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Abstract 
 
We propose a probabilistic framework to address uncertainty in ontology-based semantic integration and interopera-
tion. This framework consists of three main components: 1) BayesOWL that translates an OWL ontology to a Bayes-
ian network, 2) SLBN (Semantically Linked Bayesian Networks) that support reasoning across translated BNs, and 
3) a Learner that learns from the web the probabilities needed by the other modules. This framework expands the 
semantic web and can serve as a theoretical basis for solving real world semantic integration problems.  
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1. Uncertainty in Ontology Mapping and Semantic Integration 
Representing and reasoning with uncertainty have been realized as an important issue in a single ontology [4, 11]. 
For example, in ontology construction, besides knowing that “A is a subclass of B,” one may also know and wish to 
express in the ontology how likely an instance of B belongs to A.  In ontology reasoning, one may want to infer not 
only if A subsumes B, but also the degree of closeness of A to B, or one may want to know the degree of similarity 
between A and B even if A and B are not subsumed by each other. Uncertainty becomes more prevalent in concept 
mapping between two ontologies. In many applications, exact matches between concepts defined in two ontologies 
do not exist. Instead, a concept defined in one ontology may find partial matches to one or more concepts in another 
ontology, often with a different degree of similarity.  
 
How to provide consistent and unified semantic support for information and knowledge integration that handles un-
certainty in a principled and practical manner is the problem our research attempts to address. The approach we take 
is probabilistic, and Bayesian networks (BN) are taken as the formalism for modeling the probabilistic interdepend-
encies among ontological entities. This paper presents the probabilistic framework developed in this research effort.  
 
2. Overview of Our Probabilistic Framework 
We assume the ontologies are written in Web Ontology Language (OWL) [15], the semantic web ontology lan-
guage. Figure 1 below gives an overview of this framework in the context of ontology mapping. The three main 
components, BayesOWL, SLBN (semantically linked BN), and the Learner, are given in the next three sections. 
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• BayesOWL translates two ontologies 
Onto1 and Onto2 into BN1 and BN2;  

• SLBN  supports concept mapping 
between Onto1 and Onto2 as prob-
abilistic reasoning between BN1 and 
BN2; and 

• Learner learns probabilities for Baye-
sOWL and SLBN from text exem-
plars searched from  the web 

 
Figure 1. Overview of the probabilistic framework 

 
3. BayesOWL 
To translate an OWL ontology to a BN, BayesOWL [2] takes two inputs: 1) the OWL file that defines the ontology, 
and 2) a collection of prior and conditional probabilities about the classes and superclass relations defined in the 
ontology called probabilistic constraints to the ontology. A set of structural translation rules are called to build the 
BN structure  (a directed acyclic graph or DAG) from the ontology definition. Conditional probability tables (CPTs) 
of the BN are then constructed based on the DAG and the probabilistic constraints.  
 
Probability information markups. If classes A and B represent two concepts in an ontology, we treat them as ran-
dom binary variables and interpret  as the prior probability that an arbitrary individual belongs to class A, 
and  as the conditional probability that an individual of class B also belongs to class A. These two types of 
probabilities for classes and superclass relations in an ontology are most likely to be available to ontology designers. 
To add such uncertainty information into an existing ontology, we treat a probability as a kind of resource, and de-
fine two OWL classes: PriorProb and CondProb for their encoding. Class PriorProb has two mandatory properties: 
hasVariable and hasProbValue, while class CondProb has three mandatory properties: hasVariable, hasCondition, 
and hasProbValue. For example,  for class C  can be expressed as  

)( aAP =

)|( baP

8.0)( =cP
<Variable rdf:ID="c"> 
   <hasClass>C</hasClass> 
   <hasState>True</hasState> 
</Variable> 

<PriorProb rdf:ID="P(c)"> 
   <hasVariable>c</hasVariable> 
   <hasProbValue>0.8</hasProbValue> 
</PriorProb> 

Conditional probabilities can be encoded in a similar fashion. (See [2] for more details on probability markups.) 
 
Structural translation. The ontology augmented with probability constraints is still an OWL file. It can be trans-
lated into a BN by first forming a DAG following a set of rules. Special nodes, call L-Nodes,  are created during the 
translation to facilitate modeling relations among class nodes that are specified by OWL logical operators (union, 
intersection, complement, disjoint, equivalent). These structural translation rules are summarized as follows.  

(1) Every concept class C is mapped into a binary variable node in the translated BN.  
(2) Constructor rdfs:subClassOf is modeled by an arc from the superclass node to the subclass node.  
(3) A concept class C defined as the intersection of concept classes Ci (i = 1,…,n) is mapped into a subnet in 

the translated BN with one arc from each Ci to C, and one arc from C and each Ci to an L-Node called 
LNodeIntersection. Constructor owl:UnionOf is modeled in the same way except now the directions of arcs 
between C and each Ci are reversed. 

(4) If two concept classes C1 and C2 are related by constructors owl:complementOf, owl:equivalentClass, or 
owl:disjointWith, then an L-Node (named LNodeComplement, LNodeEquivalent, and LNodeDisjoint, re-
spectively) is added to the translated BN with directed links from C1 and C2 to the L-Node. 

 
Constructing CPT. The nodes in the DAG from the structural translation can be divided into two disjoint groups: 
XC for nodes representing concepts in the ontology, and XL for L-Nodes for logical relations. The CPT for an L-
Node in XL can be determined by the logical relation it represents so that when its state is “True,” the intended logi-
cal relation holds among its parent nodes. When all L-Nodes are set to “True” (denoting this situation as LT), all the 
logical relations defined in the original ontology are held in the translated BN. Constructing the CPT  for a 
concept node  is more complicated. It must satisfy the given probabilistic constraints of the prior  and 

)|( iixP π
Ci Xx ∈ )( ixP
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conditionals  for all ij . This has to be done in the subspace of LT. In other words, we now have a 
multi-constraint satisfaction problem: construct  for all  such that  is consistent with all 
given probabilistic constraints.  

)|( ji xxP x π∈
)|( iixP π Ci Xx ∈ )|( LTXP C

 
We apply the technique known as Iterative Proportional Fitting Procedure (IPFP) to construct CPTs for concept 
nodes. IPFP [2], first published in 1937 [5], is a mathematical procedure that modifies a given probability distribu-
tion P(X) to satisfy a set of constraints R={R(Yi)}, each of which is a prior or conditional distribution on a subset of 
variables . Briefly, the process starts with , the initial distribution, and at each successive itera-
tion it modifies the distribution to satisfy one constraint R(Yi)  by 

XYi ⊆ )()(0 XPxQ =

                (1) )(/)()()( 11 ikikk YQYRXQXQ −− ⋅=

It can be shown that if all constraints in R are consistent, then the iterative process will converge to , a distri-
bution that satisfies all constraints in R and is closest to the original  measured by cross-entropy. Two difficul-
ties exist here because IPFP works on the joint probability distributions, not on BNs. First, direct application of IPFP 
may destroy the existing interdependencies between variables (i.e., the given DAG becomes invalid). Secondly, 
IPFP is computationally very expensive since every entry in the joint distribution of the entire BN must be updated 
at each iteration. To overcome these difficulties, we developed an algorithm named D-IPFP [12,2] that decomposes 
IPFP so that each iteration only updates one CPT of the given BN. In D-IPFP, Eq. (1) becomes: for each constraint 

 where  contains zero or more parents of , the CPT of  is modified by. 

)(* xQ
)(XP

)|( ii LxR iL ix ix

    )(
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−

−       (2) 

where  is the normalization factor. The process iterates over all  repeatedly until Q converges.  )(1 ik πα − )|( ii LxR
 
The translated BN preserves the semantics of the original ontology and is consistent with all the probabilistic con-
straints, it can support common ontology reasoning tasks as probabilistic inferences in the translated BN. For exam-
ple, given a concept description e, it can answer queries about concept satisfiability (whether P(e|LT) = 0), about 
concept overlapping (how close e is to a concept C as P(e|C, LT)). It also supports semantic similarity measures 
such as Jaccard coefficient [14] and those based on information contents [13].  
 
4. SLBN 
When dealing with reasoning involving multiple BNs, existing approaches exchange beliefs via shared variables and 
impose very strong constraints on the construction of individual BNs. Semantically-Linked Bayesian Networks 
(SLBN) are developed to support probabilistic inferences across independent developed BNs which do not share 
common variables but may have variables that have similar meaning or semantics [7].  
 
Variable Linkage. Consider two concepts A and B defined in Onto1 and Onto2, respectively, with similar but not 
necessarily identical meaning. A and B become variables in BN1 and BN2, the two BNs translated from Onto1 and 
Onto2 by BayesOWL. We want to see the probabilistic inference being carried out from BN1 (the source) to BN2 
(the destination). Note that BN1 and BN2 define two probability spaces, denoted  and . SLBN requires that 
the similarity information between A and B is given as the conditional distribution . This distribution is in 
yet another probability space, denoted as , which is related but different from  and . In particular, 

 shares variable A with  and B with . We use a directed pair-wise variable linkage to link two seman-
tically similar variables from the source BN to the destination BN. Specifically, a pair-wise variable linkage  
from variable A in network BNA to variable B in network BNB is defined as , where , the 
conditional probability of B, given A, quantifies the semantic similarity between A and B.  

1PS 2PS
)|( BAP

2,1PS 1PS 2PS
2,1PS 1PS 2PS

A
BL

>< A
BBA SBNBNBA ,,,, A

BS

 
The linkage  provides a pathway for A in BNA to influence B in BNB. However, since three separate probability 
spaces are involved, the Bayes’ rule does not apply here. Instead, we use the Jeffrey’s rule [3, 10]. This rule revises 
a distribution by another distribution  over a subset of variables.  The rule can be written as follows 
in the context of SLBN: to modify  by  where 

A
BL

)(XP )( XYQ ⊂
)(XP )(AQ XA∈ , first, , the belief on )(AP A , is modified to ,  )(AQ

         )()( AQAP ← .                 (3) 
Then the beliefs of other variables XB∈  are changed to 

     )()|()()( iia aAQaABPBQBP i ==∑=← .                                                        (4) 
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In BN literature, the probability information such as  in evidential reasoning is referred to as soft evidence 
about A, which is in contrast to the so-called hard evidence, e.g., 1

)(AQ
aA = . Then, as depicted in Fig. 2, the influence to 

variables in  by A in  via the single linkage  can be viewed as twice applications of Jeffrey’s rule across 
these three spaces, first from  to , then  to ,. In the first step, since variable A in  is semanti-
cally identical to A in , P(A) in  becomes soft evidence Q(A)  to , then the belief on B in   in 
the middle is updated by Eq. (4) to 

2PS 1PS A
BL

1PS 2,1PS 2,1PS 2PS 1PS
2,1PS 1PS 2,1PS 2,1PS

∑ ==
ia iQ . In the second step, Q(B) is then applied as soft evi-

dence from  to variable B in , updating beliefs of other variables C in  by Eq. (4) as  
aAQABPB )()|()(

2,1PS 2PS 2PS
)()|()|()()|()( iijajbb jj aAQaAbBPbBCPbQbBCPCQ ijj

===∑=∑=∑ == . 
 

  
Figure 2. Variable A in BNA influences B in BNB via semantic linkage  A

BL
 

Belief propagation with multiple linkages. When more than one variable linkage of semantically similar concepts 
exist, multiple soft evidences can be sent from the source BN to the destination BN via these linkages. One would 
naturally think of applying IPFP to this problem using all of the soft evidences as constraints. However, as discussed 
in Section 3, IPFP cannot be directly applied to BNs. For small BNs, one can explicitly generate the full joint distri-
bution from the BN and then apply IPFP for belief update on the distribution. This is infeasible for large BNs be-
cause the distribution would be too big. To address these difficulties we turn to another type of uncertain evidence, 
namely virtual evidence which is often given as a likelihood ratio, in the form of :  

  where  is interpreted as the probability we observe A is in state  if 
A is indeed in state . One thing nice about virtual evidence is that it can be easily applied to BNs by adding a 
dummy or virtual node veA for the given L(A). This node has no child, with A as its only parent, and its CPT is de-
termined by L(A) [9].  

)|)((()( 11 aaObPAL =
:)|)(( 22 aaObP ))|)((: nn aaObPL )|)(( ii aaObP ia

ia

 
Soft evidence can be easily converted into virtual evidence when it is on a single variable [9]. A problem arises 
when multiple soft evidences, say  and , are converted to dummy nodes. Due to the interference, the re-
sults of belief update by the two virtual evidences will not confirm with either  or . What is needed is a 
method that can convert a set of soft evidences to likelihood ratios which, when all applied to the BN as virtual evi-
dences, preserve every piece of soft evidence . We have developed an algorithm for this by combining the 
virtual evidence and IPFP [8]. The page limit prevents a complete description of this algorithm, but it roughly works 
as follows. As an iterative process, it loops over the set of all soft evidences repeatedly until convergence. At each 
iteration k, only one soft evidence, say  , is picked up and a new virtual evidence node is added to the system 
with the likelihood ratio  where   is the distribution with all vir-
tual evidence nodes added in the previous k –1 iterations.  

)(AQ )(BQ
)(AQ )(BQ

)(AQ

)(AQ
))(/)(),...,(/)(()( 1111 sksk aPaQaPaQAL −−= )(1 ik aP −

 
5. Learning Probabilities From The Web 
In this framework, we use priors P(C) to specify the uncertainty about concept C, conditionals P(C|D) for relations 
between concepts C and D. Often these kinds of probabilistic information are not available and are difficult to obtain 
from domain experts. Our solution is to learn them using text classification technique [1, 6], which builds classifiers 
for individual concepts by statistical analysis of the text exemplars associated with the concepts. Learning the prob-
abilities for semantic similarity between concepts in two ontologies can be done through a cross-classification as 
follows. First, a statistical feature model (classifier) for each concept in Onto1 is built according to the statistical 
information in that concept’s exemplars using a text classifier such as Rainbow [6]. Then concepts in Onto2 are 
classified into classes of Onto1 by feeding their respective exemplars into the models of Onto1 to obtain a set of 
scores, which can be interpreted as conditional probabilities for inter-concept similarity. Concepts in Onto1 can be 
classified in the same way into classes of Onto2. Similarly, prior and conditional probabilities related to concepts in 
a single ontology can be obtained similarly through self-classification with the models learned for that ontology.  
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The performance of text classification based methods depends on the quality of exemplars attached to each concept. 
It is costly to find high quality text exemplars manually. Our approach is to use search engines such as Google to 
retrieve text exemplars automatically from the web. The goal is to search for documents in which the concept is used 
in its intended semantics. The rationale is that the meaning of a concept can be described or understood by the way it 
is used. To search for documents relevant to a concept, one cannot simply use the words in the name of that concept 
as the key because a word may have multiple meanings. Fortunately, since we are dealing with concepts in well de-
fined ontologies, the semantics of a concept is to a great extent specified by the other terms used in defining this 
concept in the ontology, including names of its superconcept classes and its properties. There are a number of ways 
the semantic information can be used to improve search quality. A simple one that we have experimented is to form 
search query for a concept by combining all the terms on the path from root to that concept node in the taxonomy.  
 

 

 
 

Figure 3. Two translated BN: from ACM (left) and DMOZ (right)  
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6. A Small Example 
We have performed computer experiments on two small-scale real-world ontologies: the AI subdomain from ACM 
Topic Taxonomy and DMOZ1 (Open Directory) hierarchy. These two hierarchies differ in both terminologies and 
modeling methods. DMOZ categorizes concepts to facilitate people’s access to these pages, while ACM topic hier-
archy categorizes concepts to structure a classification primarily for academics. For every concept, we obtained ex-
emplars by querying Google and learned probability constraints as described in the Section 5. Then, BayesOWL is 
used to translate the two ontologies into two BNs as shown in Figure 3. 
 
Joint distributions P(A, B) were learned for each pair of concepts of the two BNs also by the Learner described in 
Section 5. Table 1 lists the five most similar concepts in the learning result, and their Jaccard coefficients computed 
from P(A, B).  
 

Table 1. Five most similar concepts in the learning result.. 
ACM Topic DMOZ Similarity 
/Knowledge Rep. & Formalism Method /Knowledge Representation 0.96 
/Natural Language Processing /Natural Language 0.90 
/Learning /Machine Learning 0.88 
/Learning /Knowledge Representation 0.81 
/Applications & Expert System /Knowledge Representation 0.79 

 
Next, two variable linkages were created for the two pairs that are very similar. They are L1 = < dmoz.kr, acm.krfm, 
BNdmoz, BNacm, S1> and L2 = < dmoz.nl, acm.nlp, Ndmoz, Nacm, S2>, where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

9027.00973.0
0057.09943.0

).|.(1 krdmozkrfmacmPS  and  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

7680.02327.0
0157.09843.0

).|.(2 nldmoznlpacmPS

were calculated from their learned joint distributions. 
SLBN allows us to conduct probabilistic reasoning well beyond finding the best concept matches.  To illustrate our 
point, consider the example of finding a description of DMOZ’s /Knowledge Representation/Semantic Web 
(dmoz.sw) in ACM topics. Apparently, there is no single ACM concept identical to dmoz.sw, the two most semanti-
cally similar concepts to dmoz.sw in ACM are  

• /Knowledge Representation and Formalism Method/Relation System (acm.rs) and  
• /Knowledge Representation and Formalism Method/Semantic Network (acm.sn)  

with the learned joint distributions with Jaccard coefficients J(dmoz.sw, acm.rs) = 0.64, and J(dmoz.sw, acm.sn) = 
0.61. The coefficient between dmoz.sw and acm.krfm, the super class of acm.rs and acm.sn, is even less (0.49). Most 
ontology mapping systems would stop here. However, with our framework, we can evaluate similarities with com-
posite hypotheses involving multiple ACM concepts. One of such hypotheses is acm.rs ∨ acm.sn, which has Jaccard 
coefficient of 0.725, significantly greater than any single concept candidate.  
 
7. Conclusions 
Our research has addressed a number of key issues of the probabilistic approach for ontology mapping.  However, a 
few issues remain open, and a number of difficulties also need to be dealt with. Our BayesOWL is only completed 
for terminological taxonomies, it is not yet able to deal with properties. Similarly, our SLBN formalizes the notion 
of variable linkages to connect BNs and develops theoretically justifiable inference methods with such linkages. 
However, it does not address the important issue of how to determine whether a linkage should be established be-
tween a given pair of variables. Our learner for probabilities based on text classification and ontology guided search 
of the web is more problematic at this time. Due to the uneven quality of the search, the probabilities generated by 
the learner not only may be inaccurate, but sometime may also be inconsistent with each other. All these issues are 
potentially good topics for future research.  
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