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Abstract— We describe an algorithm that generates a smooth
trajectory (position, velocity, and acceleration at uniformly sam-
pled instants of time) for a car-like vehicle autonomously navi-
gating within the constraints of lanes in a road. The technique
models both vehicle paths and lane segments as straight line
segments and circular arcs for mathematical simplicity and
elegance, which we contrast with cubic spline approaches. We
develop the path in an idealized space, warp the path into
real space and compute path length, generate a one-dimensional
trajectory along the path length that achieves target speeds
and positions, and finally, warp, translate, and rotate the one-
dimensional trajectory points onto the path in real space. The
algorithm moves a vehicle in lane safely and efficiently within
speed and acceleration maximums. The algorithm functions in
the context of other autonomous driving functions within a
carefully designed vehicle control hierarchy.

I. Introduction

Automatic control of an on-road vehicle is a remarkably
complex task. One must deal with complex intersections,
widely varying road surface conditions, radically changing
weather conditions, objects moving unpredictably, widely
fluctuating types and sizes of objects, dramatically differ-
ent road types, severely changing lighting conditions, miss-
ing or confusing lane markings, etc. In order to manage
this complexity, we have defined a control hierarchy with
sensible assignment of responsibility for each level in the
hierarchy [1]. A carefully designed hierarchy allows design
to proceed using a divide-and-conquer strategy that ensures
successful component integration. The scope and nature of
the vehicle trajectory generator, that is the subject of this
work, is heavily dependent on the responsibilities assigned
to each level in the hierarchical control system that the
trajectory generator supports.

We describe a vehicle trajectory generator that is able to
maneuver an on-road autonomous vehicle safely and effi-
ciently with dynamic constraints and in the presence of ob-
jects. We include moving objects (e.g., other vehicles) as well
as stationary objects (e.g., potholes and parked vehicles). We
require the vehicle trajectory generator to allow the vehicle
to observe posted speed limits and operate within speed and
acceleration (dynamic) maximums based on things such as
road surface type and road surface conditions. Our general
approach to path planning in the trajectory generator is
to separate path generation from trajectory generation. We
argue that this is roughly how humans navigate a vehicle
in lane. We select a generally safe and efficient path in a
lane-centric space ("lane-centric" means that distances are
measured tangential and normal to the center of the lane,
independent of lane curvature) and then we move along that
path (warped into real space) with speed and acceleration
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Fig. 1. An example sequence of (constant curvature arc
and straight line) lane segments, which have continuous, non-
differentiable tangents at the boundaries between adjacent lane
segments. Such a sequence is being used to model the path of any
lane on any road. The representation on top in this figure is the
lane segment sequence in lane space. The bottom representation
in this figure is the same sequence in real space.

values appropriate to a variety of factors, including the type
of object the vehicle is maneuvering around, the motion of
that object, the tilt in the road, the friction conditions of the
tire on the road surface, the curvature of the path, and any
posted speed limit.

This simple path modelling approach is chosen, in part,
because it turns path planning into simple closed form ge-
ometric computations, with no on-line search required. The
problem of in-lane vehicle maneuvering around objects and
maneuvering on various road surface types and in various
weather conditions has been addressed [2].

Splines are commonly used for defining smooth paths for
robots [3] [4]. In order to specify robot motion along that
path, we must be able to determine equally spaced points
on that path, and therefore, we must have an arc length
parameterization of that curve. For example, cubic splines
do not yield a symbolic expression for arc length and the
math required to approximate the arc length parameteri-
zation is complex, as well as there being serious real-time
computational issues [4]. We offer an approach involving
paths consisting of line segments, circular arcs, radially
warped line segments, and radially warped circular arcs.
Each of these path types yields a symbolic expression for
path length. However, for radially warped circular arcs, the
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expression is so complex, we also employ an approximated
arc length parameterization.

The control hierarchy is designed with a sampling rate fast
enough to replan trajectories every 0.1 seconds or less, so
that the vehicle is able to respond quickly to a sometimes
dramatically and quickly changing environment. Therefore,
we only assume simple models of both vehicle motion and
predicted object motion. For vehicle motion we assume
motion in straight lines, constant curvature arcs, or a radial
warp of either lines or arcs. For predicted object motion, we
assume either constant velocity or constant acceleration for
either linear or circular motion, since we will most likely
expect to be replanning the vehicle path for both object
motions changes and other reasons.

II. Lane modelling

Our model of the road is chosen to be a two-dimensional
representation of the road as sequences of constant curva-
ture arc or line segment lane segments with continuous, non-
differentiable tangents at lane segment boundaries. The se-
quence of lane segments at the bottom of Figure 1 illustrates
this road model. Of course, two-dimensional modelling im-
plies that tangential or normal tilt of the road surface is
not explicitly represented in the road model. In our control
system, tilt of the road surface will affect the choice of
target speeds along the curve. Road surface tilt will also
affect the choice of a particular maneuver among a set of
candidate maneuvers around objects, due to the change in
acceleration maximums. Figure 3 shows that these vehicle
dynamics maximums are input to the Maneuver Generator
module. Road surface tilt may also affect the nature of the
planned trajectory. However, tilt will not generally affect the
chosen vehicle path, once a maneuver is selected.

III. Path and trajectory modelling

In order to complement the relatively simple model of the
road as a sequence of smooth line segments and constant
curvature arcs, and to keep path planning mathematically
simple, we have chosen to model the path of the vehicle as
line segments and constant curvature arcs as well. However,
in keeping with our intuition about lane-centric driving, the
path model is not in real space, but in a transformation of
real space we call "lane space," i.e., in which lane segments
are all in a straight line. The transformation of lane segments
from real space to lane space is simple: The length of each
lane segment in lane space is equal to the length of the curve
running through the center of the lane in its companion lane
segment in real space as illustrated in Figure 1. Let Li be
the cumulative length of the path along the center of the
last i lane segments. The transform makes the path length
through the middle of each lane segment to be the length
of the new lane segment in lane space. The beginning left-
most point in the center of the lane of the ith lane segment
in lane space is the point, (Li−1,0).

To plan paths in lane space is simpler mathematically
than planning in real space. Real space has discontinuous
curvature, for example, which also makes it harder to keep
the planned path within lane boundaries. After planning in
lane space, we can warp the path onto the real space of
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Fig. 2. Hierarchical control nodes for on-road vehicle motion
control with commands and responsibilities for each level in the
hierarchy

lane segments. The warping complicates the math, but only
slightly, and that only when there is an arc path radially
warped to reside in an arc lane segment. Such a warping
does not yield a simple closed form for the warped path
parameterized by path length, requiring multiple on-line
numerical integrations to obtain path length.

We generate the full path first in lane space, compute
the true path length of that path in real space, compute a
one-dimensional trajectory along that path, and warp the
trajectory onto the path in real space. This works for plan-
ning a vehicle trajectory in the presence of both static and
dynamic objects. With static objects, all the trajectory gen-
erator needs is a sequence of target positions and velocities
in lane space. With dynamic objects, the trajectory generator
simply needs the additional information of a time window
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when we are predicted to need to achieve that position.

IV. Elemental Maneuver level in the context of the

total vehicle control hierarchy

Our particular road model (constant curvature arcs and
lane segments) as well as aspects of the trajectory gener-
ator are chosen because we employ a hierarchical control
approach. The approach allows us to have simpler control
models at each hierarchical level with the assurance that
local discontinuities at a higher levels will be smoothed out
at a lower hierarchical levels [5].

The trajectory generator serves within the elemental ma-
neuver manager (EMM) level of the control hierarchy as
described in Figure 2. The EMM is responsible for per-
forming tasks like Follow_Lane, ChangeTo_RightLane, and
PassOn_Left. However, the EMM is not responsible for de-
termining the type of object, the cost of collision with a
particular object, determining objects of interest, determin-
ing whether conditions are good to pass, and other similar
responsibilities summarized for the other control modules
in Figure 2. On the other hand, the EMM is responsible to
make sure that the vehicle accomplishes its assigned tasks
safely and efficiently in the presence of objects and dynamic
constraints, and furthermore, is responsible for generating
those dynamic constraints from sensor input [2].

The EMM level is given a list of objects by the level
above (Drive Behavior Manager) with their sizes, safe passing
speeds, and safety set-off distances [2]. It may also be given
certain target positions and velocities on the road ahead
based on knowledge of things like posted speed limits or
upcoming road conditions. When encountering an object or
objects ahead, the EMM level must choose an appropriate
maneuver around the object from a set of all possible

maneuvers, including slow down, run over 1, straddle 2,
circumvent left, and circumvent right.

Also, thinking hierarchically, we want to have simpler
math models and control paradigms at each level for to-
tal system perspicuity, which is so critically important to
system maintenance, expansion, and improvement.

V. Trajectory generation in the context of EMM

level responsibilities

The EMM’s task is to be able to successfully perform
commands like follow_lane, change_lane, and pass_on_left
within speed and acceleration constraints in the presence
of objects. To successfully perform these commands, several
distinct activities must occur in the EMM, namely, sensory
processing, maneuver generation, and trajectory generation,
as illustrated in Figure 3.

Sensing and sensor data processing are required to deter-
mine speed and acceleration constraints. Sensing and sensor
data processing of objects (including motion predictions) as
well as computation of necessary lane segment parameters
(such as type, size, and position) are the responsibility of
the next higher level.

The maneuver generation (MG) module has logic to per-
form any of the commands required of the EMM level. MG
has the responsibility to propose candidate sequences of
maneuvers to the trajectory generator (TG) module. Ma-
neuver types include stop, straddle, run over, slow down,
circumvent right, and circumvent left.

The TG module receives a set of proposed sequences
of target positions, target velocities, ranges of times (t ∈
[tmin, tmax]) (reserved for moving objects), and the maneu-
ver types. The output of TG to MG is advice on the relative

1the "run over" maneuver is to take no obstacle avoidance mea-
sures whatsoever.

2the "straddle" maneuver means that the vehicle passes the
object with the object between left and right side wheels and under
the vehicle underbody.



efficiency and safety or outright impossibility of the various
proposed sequences of target positions, velocities, and time
windows. The MG then outputs the best set of trajectory
values for this particular instant in EMM’s planning cycle.
Planning cycle frequency is dependent on the computational
cost of each set of plans. We expect these cycles to occur at
frequencies well over 10 Hz, which should be adequate for
real-time replanning.

VI. The EMM trajectory generation algorithm

Several options are possible for a design for a trajectory
generator for a vehicle in-lane at the EMM hierarchical level.
One is to plan both path and trajectory simultaneously in
real space. Another is to plan the path in real space, compute
a one-dimensional trajectory, and plot that trajectory along
the path in real space. A third way, and the one we have
chosen, is to plan a path in lane space, warp these paths
into real space, compute a safe and efficient one-dimensional
trajectory along the path, then warp the trajectory points
from lane space to real space.

The path in lane space is simple mathematically: the
paths are either straight lines or constant curvature arcs.
The use of mathematically simple paths in lane space has
the advantage that in most cases we can obtain simple
symbolical expressions for the warping functions.

The positives to this approach are that the path is elegant,
trajectory is simple, and warping is straightforward. All is
smooth, safe, and generally efficient. The negatives are that
simplified path planning in lane space plus warping can
exacerbate curvature, reducing motion efficiency, but not
safety since we can always control the trajectory along the
path. Also, numerical integration is required for computa-
tion of the path length function (7) for the arc path in an
arc lane (also see Section VI-F).

All path planning in real space is challenging due to the
fact that the lane segments have curvatures and lengths
which can, of course, widely vary. It would be quite a
challenge to plan a trajectory without explicit reference to
the constraint of lanes, since the trajectory needs to stay
in-lane at all points along the trajectory.

We believe that a logical model for trajectory planning is
to perform the path planning in a space that is absolutely
straight. One way to achieve such a space is to imagine the
lane segments as a flexible, non-elastic rope. Then stretch
the rope out straight, so that the length of the straightened
lane segment is the length of the center line of the un-
straightened lane segment. This we call, lane space. An
example set of lane segments in real space and transformed
into lane space is illustrated in Figure 1.

So, vehicle paths are arcs and straight lines in lane space.
This means that steering angles will be sometimes discontin-
uous, whereas, if we used higher order curves, say a fourth
order curves or clothoids, not so. The latter would gain us
smooth turns of the steering wheel, but we would have to
warp this curve into real space, which would yield substan-
tially complex math. Our chosen method allows us to easily
warp line segment paths to line segment lane segments,
arc paths to line segment lane segments, or line segment
paths to arc lane segments, which are all simple processes
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Fig. 4. An example sequence of lane segments with target positions
and velocities that are sufficient to guide the generation of both
vehicle path and dynamic trajectory.

mathematically. Only warping arc paths to arc lane segments
is complex mathematically, requiring numerical integration
to obtain an approximate parameterization of the curve by
path length.

We need to assign a trajectory for the vehicle to travel
along an arbitrary sequence of lane segments. A trajectory
consists of target position, velocity, and acceleration points
in two dimensions at uniformly spaced instants of time. If
there are no objects in the lane, the vehicle will be assigned
a safe and efficient trajectory that will require the vehicle to
achieve each target speed at its target position. The planned
vehicle path will copy the shape of the lane segment. Some-
times, the target speed prior to a lane segment boundary
(illustrated in Figure 4) will be governed by amount of
curvature in the subsequent lane segment. However, the
nature of road surface and tire conditions, and posted speed
limits will also govern these target speeds.

What happens when an object is in the lane and the vehicle
must maneuver around it in lane to avoid collision? Such
a situation is depicted in Figure 4. Since we are modelling
roads as sequences of lane segments of either constant
curvature arc or straight line segments, it would seem logical
to model vehicle object avoidance maneuvering also in terms
of constant curvature arcs and line segments. This is what
we have done and is described in detail in later sections.
Such a sequence of target positions and velocities is shown
in Figure 4.

Here is a summary description of the entire trajectory
generation algorithm that is the subject of this paper. We
will not deal with the maneuvering issues that are upstream
from the trajectory generator, which are planned for a
subsequent paper.

1) Transform into lane space all current lane segments in
vehicle purview

2) Compute or read all target positions, velocities, time
windows, and maneuver types in lane space for the
current set of lane segments, posted speed limits,



changes in road conditions, and objects of importance
3) Generate the vehicle path in lane space
4) Compute the total path length of the warped 2-

dimensional path in lane space into real space
5) Compute a safe and efficient one dimensional trajec-

tory over the path length just computed to achieve
the warped target positions and speeds within the
time window and within velocity and acceleration max-
imums, if possible

6) Compute the radius of curvature along the path and
if, at any point along the curve, vehicle speed is higher
than the radius of curvature and normal acceleration
maximums will allow, reduce vehicle speed appropri-
ately and recompute the one-dimensional trajectory

7) Superimpose the one dimensional trajectory on the
warped path parameterized by path length and advise
the maneuver generator module if any paths are actu-
ally impossible to achieve within time and acceleration
constraints

8) Loop back to step number 2 for each new target posi-
tion in the vehicle purview

9) Add to or revise the trajectory as new lane segments,
objects, posted speed limits, etc. enter the vehicle’s
purview

A. Generating the vehicle path in lane space

Given the simplifying nature of the system hierarchy [1],
at the hierarchical level of the trajectory generator [2], the
problem of moving an autonomous vehicle safely along a
road containing other objects (moving and stationary) can be
reduced to a problem of going from one velocity at an initial
location, to a final velocity at a final location. This means
that the vehicle has some initial velocity v0 at some initial
point in two dimensional space, p0. We want to compute
a smooth path from p0 at v0 to pf at velocity vf 3. As
suggested in Figure 5, we hope to describe the entire path
of the vehicle on-road in-lane as a set of smooth and simple
paths, described by line segments or circular arcs in lane
space, between a series of target positions and velocities.

Choosing circular arcs and line segments only for both
lanes and paths allows us, in most cases, to easily compute
a unit speed parameterization of the paths warped into
real space (unit speed parameterizations are those that are
parameterized by path length [6]). After we compute the
total path, we can compute a one-dimensional trajectory
that is intended to move the robot along the path within
acceleration and speed constraints dictated by the curvature
of the path and other factors (e.g., road surface conditions,
posted speed limit, condition of tires).

A disadvantage of choosing arcs and line segments for
lanes and paths is that, in general, the direction of the
velocity vector can change substantially at the intersection
point of the two arcs. However, since this trajectory is meant
to operate within a hierarchical control system, there will be
sufficient smoothing of the steering at lower levels.

3The path solutions we derive also require that v0 · vf ≥ 0 in
lane space, which is an easy constraint to satisfy.

Our path generation algorithm at the highest level is in
three parts. First, if the vector between current and target
position as well as the two velocity vectors are all collinear,
the path (in lane space) is a straight line segment from p0 to
pf . The second step requires we first form a vector, v , shown
in Figure 7, that is the vector at pf that is tangent to the
circle that passes through both pf and p0 and is also tangent
to v0. Now if the cross product, vf × v equals zero, the
planned vehicle path is a single constant curvature arc. We
call the sign of this cross product the discriminant. Third,
if neither of the first two conditions are true, we form the
vehicle path using two circular arcs of (generally) different
curvature. This third step will now be detailed.

The path now consists of two arcs in lane space (each
having constant curvature) such that the total path has
continuous, but not differentiable, velocity. We want to com-
pute the parameters of two circles that have the following
constraints: 1) they intersect at one point, 2) they are disjoint
(one is not enclosed within the other), 3) the initial circle
is tangent to the input vector v0 at p0, 4) the final circle
is tangent to the input vector vf at p0, and 5) the relative
lengths of the two radii are scaled by the relative lengths of
the input vectors, v0 and vf . The scale chosen for radii 1)
ensures a single solution and 2) fulfills what is a reasonable
requirement, namely, that the greater the speed the lesser
the curvature (greater the radius).

If ‖v0‖ = 0 or ‖vf‖ = 0, we will fix the initial or final
speed to be some non-zero minimum corresponding to the
minimum turning radius of the vehicle. Therefore, ‖v0‖ ≠
0 ∧ ‖vf‖ ≠ 0 and the algorithm described is governed by
these new input values.

There are actually four possible solutions of two inter-
secting circles to each set of input conditions: 1) The initial
tangent circle is on the left side of v0 (left side while "looking
down" v0) at p0 and the final circle is on the right side of vf
at pf ("left/right" solution), 2) the initial tangent circle is on
the right side of v0 at p0 and the final circle is on the left
side of vf at pf ("right/left"), 3) the initial tangent circle is
on the left side of v0 at p0 and the final circle is on the left
side of vf at pf ("left/left"), or 4) the initial tangent circle
is on the right side of v0 at p0 and the final circle is on the
right side of vf at pf ("right/right"). It can be demonstrated
that the two latter solutions (left/left and right/right), if such
solutions exist, involve circles that are enclosed within one
another.

If either of the latter two enclosed circle solutions exist,
we find that a straight line (infinite radius for one circle) and
a maximum radius circle for the other circle is a possible
enclosed solution. In fact, for on-road driving, safe driving
is better served by smaller curvatures and this solution
(straight line and circle) has the smallest curvature of any
reasonable enclosed circle solution. We need to select a
left/right and right/left solution if the maximum radius is
still either 1) too high a curvature for normal acceleration
maximums or 2) less than the turning radius of the ve-
hicle. Otherwise, we always select a legal one circle (plus
line) solution for the sake of path efficiency. We will call
these solutions one circle solutions. There are four of them:
line/circle right, circle/line right, line/circle left, circle/line



Fig. 5. For a particular sequence of lane segments and input positions and velocities, we have the paths segments in lane space, those
same path segments parsed at lane segment boundaries, the one dimensional trajectory with speed changes as required within acceleration
maximums, the lane segments in real space, and the one dimensional trajectory superimposed on the path in real space. Achievable speeds
are shown in the one dimensional trajectory plot, just where those speeds are achieved. Achievable positions are shown in both the lane
space and real space plots. Due to warping of the paths when in an arc type lane segment, the length of the total path in real space will
not be the same, in general, as the length of the path in lane space. In the example of this figure the two lengths are nearly equal due to
the two high curvature arc lane segments of opposite curvature.

left. We need a slightly more complicated set of discrimi-
nants to discern between these four solutions.

In summary, the algorithm for picking the best two circle
or one circle solution is first to see if any of the one circle
solutions exists and if not, choose the appropriate two circle
solution.
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1) One circle solution derivations: We examine the values
of the following array of four discriminants to determine the
best of the four one circle solutions,

d1 = (sgn(vf × v), sgn(v0 × vf ),
sgn(v0 × (pf − p0)), sgn(vf × (pf − p0))).

If d1 = (−1,−1,−1,1), choose the line/circle right solution,
if d1 = (1,−1,−1,1), the choose circle/line right solution,
if d1 = (−1,1,1,−1), the choose line/circle left solution,
and if d1 = (1,1,1,−1), the choose circle/line left solution.

Referring to definitions in Figure 6, we need to find the
radius, Rmax , of the largest circle tangent to vc at pc and
tangent to the line formed by vl at pl. We also need to solve
for the unique point p where this circle intersects the line
formed by vc at pc . Since cot(γ/2) = sinγ/(1−cosγ), where
γ is the angular difference in the counterclockwise direction

between vectors vc and vl and φ is the angular difference in
the counterclockwise direction between vectors pc −pl and
vl. From Triangle #1, we have that a = p0f sinφ/ sin(π −
γ). From Triangle #2, d = 2a cos(γ/2). Substituting the
expression for a we have d = 2p0f csc(γ/2) sinφ. We also
discover that d = 2Rmax sin(γ/2) from Triangle #3. Solving
for Rmax , we get

Rmax = 1
2
p0f csc(γ/2)2 sinφ.

Finally, we can compute the point p as the point pc plus the
vector of length d in the direction of the side of length d.

p = (pcx +
p0f (vcy − vcx cot(γ/2)) sinφ√

v2
cx + v2

cy

,

pcy −
p0f (vcx + vcy cot(γ/2)) sinφ√

v2
cx + v2

cy

)

Now we have four possible solutions for discriminant
conditions that dictate one line and one circle. We only
defined one set of equations, because we can get the other
three by 1) switching v0 and p0 with vf and pf , 2) negating
v0 and vf , or 3) negating v0 and vf and switching v0 and
p0 with vf and pf .

2) Two circle solution derivations: Assuming a one circle
solution does not exist, recalling that we simply examine the
discriminant, sgn(vf ×v), to decide the best of the two two-
circle solutions, and referring to the definitions in Figure 7,
we can compute φ3 and φ4 from input vectors, v0, vf ,
p0, and pf . φ3 is the counterclockwise angular difference
between two vectors: p0 − pf and the vector π/2 counter-
clockwise (or clockwise if vf × v = −1) from v0. φ4 is the
counterclockwise angular difference between two vectors:
p0 − pf and the vector π/2 clockwise (or counterclockwise
if vf × v = −1) from vf . We also set α = ‖vf‖/‖v0‖. From
Figure 7, b + c = R0(1 + α) and d + e = df0. Furthermore,
the sum of the areas of the four small triangles equals the
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1, a "left/right" solution is required, as shown on the left. When the discriminant is -1, a "right/left" solution is required, as shown on
the right. For both example solutions, we define a set of triangles and a quadrilateral that are used to generate the smooth path of two
circular arcs in lane space.

sum of the areas of one pair of two larger triangles,

1
2
(be+ dc + bd+ ec) sinγ =

1
2
R0d0f sinφ3 + 1

2
αR0d0f sinφ4,

which gives an expression for sinγ,

sinγ = sinφ3 +α sinφ4

1+α . (1)

We can then compute φ1 = π − (γ +φ4) and φ2 = π − (γ +
φ3).

We can do this again, for the other pair of triangles in the
quadrilateral,

1
2
(be+ dc + bd+ ec) sinγ =

1
2
αR2

0(1+α) sinφ1 + 1
2
R2

0(1+α) sinφ2,

which implies that

sinγ = R0(sinφ2 +α sinφ1)
d0f

. (2)

Equating (1) and (2), we have the radius of the initial circle,4

R0 =
d0f (sinφ3 +α sinφ4)

(1+α)(sinφ2 +α sinφ1)
. (3)

B. Parsing the path at lane segment boundaries

Now we have a safe and efficient path for the vehicle
in lane space and we need to warp (i.e., transform) this
path from lane space into real space to compute a one
dimensional trajectory, which will then be mapped back onto
the warped path. However, even prior to that, we must parse
the path at lane segment boundaries. Once this is done, all

4This solution does not work if the x-component of p0 is less
than the x-component of pf because the geometry of Figure 7 must
be modified, however, this situation holds no interest to our on-
road driving application.

parsed path segments fall into one of four categories, as can
be seen in Figure 5:

1) line path segment in a line lane segment
2) arc path segment in a line lane segment
3) line path segment in a arc lane segment
4) arc path segment in a arc lane segment

C. Warping the paths and computing true path length

In order to generate the one dimensional trajectory, we
must first determine the length of all the paths in real space.
Transforming any path segment from lane space to real
space when the path is within a straight line lane segment
does not change the length. However, transforming a path
(arc or line) from lane space to real space when the path is
within an arc lane segment may change the length.

To compute the path length of both line and arc path
segments in an arc type lane segment we first must define
a parameterization of the path segment in lane space. Sec-
ondly, we must define the radial warping function that takes
parameterized points in lane space to real space. With Rp
the path radius in lane space, (cpx , cpy ) the center point of
the arc path segment in lane space, a parameterization for
points on the arc path in lane space is

(qx(γ), qy(γ)) = (cpx + Rp cosγ, cpy + Rp sinγ) (4)

With (p0x , p0y ) and (pfx , pfy ) the initial and final points of
the line segment path in lane space, a parameterization for
points on the line in lane space is

(px(s), py(s)) = (p0x +s(pfx −p0x ), p0y +s(pfy −p0y )) (5)

To obtain the expression for radial warping, if the center
point of the lane segment in lane space is (cLx , cLy ), c is
the path parameter, and (fx(c), fy(c)) is any parameterized
sequence of points in (two dimensional) lane space, the



radial warp of those points into real space is

α(fx(c), fy(c)) =
(cLx , cLy )+ (fy(c)− cLy )∗ (6)

(− sin (fx(c)/cLy ), cos (fx(c)/cLy )).

Now we have parameterizations for the radial warp of both
a line path and an arc path. To find the length of each path,
we must compute the path length functions for both path
types over the parameter range of the path in lane space.
For the arc type path using (4) and (6), with θ0 and θf the
start and final angles of the arc path in lane space, the path
length in real space is∫ θf
θ0

‖α′(qx(γ), qy(γ))‖dγ = (7)

∫ θf
θ0

Rp
cLy

(c2
Ly cosγ2 + sinγ2(cpy − cLy + Rp sinγ)2)1/2dγ,

which has a symbolic solution. We need to reverse the
direction of integration for clockwise arcs (θ0 → θf for
counter-clockwise arcs and θf → θ0 for clockwise arcs). For
the line type path, using (5) and (6), the path length in real
space is ∫ 1

0
‖α′(px(s), py(s))‖ds, (8)

which also has a symbolic solution.
Now that we have expressions for path length for all

four combinations of path type and lane type, we simply
compute the path length for all the parsed paths and sum
them up to get total path length. This allows us to consider
the trajectory (time-based) planning portion of our problem
independent of the lane segment parameters like curvature.
However, we are interested in the curvature of the planned
vehicle path in real space (the warped path), since we may
want to adjust the trajectory based on curvature. Happily,
the method allows us to change the trajectory along the path
after generating the path without changing the shape of the
path as will be described in Section VI-E.

D. Generating the Trajectory

Now that computation of vehicle path length in real space
for all parsed paths has been defined, it is necessary to
compute the trajectory along that path, consisting of the
target position, velocity, and acceleration values along that
length. This path length is, of course, one-dimensional, so
the trajectory can be one-dimensional. The vehicle simply
must achieve the sequence of target positions and speeds, as
illustrated in Figure 5. The vehicle must achieve these targets
within maximum speeds and accelerations. The trajectory
planner employs a 2nd order (constant acceleration) motion
model to generate the trajectory.

E. Generating target values

The output of the Maneuver Generation (MG) module
to the Trajectory Generation (TG) module (see Figure 3)
includes target positions and velocities for the vehicle to
attain in order to accomplish a particular maneuver (ma-
neuvers such as straddle or circumvent right). MG can detail
specific positions and velocities to TG, but only from object

safe passing positions and speeds and known posted speed
limits.

TG will generate a path and trajectory for these known
conditions, but the path and trajectories are not yet planned.
Once the path and trajectory are tentatively planned, we
must ensure that the speed along the path and the curvature
of the path does not excite accelerations normal to the path
that exceed a safe normal maximum. This requirement is
expressed in Inequality 9. If l is the path length, aNmax (l)
is the acceleration maximum normal to the path, R(l) is
the radius of curvature (inverse of curvature), and s(l) =√
aNmax (l)R(l), the tangential speed at length l must satisfy

the following inequality,

v(l) ≤ s(l) (9)

for all l. The acceleration maximum is going to be speci-
fied by various road conditions processed in the sensory
processing module at the same level in the hierarchy [2],
and aNmax (l) is not dependent on the trajectory and only
dependent on vehicle position. The radius of curvature, R(l),
is also independent of the trajectory.

vHl

l

L

s HlL

s HlL =  

arc path
line lane

target speed #2
target speed #1

line path line lane

arc path line lane line path
arc lane

arc path arc lane

8

Fig. 8. Here is an example pair of curves, v(l) and s(l) =√
aNmax (l)R(l) at the conclusion of the recursive algorithm de-

scribed in Section VI-E. The curve s(l) is in general discontinuous,
particularly at lane segment boundaries but also because aNmax (l)
may also be discontinuous over l.

So, when the curvature of the path exceeds some maxi-
mum, TG must determine additional target speed and po-
sition values and compute a new trajectory. This does not
require a change in the vehicle path, but only a change in
the one-dimensional trajectory.

These new target speeds and positions (one-dimensional
only) can be computed by a simple recursive algorithm.
Whenever the current speed, v(l) is greater than s(l), find
the point s(l1) where the distance between v(l) and s(l) is
greatest. Make s(l1) a new target speed and l1 a new position
and repeat the process until the condition of Inequality 9 is
met. The end condition of this algorithm is illustrated in
Figure 8.

F. Computing a warped path parameterized by path length

We now have a trajectory that consists of one-dimensional
position (path length), speed, and acceleration values at
uniformly spaced instances of time. Our goal is to map these
trajectory values onto the path in real space. We can use



the same expressions, (4)–(8), we computed in Section VI-
C. If a trajectory value lies in a line lane segment, all that
is required is to rotate and translate each trajectory value.
If a trajectory value lies within an arc lane segment, each
trajectory value is first warped then rotated and translated
into real space.

In order to map these values onto the path in real space,
we need parameterizations by path length for all four
lane/path conditions listed in Section VI-B. As described in
Section VI-C, we have symbolic closed form solutions for
the path length functions for the first three conditions. With
these it is not difficult to compute trajectories of position,
velocity, and acceleration in real space.

However, for the fourth condition (arc path in an arc lane
segment) we cannot find a symbolic closed form solution for
the path length function, Equation (7). Therefore, we need
to do a numerical approximation of Equation (7). Since our
system has a real time requirement and if ∆θ is sufficiently
small, the following path length function approximation will
suffice (we let θk = k∆θ and k = 0,1,2, ..., Floor(θf /∆θ)).

l(θk) = (10)
θ0+θk∑
γ=θ0

Rp
cLy

(c2
Ly cosγ2 + sinγ2(cpy − cLy + Rp sinγ)2)1/2∆θ

The integration direction must be reversed for clockwise
direction arcs. Since the path length function (10) is a
monotonically increasing function, it is invertible, and (us-
ing Equations (4) and (6)) α(qx(θ(lk)), qy(θ(lk))) is now
parameterized by path length. We then interpolate the one-
dimensional trajectory values, lj , (j = 0,1,2, ...) within the
sequence lk and use that interpolation to approximate the
warped value, α(qx(θ(lj)), qy(θ(lj))), for all j. Finally, we
rotate and translate α(qx(θ(lj)), qy(θ(lj))) to obtain the
trajectory position in real space. Velocity and acceleration
trajectory values in real space are gotten similarly.

VII. Adding moving objects

The trajectory generator produces target positions and ve-
locities for maneuvering around moving objects. The moving
object must have a tangential speed less than that of the
vehicle when they are expected to encounter each other,
otherwise the vehicle would have no need to maneuver
around it, even though the initial speed of the vehicle may or
may not be less than the object passing speed. Furthermore,
the vehicle may have some non-zero acceleration when the
vehicle is commanded to maneuver around the moving
object.

Given a simple object motion model (constant velocity or
constant acceleration/deceleration to max/min speed) and
three types of vehicle motion models (all 2nd order, varying
aggressiveness), we have derived closed-form solutions for
time- and distance-to-encounter. Such solutions allow us
to determine when and where the vehicle is predicted to
encounter a moving object, which allows the trajectory gen-
erator to determine if a particular maneuver is feasible, given
the current state of the environment and vehicle motion
constraints. An example time and position to encounter of
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Fig. 9. Example time and position to encounter of an autonomous
vehicle with a moving object with simple object motion model.

an autonomous vehicle with a moving object is shown in
Figure 9.

VIII. Summary

We have presented a trajectory generator for a car-like
(non-holonomic) on-road vehicle with simple models for
both lane and path, confident that lower levels in the vehicle
control hierarchy will smooth any higher order discontinu-
ities in the final path. Because numerical integrations are
always required for cubic spline path types and because
numerical integrations are only required for radially warped
arcs, our trajectory generation method is, in general, less
computationally expensive. Due to the radial warping of
paths, our approach to vehicle trajectory generation is al-
ways safe, but sub-optimal with respect to efficiency, while
gaining elegance, simplicity, and some computational effi-
ciency.
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