
Relating Taxonomies with Regulations 
Chin Pang Cheng, Jiayi Pan 

Stanford University 
Dept. of Civil & Environmental Eng. 

Stanford, CA 94305-4020 

(cpcheng, pjy@stanford.edu) 

 Gloria T. Lau, Kincho H. Law  
Stanford University 

Dept. of Civil & Environmental Eng. 
Stanford, CA 94305-4020 

(glau, law@stanford.edu) 
 

Albert Jones 
Enterprise Systems Group 

NIST 
Gaithersburg, MD 20899-0001 

(albert.jones@nist.gov) 
 

ABSTRACT 
Increasingly, taxonomies are being developed for a wide variety 
of industrial domains and specific applications within those 
domains. These taxonomies attempt to represent formally the 
vocabularies commonly used by domain practitioners.  These 
formal representations have the potential to automate information 
retrieval and improve decision-making.  Those decisions must 
comply with existing government regulations and codes of 
practice, which are not always known to the practitioners.  
Although both are available in digital form online, practitioners 
cannot retrieve easily relevant regulations and codes that apply to 
particular decisions.   

To address this problem, we propose an approach to relate 
regulations with existing industry-specific taxonomies. The 
mapping from a single taxonomy to a single regulation is a trivial 
keyword matching task.  In this paper, we examine techniques to 
map a single taxonomy to multiple regulations, as well as to map 
multiple taxonomies to a single regulation.  Those techniques 
include Cosine similarity, Jaccard coefficient and market-basket 
analysis.  These techniques provide a metric that measures the 
similarity between concepts from different taxonomies.  We 
describe these techniques and metrics, and evaluate them using   
examples from the building industry.  These examples show the 
potential regulatory benefits from the mapping between various 
taxonomies and regulations. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – retrieval models, J.1 [Administrative Data 
Processing]: law. 

Keywords 
Heterogeneous Ontologies, Taxonomy Interoperability, 
Relatedness Analysis, Regulation Retrieval. 

1. INTRODUCTION 
Government regulations are an important asset of the society.  
They extend the laws governing the country with specific 
guidance for corporate and public actions.  Ideally, regulations 
should be readily retrievable by interested individuals.  Much 

prior research focused on the abstraction and retrieval of case law 
[1, 3, 5, 30, 38, 40], analysis of regulations [19, 20], and 
compliance guidance for regulations [15, 16].  Relatively little 
research, however, has been devoted to methodologies and tools 
that allow practitioners to intelligently browse and retrieve 
relevant regulations utilizing familiar terms and vocabularies. 

Increasingly, taxonomies are being developed to capture and 
represent those terms and vocabularies formally for a wide variety 
of industrial domains. These taxonomies can facilitate information 
integration and regulation retrieval. Interoperability is important 
because it allows practitioners to access, relate, and combine 
information from multiple, heterogeneous sources.  Recent studies 
by the National Institute of Standards and Technology showed 
that integration inefficiencies led to significant costs to the 
construction as well as the automotive industries [7, 14].  

Ontologies have been proposed as a way to remove these 
inefficiencies. One recent forecast estimates that “By 2010, 
ontologies ….will be the basis for 80 percent of application 
integration projects” [32].  Ontologies capture the semantics of 
domain-specific information in a formal and computer 
interpretable form.  They have the potential to automate much of 
the integration process, thereby reducing cost and time 
significantly.   

Building a single ontology for an entire domain, however, has 
proven to be neither efficient nor practical.  Rather, small 
communities that need to exchange information frequently tend to 
build their own distinct ontologies [36]. For instance, the 
architectural, engineering, and construction (AEC) community 
has built several ontologies that describe the semantics of 
buildings.  Even these ontologies are all targeted towards the 
same user group, their structures, vocabularies and coverage differ 
depending on the specific application.   

Government regulations, on the other hand, are organized and 
classified by the needs of the agency that enforces them, not by 
the needs of the communities that must use them [6].  
Consequently, there is a clear need and benefit of bridging these 
two distinct needs. One way to build such a bridge is to develop 
methods and tools that enable practitioners to browse and retrieve 
government regulations using their own terms and vocabularies.   

In this paper, we present a systematic method to map regulations 
to industry-specific taxonomies.  First, we use a trivial keyword 
extraction task to map a single taxonomy to a single regulation.  
To map one taxonomy to multiple regulations, we must cluster 
relevant sections from different regulations.  To do this, we reuse 
the relatedness analysis core from [19] to compute relevancy 
between those sections.  We describe three methodologies to 
compute this relevancy: Cosine similarity, Jaccard coefficients, 
and market-basket models. Cosine similarity and Jaccard 

 

 



coefficient are vector-based measures commonly used in the field 
of information retrieval. We have adopted them to compare 
semantic similarity between ontologies.  The market basket model 
is a popular technique in data mining; we have modified it to be a 
relatedness analysis measure for ontology mapping.   We discuss 
our preliminary evaluations of the three metrics.  We conclude 
with our proposal to address methods for mapping multiple 
taxonomies to multiple regulations.  

2. Illustrative Ontology Standards and 
Regulatory Corpus 
We work with taxonomies and regulatory corpus from both the 
building industry and the environmental protection industry [15, 
16, 19, 20]. To illustrate their organization and structure, we 
present briefly the ontology standards and classification systems 
that are commonly used in the building industry.  For the AEC 
industry, there are a few ontologies that describe the semantics of 
building.  They include the CIMsteel Integration Standards 
(CIS/2) for the steel building and fabrication industry [8], the 
Industry Foundation Classes (IFC) initiated by the CAD vendors 
for design description of building components [12], and the 
OmniClass construction classification system (OmniClass) for the 
construction specification, materials, and product components  
[34].  
 
 Figures 1 and 2 show excerpted examples of the OmniClass and 
IfcXML standards. Typical of ontology standards, both are 
organized hierarchically with implicit “is-a” type relationships 
defined accordingly.  OmniClass consists of 15 tables, each of 
which represents a different facet of construction information.  
Each term is associated with a unique ID.  For example, the term 
“Sound and Signal Devices” is associated with the ID “23-85 10 
1111.”   
 
For the IfcXML, the Industry Foundation Class objects are 
expressed in an XML structure that defines the hierarchical 
relationship between elements and entities.   To extract the object 
terms for mapping purposes, the two standards are preprocessed 
to eliminate the miscellaneous information - such as the IDs in the 
OmniClass and the element names, group names and type names 
in the IfcXML -  as well as the duplicated terms.   

 
Figure 1: Excerpt from OmniClass  
Construction Classification System 

 

 
Figure 2: Organization of IfcXML  

Regulations are voluminous and cover a broad range of scopes 
and topics.  Increasingly, regulatory documents are available 
online and organized in XML structure. The International 
Building Code (IBC) [13], which represents the code of practice 
in the building industry, is employed as one of the regulatory 
document corpuses.  Figure 3 shows a provision in IBC and its 
representation in an XML structure. One notable feature of 
regulations is that they are typically organized into sections and 
sub-sections, each of which contains contents with a specific topic 
or scope. The tree hierarchy of regulations provides useful 
information that can be explored, for example, to locate similar 
sections and to build an e-government system [19, 20].  

 

<LEVEL level-depth="8" style-id="0-0-0-304" style-name="Section3" 
style-name-escaped="Section3" toc-section="true"> 
<RECORD id="0-0-0-5529" number="5529" version="3"> 
<HEADING> 
[F] 907.2.11.3 Emergency voice/alarm communication system. 
</HEADING> 
<PARA> 
<DESTINATION id="0-0-0-3521" name="IBC2006907.2.11.3"/> 
<CHARFORMAT bold="1" hidden="0" italic="0" strike-out="0" 
underline="0">[F] 907.2.11.3 Emergency voice/alarm communication 
system. </CHARFORMAT> 
</PARA> 
</RECORD> 
<LEVEL level-depth="0" style-id="0-0-0-0" style-name="Normal 
Level" style-name-escaped="Normal-Level" toc-section="false"> 
<RECORD id="0-0-0-5530" number="5530" version="3"> 
<PARA style-id="0-0-0-15" style-name="Body3" style-name-
escaped="Body3">An emergency voice/alarm communication system, 
which is also allowed to serve as a public address system, shall be 
installed in accordance with NFPA 72, and shall be audible throughout 
the entire special amusement building.</PARA> 
</RECORD> 
</LEVEL> 
</LEVEL> 

Figure 3: An IBC Provision and XML Structure 
 



3. ONE TAXONOMY TO ONE 
REGULATION 
Mapping one taxonomy to one regulation is a simple keyword 
latching task.  There are many commercial tools available to latch 
keywords from documents into a taxonomy.  Industry taxonomies 
are hierarchical classification systems, which are generally less 
than 10 levels deep.  Node labels in the taxonomy tree are treated 
as concept keywords, and they are mapped to the sections in the 
regulation where they appear.  As regulations tend to be 
voluminous, we use a section or subsection as a unit of interest.  
Figure 4 shows the International Building Codes (IBC) [13] 
latched with the OmniClass. Users can then traverse the 
taxonomy and browse relevant sections of the regulation. 

Extending the mapping from one taxonomy to multiple 
regulations unfortunately leads to the classic problem of 
information overload.  For instance, suppose we want to search 
the Web to find state regulations governing chlorine levels in 
drinking water. If we search the drinking-water regulations in 
Alabama and Arizona for the concept “chlorine,” we would find 
over 30 sections in each. The actual relevancy of these 60 sections 
to chlorine levels is not known. The problem is that Web content 
ignores the actual structure of the documents.  Consequently, 
search engines cannot take that structure into account when 
computing relevancy. The result is that users quickly become 
frustrated with information overload [4].   

Fortunately, regulatory documents are much more structured than 
web content. We propose to solve the problem of information 
overload by clustering relevant sections from different regulations 
based on that structure. We discuss our approach in the following 
sections.  

4. ONE TAXONOMY TO MULTIPLE 
REGULATIONS 
Simultaneous traversal of multiple regulation trees using one 
taxonomy is a challenging but real problem.  It is not uncommon 
for industry practitioners to be familiar with one particular 
regulation only. For example, an architect from Montgomery 
might be familiar with Alabama state code, but not Arizona state 
code. Nonetheless, if he were to design a water distribution 
system that provides water to Phoenix from lakes near 
Montgomery, he would need an understanding of both [9].   

In this scenario, finding the relevant Arizona regulations on 
chlorine levels might pose a serious problem.  We believe that it 

is beneficial to map the taxonomy to Alabama  code first, and 
then branch out to recommend related sections from the Arizona 
code.  In general, focusing on one regulation as the basis for 
finding relevant sections from other regulations significantly 
reduces information overload.   

Figure 5 shows a simple user interface that shows a scenario of 
finding related provisions between regulations from the two 
states.  After browsing down the taxonomy tree to the concept 
“chlorine,” users are shown a list of matched sections from the 
Alabama regulation.  As discussed in Section 3, matching sections 
to the taxonomy concept is simply keyword latching.  Selecting 
Section 335.7.6.15 of the AL code shows that there are 15 
recommended sections from the Arizona regulation.  A user can 
stay focused on the regulation of their choice, and at the same 
time acquire relevant sections from other regulations as needed.   

There are two major challenges to developing such a system: a 
suitable user interface and a methodology for determining 
relevant regulations. In this paper, we focus on methodologies for 
making recommendations based on relevancies between sections 
from different regulations.   

Figure 5: Chlorine mapped to Section 335.7.6.15 in AL code, 
which have 15 related sections in AZ code 

 

To identify related provisions from different regulations, we reuse 
the relatedness analysis core from [19, 20].  That analysis 
compares sections from different regulations using a Cosine 
similarity measure (see Section 5.1) [18, 31].  The goal is to 
identify the most strongly related provisions using (1) traditional 
term matches and a combination of feature matches, and (2) 
content comparisons as well as structural analysis.  Regulations 
are first compared based on a combination of conceptual 
information and domain knowledge using feature matching.  
Regulations also possess specific structures, such as a tree 
hierarchy of provisions and the referential structure.  These 
structures contain useful information for locating related 
provisions and are, therefore, used in the analysis as well.  For the 
detailed discussion on the evaluations of results from the 
relatedness analysis of provisions see [19]. 

Figure 4: Regulation Latched with Taxonomy Concepts 



5. MULTIPLE TAXONOMIES TO ONE 
REGULATION 
As noted above, multiple taxonomies have been developed for 
different applications within the same industry domain.  Most 
practitioners are familiar with at least one of them; but, they 
frequently need to deal with others for various applications [2, 
23].  Therefore, traversing a single set of regulations using 
multiple taxonomy trees poses a real but non-trivial problem.  
There are many research efforts on ontology merging  [33, 39].  
These efforts produce a merged ontology that can be used for data 
interoperability but not as a front-end representation format.  
Since users would need to learn this new merged ontology in 
order to browse regulations, this would defeat the original intent 
of using the existing taxonomies.  

Using the same argument from Section 4, we believe that 
focusing on one familiar taxonomy is the right starting point to 
traverse regulations.  Once users reach a taxonomy node of 
interest, related concepts from other taxonomies can be suggested 
and users can switch their focal point from one taxonomy to 
another. 

Figure 6 illustrates the proposed approach using the OmniClass 
[34] and the IFC [12] taxonomies, and the International Building 
Code (IBC) regulations [13].  This figure assumes the practitioner 
is familiar with OmniClass and IBC, but not IFC. The practitioner 
uses the term “steel decking” from OmniClass to find an ordered 
list of matching IBC sections and relevant IFC concepts.  Upon 
locating a list - sorted in order of relevance - of IBC sections that 
are related to “steel decking,” the user also sees a list of related 
IFC concepts including “slab.”  Mousing-over the IFC concept 
“slab” brings the focal point to the IFC hierarchy, where the user 
is presented with the same analysis – namely the IFC elements 
related to the concept “slab,” a ranked list of matching IBC 
sections, and a ranked list of relevant OmniClass concepts. 

Once these related concepts have been found, the next task is to 
develop mapping between them.  Ontology mapping has been an 
active research area since the semantic web movement began [28, 
29].  In general, it is very difficult to develop mappings between 

two arbitrary ontologies. In our case, however, the problem is 
slightly more manageable because our ontologies are very 
industry specific and are targeted towards the same group of 
users.   

Similar to the techniques presented in Section 4, we compute the 
relevance among concepts from different ontologies using a 
vector comparison approach.  A document corpus is used to relate 
concepts by computing their co-occurrence frequencies.  This 
training corpus must be carefully selected since it represents the 
relevancy among concepts from different taxonomies.  
Conveniently, we have a corpus of regulatory documents that has 
been meticulously drafted and reviewed for accuracy.  Unlike 
web content, regulations do not have random co-occurrences of 
phrases in the same provision.  This dramatically increases the 
likelihood of finding real matches. 

Consider a pool of m concepts and a corpus of n regulation 
sections.  A frequency vector is an n-by-1 vector storing the 
occurrence frequencies of concept i among the n documents.  That 
is, the k-th element of 

icr

icr  equals the number of times concept i is 
matched in section k.  In subsequent sections, we will discuss 
three metrics to compute the similarity score among concepts.  In 
Figure 6, the Cosine similarity scores for several concepts related 
to “steel decking” are shown. The score for “slab” is  0.895, 
which ranks second among all IFC concepts that are relevant to 
“steel decking.” 
 

5.1 Cosine Similarity 
Cosine similarity is a non-Euclidean distance measure between 
two vectors.  It is a common approach to compare documents in 
the field of text mining [18, 31].  Given two frequency vectors icr  

and jcr , the similarity score between concepts i and j is 

represented using the dot product: 

Figure 6: Traversing the IBC using OmniClass Taxonomy with Relevant Concepts from the IFC Taxonomy 
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The resulting score is in the range of [0, 1] with 1 as the highest 
relatedness between concepts i and j. 

5.2 Jaccard Similarity Coefficient 
Jaccard similarity coefficient [31, 37] is a statistical measure of 
the extent of overlap between two vectors.  It is defined as the 
size of the intersection divided by the size of the union of the 
vector dimension sets: 
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Jaccard similarity coefficient is a popular measure of term-term 
similarity due to its simplicity and retrieval effectiveness [17].  
Two concepts are considered similar if there is a high probability 
for both concepts to appear in the same sections.  To illustrate the 
application to our problem, let N11 be the number of sections both 
concept i and j are matched to, N10 be the number of sections 
concept i is matched to but not concept j, N01 be the number of 
sections concept j is matched to but not concept i, and N00 be the 
number of sections that both concept i and j are not matched to.  
The similarity between both concepts is then computed as 
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Since the size of intersection cannot be larger than the size of 
union, the resulting similarity score is between 0 and 1. 

5.3 Market-Basket Model 
Market-basket model is a probabilistic data-mining technique to 
find item-item correlation [11].  The task is to find the items that 
frequent the same baskets.  The support of each itemset I is 
defined as the number of baskets containing all items in I.  Sets of 
items that appear in s or more baskets, where s is the support 
threshold, are the frequent itemsets.   

Market-basket analysis is primarily used to uncover association 
rules between item and itemsets.  The confidence of an 
association rule {  is defined as the 

conditional probability of j given itemset { .  The 
interest of an association rule is defined as the absolute value of 
the difference between the confidence of the rule and the 
probability of item j.  To compute the similarities among 
concepts, our goal is to find concepts i and j where either 
association rule 

jiii k →},...,, 21

},...,, 21 kiii

ji → ior j → is high-interest.   

Consider a corpus of n documents.  Let N11 be the number of 
sections both concept i and j are matched to, N10 be the number of 
sections concept i is matched to but not concept j, and N01 be the 
number of sections concept j is matched to but not concept i.  The 
probability of concept j is computed as 

n
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and the confidence of the association rule ji → is 
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The forward similarity of the concepts i and j, which is the 
interest of the association rule ji →  without absolute notation, 
is expressed as 
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The value ranges from -1 to 1.  The value of -1 means that 
concept j appears in every section while concept i does not co-
occur in any of these sections.  The value of 1 is unattainable 
because (N11 + N01) cannot be zero while confidence equals one.  
Conceptually, it represents the boundary case where the 
occurrence of concept j is not significant in the corpus, but it 
appears in every section that concept i appears. 

5.4 Use of Regulation Hierarchy Structural 
Information 
Many related concepts can be uncovered by treating each section 
in a regulation as an independent document. A concept-document 
matrix is generated to compute concept co-occurrence in 
documents, which are really regulatory sections.  This approach is 
generally sufficient in revealing most related concepts, but some 
related concepts rarely co-occur in the same sections.  For 
example, if two concepts contain an Is-A-relationship, like door 
furniture and door hardware, they may be used in the same 
regulation interchangeably but in different sections. 

Is-A-related concepts are also hard to find when each section is 
treated as if it were an independent document.  The relationship 
between Is-A-related concepts, such as “building materials” and 
“concrete” as shown in Figure 7, are sometimes implicit from the 
structures of sections.  For example, the descriptions of “building 
materials” and those of “concrete” may not appear in the same 
section.  Instead, the sections describing “concrete” are usually 
the subsections of the sections describing “building materials.”  If 
we consider a subsection and its parent section in the computation 
of the similarity score between “building materials” and 
“concrete,” the implicit relationship between building materials 
and concrete might become more obvious.  Therefore, the 
hierarchical structure of sections needs to be considered to extract 
non-trivial related concepts. 

  
Building materials 

Concrete Steel 

Properties of 
Concrete 

 

 

 

 

Figure 7: Example of related but rarely co-occurring concepts 
Regulations contain well-organized hierarchical structures with 
sections and sub-sections of specific topic or scope.  There are 
organizational and referential structures explicitly defined in 



regulations.  Section 4 briefly discussed the usage of the 
regulation hierarchical information to locate related sections from 
different regulation trees.  The results show that regulatory 
structure sometimes helps to reduce prediction error of related 
provisions [19].  Here, we will use the regulation hierarchy to 
uncover semantic relationships between concepts from different 
taxonomies.  

Well-structured regulations can be represented as a hierarchical 
tree, where each section corresponds to a discrete node.  As 
illustrated in Figure 8, each section has a parent section, a set of 
sibling sections, and a set of child sections.  In general, for a 
section with a particular topic, the parent section describes a 
broader topic, the sibling sections describe parallel topics, and the 
child sections describe more specific topics.  In our computation, 
we will consider the co-occurrence of concepts in a broader 
scope, namely the parent, sibling and child sections. 

Figure 8: Tree hierarchy of sections in regulations 
The frequency matrix C is modified to take the parent section, 
sibling sections and child sections into consideration.  To include 
the parent section, the weighted numbers of occurrence for all the 
concepts in the parent section are added to the numbers of 
occurrence in the self section.  Similarly, the sibling sections and 
child sections are then included with a discounted weight.  In our 
formulation below, we will denote Par(k), Sib(k) and Child(k) as 
the parent section, set of sibling sections and set of child sections 
of Section k.  The k-th element of frequency vector icr , i.e., the 
number of times concept i is matched to Section k, is updated as 

∑∑ ∈∈
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where wp, ws and wc are the weights of the parent, sibling and 
child sections respectively. 

5.5 Evaluations of the Measures 
In summary, we randomly selected twenty concepts from the 
OmniClass and the IFC hierarchies respectively and computed 
pairwise similarity scores using the three approaches described 
above.  In addition, we interviewed domain experts and used their 
matches as the true matches.  We used root mean square error 
(RMSE), precision, recall and F-measure as performance metrics 
to evaluate and compare both the three measures and the use of 
regulation structural information.  A baseline ontology matcher is 
compared to the three measures using precision and recall as the 
evaluation metrics. 

Three domain experts identified the related concept pairs among a 
total of 400 possible pairs.  Related concept pairs are assigned a 
true value of one; all other pairs are assigned a true value of zero.  
As for the predicted values, two concepts are predicted as similar 
or related if the computed similarity score is larger than certain 
threshold scores. Given these true and predicted values, we 
computed values of RMSE, precision, recall and F-measure for 
the three measures, the baseline ontology matcher, and different 
regulation structural information inclusions.  The averages of the 
results from the three true answers are then taken as the final 

results.  Details are given in the following sections. 

5.5.1 Root Mean Square Errors (RMSE) among the 
Three Measures 
Root mean square error (RMSE) is a metric to evaluate the 
accuracy of the predicted values against the true values.  
Comparison between ontology of m concept terms and ontology 
of n concept terms involves m by n concept-concept pairs.  
Therefore the RMSE is calculated as 
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Figure 9 shows the results of the three measures using RMSE and   

Figure 9: Evaluation results of the three measures using 
RMSE 

 
provisions from regulations as independent documents in the co-
occurrence computation.  The graph shows results for threshold 

similarity scores ranging from 0.15 to 0.9.  We conclude, when no 
regulation hierarchy structural information is considered, that the 
market-basket model results in the lowest RMSE for most 
threshold similarity scores.  This means that the market-basket 
model outperforms the other two measu
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5.5.2 Precision, 
Three Measures 
We used precision, recall and F-measure values to compare the 
three similarity analysis measures when we included regulation 
hierarchy structural information.  While RMSE takes both 
correctness and incorrectness of prediction into consideration, 
precision and recall emphasize correctness only.  Precision and 
recall evaluates the accuracy of predictions and the coverage of 
accurate pairs.  It does this by measuring the fraction of predicted 
matches that are correct, i.e., the number of true positives over the 
number of pairs predicted as matched.  Recall measures the 
fraction of correct matches that are predicted, i.e., the number of 
true positives over the 
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There is always a tradeoff between precision and recall.  F-
measure is, therefore, leveraged to combine both metrics.  It is a 
weighed harmonic mean using precision and recall. In other 
words, it is the weighed reciprocal of the arithmetic mean of the 
reciprocals of precision and recall.  It is computed as 

( )
RecallPrecision
RecallPrecisionMeasureF

+
×⋅

=−
2  

Figure 10 shows the results for the three measures. The market-
basket model shows the highest F-measure values in all cases, 
again, consistent with the RMSE results.  In fact, market-basket 
model achieves the highest recall rate with relatively high 
precision in all cases. Jaccard similarity is not preferred due 

ecision.  Other relationships, 
such as sibling and child, are not one to one; the number of such 
relationships, therefore, could heavily tax precision with only 
minor increase in recall. 

to its 
low F-measure values, resulted from its very low recall rates.  
Cosine similarity falls in between; this is consistent with the 
RMSE results.    

Figure 10: Evaluation results of the three measures using F-
measure 

Since the market-basket model outperforms Cosine and Jaccard 
similarities in both cases, we will evaluate the impact of 
regulation hierarchy using the market-basket model only.   

As shown in Figure 11, the effect of including regulatory structure 
in the analysis is inconclusive.  In general, it increases recall and 
reduces precision, as more regulatory nodes are considered to 
locate related concepts.  The inclusion of parent section produced 
a slightly higher F-measure for most threshold scores.  This is 
likely due to the fact that the parent relationship is one to one 
which minimizes the impact on pr
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Figure 11: Evaluation results of market-basket model using F-

measure 

5.5.3 Comparison of the Domain-based Model with 
the Lexicon-based Model 
In addition to comparing the three measures with one another, we 
also evaluated our domain-based approach to a traditional 
lexicon-based approach.  Ontology mapping is an active research 
topic, and common mapping methods discover the semantic 
similarity between ontology elements using rule-based [22, 28], 
lexicon-based [24, 35] and structure-based methods [25, 27].  Our 
approach is comparable to a lexicon-based approach, where 
dictionary and thesaurus are used to enumerate synonyms, 
homonyms, and so on.  In our analysis, we use a domain-specific 
corpus of regulations to uncover such semantic relationships. 

A thesaurus is necessary to compare our approach to a lexicon-
based one.  A common thesaurus and well-known lexical resource 
for the English language is WordNet [26]. It is also one of the 
most widely adopted synonym sources for ontology matching 
techniques including CUPID [24], Learned Ontology Model 
(LOM) [21], and Version Matching Approach (VMA) [41]. Table 
1 shows the result for comparing a domain-based ontology 
mapping method with a lexicon-based element matcher using 
WordNet. 

Table 1 shows that our approach outperforms the lexicon-based 
matcher in terms of precision and recall.  Some examples of 
matches that are found by our domain-based matcher but not by 
the lexicon-based matcher are: (sound and signal devices, 
IfcSwitchingDeviceType), (steel decking, IfcSlab), (door 
hardware, IfcBuildingElementComponent), and (sound and signal 
devices, IfcAlarmType). The reliability of lexicon-based matchers 
is not guaranteed because their use of stemmers to reduce derived 
words to their root form is not always appropriate for the domain 
[10]. In addition, many concepts have different meanings when 
used in different domains, so that their synonyms and definitions 
could be different. 
We should note that WordNet is a generic linguistic thesaurus and 
not an industry-specific taxonomy.  Consequently, it contains 
little and imprecise information related to the terminology used 
by the OmniClass and IfcXML. The result shows that domain-
related corpora, such as regulations and technical specifications, 
are useful in discovering the semantic relationships across 
multiple ontologies. 
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Table 1: Precision and recall comparisons of domain-based 
ontology mapping to lexicon-based ontology mapping 

Score 
threshold Approaches Cosine 

Similarity 
Jaccard 

Similarity 
Market-basket 

Model 

  P R P R P R 

Lexicon-based 
Matcher 

0.50 0.03 0.00 0.00 0.00 0.00
0.2 

Domain-based 
Matcher 

0.79 0.53 0.91 0.17 0.70 0.71

Lexicon-based 
Matcher 

0.50 0.03 1.00 0.03 0.50 0.03
0.3 

Domain-based 
Matcher 

0.83 0.41 0.90 0.15 0.75 0.71

Lexicon-based 
Matcher 

1.00 0.03 1.00 0.03 0.50 0.03
0.4 

Domain-based 
Matcher 

0.91 0.36 1.00 0.12 0.80 0.59

Lexicon-based 
Matcher 

1.00 0.03 1.00 0.03 1.00 0.03
0.5 

Domain-based 
Matcher 

0.90 0.31 1.00 0.11 0.81 0.51

Lexicon-based 
Matcher 

1.00 0.03 1.00 0.03 1.00 0.03
0.6 

Domain-based 
Matcher 

0.92 0.20 1.00 0.07 0.81 0.49

 

6. CONCLUSIONS & FUTURE TASKS 
Hierarchically structured regulatory documents are written by 
government agencies who organize the material to suit their own 
needs. In this paper, we proposed a system to map concepts from 
industry-specific taxonomies to similar concepts in those 
regulations to increase their usability by industry practitioners.   

To measure similarity, we proposed and evaluated three 
measures: Cosine similarity, Jaccard coefficients, and market-
based models. We used a running example from the AEC industry 
to illustrate the need, the usage, and the benefit of the mapping 
system and measures.  Using that example, we considered 1-1, 1-
n, n-1 mappings between taxonomies and regulations and showed 
that market-based models were superior to the other two.   

We plan to implement an n-n concept-section mapping in the 
future, by combining the techniques of concept comparisons and 
section comparisons.  In section comparisons, the hierarchical 
structure of regulations is used to enhance the analysis; we also 
plan to incorporate the hierarchical information of taxonomies 
into concept comparisons.  In the future, we plan to engage 
potential users to help perform formal evaluations of the 
similarity metrics and the usability of the system. 

7. ACKNOWLEDGMENTS 
The authors would like to thank the International Code Council 
for providing the XML version of the International Building Code 
(2006).  The authors would also like to acknowledge the supports 
by the National Science Foundation, Grant No. CMS-0601167, 
the Center for Integrated Facility Engineering (CIFE) at Stanford 
University and the Enterprise Systems Group at the National 
Institute of Standards and Technology (NIST).  Any opinions and 
findings are those of the authors, and do not necessarily reflect the 
views of NSF, CIFE and NIST. 

8. DISCLAIMER 
 
Certain commercial software products may be identified in this 
paper. This use does not imply approval or endorsement by NIST, 
nor does it imply these products are necessarily the best available 
for the purpose. 
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