordinate. It monitors vehicle status and command execution
to know how to proceed through its state machine. Behaviors
that have been implemented include multi-vehicle exploration,
and multi-vehicle package delivery.

5 Future Work and Conclusions
The MOAST framework has been used to control virtual

robots in both urban search and rescue environments and man-
ufacturing settings, and a physical robot (automated guided ve-
hicle) on a real shop floor. By utilizing the Player inferior skin
of SimWare, identical algorithms that have been tuned in simu-
lation are being experimented with on real hardware in identical
environments. The idea is to validate performance in both the
real and virtual worlds in order to verify simulated models and
control system utility.

In addition, new algorithms are constantly being added
to the framework. Work is progressing on Simultaneous
Localization and Mapping (SLAM) as well as the inclu-
sion of a true 3D world model. The MOAST website
(www.sourceforge.net/projects/moast) highlights the latest im-
provements.

Disclaimer: No approval or endorsement of any commercial
product by the National Institute of Standards and Technology
is intended or implied. Certain commercial equipment, instru-
ments, or materials are identified in this report in order to facil-
itate understanding. Such identification does not imply recom-
mendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equip-
ment identified are necessarily the best available for the purpose.
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