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Abstract: We are developing a novel framework, PRIDE (PRediction In Dynamic 
Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. 
The underlying concept is based upon a multi-resolutional, hierarchical approach which 
incorporates multiple prediction algorithms into a single, unifying framework. The lower levels 
of the framework utilize estimation-theoretic short-term predictions while the upper levels 
utilize a probabilistic prediction approach based on situation recognition with an underlying 
cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-
based algorithm using sensor data to predict the future location of moving objects with an 
associated confidence measure. The proposed estimation-theoretic approach does not 
incorporate a priori knowledge such as road networks and traffic signage and assumes 
uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and 
off-road driving. In this article, we analyze the complementary role played by vehicle kinematic 
models in such short-term prediction of moving objects. In particular, the importance of vehicle 
process models and their effect on predicting the positions and orientations of moving objects 
for autonomous ground vehicle navigation are examined. We present results using field data 
obtained from different autonomous ground vehicles operating in outdoor environments. 
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1. INTRODUCTION 
 
Successful and purposive navigation of autonomous 

ground vehicles in unstructured and unknown 
environments demands the competency of the vehicle 
to predict, with an associated level of confidence, the 
future locations of moving objects that could interfere 
with its path. Examples of moving objects that the 
autonomous vehicle may encounter include other 
vehicles, people, or animals.  

A survey of the open literature reveals that there has 
been relatively little research in moving object 
prediction (MOP) in realistic outdoor domains owing 
to the challenges it presents. There have been 
experiments performed with autonomous vehicles 

during on-road navigation. Perhaps the most 
successful has been that of Dickmanns [4,5] as part of 
the European Prometheus project in which the 
autonomous vehicle drove from Munich to Odense 
(over 1,600 km) in Germany at a maximum velocity 
of 180 km/hr. Although the vehicle was able to 
identify and track other moving vehicles in the 
environment, it could only make basic predictions of 
where those vehicles were expected to be at points in 
the future, considering the external vehicle’s current 
velocity and acceleration. Firby [8] uses NaTs 
(navigation templates) as a symbolic representation of 
static and dynamic sensed obstacles to drive a robot’s 
motors to respond quickly to moving objects. Gueting 
[9] extends database structures to allow for the 
representation of dynamic attributes (i.e., ones that 
change over time) and also extends the database’s 
query language to allow for easier querying of the 
values of dynamic attributes. Singhal [22] introduces 
the concept of dynamic occupancy grids which allow 
each cell to have a state vector that contains 
information such as a probabilistic estimate of the 
entity’s identity, location, and characteristics (such as 
velocity, acceleration) along with global probability 
distribution functions. Nagel [10] has performed 
research on moving object prediction during on-road 
driving based upon the concept of generally 
describable situations, fuzzy logic, and situation graph 
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trees. However, based on the literature, Nagel has not 
tried to predict what the next actions of the moving 
object will be and has not assigned probabilities to 
those actions. RRTs (Rapidly-exploring Random 
Trees) is a popular approach for path planning 
problems that involve obstacles. They have been 
applied to a number of areas including collision-free 
control of virtual humans [12] and Mars exploration 
vehicles [23]. However, this approach does not take 
into account situation recognition.  

Statistical methods for estimating obstacle locations 
using statistical features have been proposed by other 
researchers such as the Hidden Markov Models 
(HMMs) to predict obstacle motion [24], Poisson 
distribution to describe the probability of collision 
with obstacles [21], autoregressive models for one-
step ahead prediction of moving obstacles [7] or 
probability of occupancy of cells in grid maps [17]. 
The principal disadvantages of these methods are that 
they are computationally intensive, thus precluding 
real-time implementations and perhaps most 
importantly have only been implemented for 2D 
polygonal environments.  

 We are using the 4D/RCS (Real-Time Control 
System) reference model architecture [2,3] as the 
basis on which to apply the representational 
approaches that are being developed in this effort. 
4D/RCS was chosen due to its explicit and well-
defined world modeling capabilities and interfaces, as 
well as its multi-resolution, hierarchical planning 
approach. Specifically, 4D/RCS allows for planning at 
multiple levels of abstraction, using different planning 
approaches as well as utilizing inherently different 
world model representation paradigms. By applying 
this architecture, we can ensure that the 
representations being developed for moving objects 
can accommodate different types of planners that have 
different representational requirements. Under 
4D/RCS, the functional elements of an intelligent 
system can be broadly considered to include: behavior 
generation (task decomposition and control), sensory 
processing (filtering, detection, recognition, grouping), 
world modeling (store and retrieve knowledge and 
predict future states), and value judgment (compute 
cost, benefit, importance, and uncertainty). These are 
supported by a knowledge database, and a 
communication system that interconnects the 
functional elements and the knowledge database. This 
collection of modules and their interconnections make 
up a generic node in the 4D/RCS reference model 
architecture. A generic node (see Fig. 1) is defined as 
a part of the 4D/RCS system that processes sensory 
information, computes values, maintains a world 
model, generates predictions, formulates plans, and 
executes tasks. Each module in the node may have an 
operator interface. 

4D/RCS has been actively researched and 

developed over the past thirty years and has been 
applied to many domains, including manufacturing 
machine tool control, combat air vehicles, unmanned 
undersea vehicles, nuclear submarines, coal mining, 
stamp distribution, mail sorting, and most recently 
autonomous vehicle control [1]. 4D/RCS also uses its 
underlying hierarchical structure as the architectural 
mechanisms to “chunk” and abstract systems into 
manageable layers of complexity. This structure 
greatly reduces the computational complexity of each 
agent, which allows the architecture to better lend 
itself to real-time application.  

The RCS architecture supports multiple behavior 
generation (BG) systems working cooperatively to 
compute a final plan for the autonomous system. The 
spatial and temporal resolution of the individual BG 
systems along with the amount of time allowed for 
each BG system to compute a solution are specified 
by the level of the architecture where it resides. In 
addition to multiple BG systems, multiple world 
models are supported, with each world model’s 
content being tailored to the systems that it supports 
(in this case the BG system). As such, it is necessary 
for moving objects to be represented differently at the 
different levels of the architecture. To support this 
requirement, we have developed the PRIDE 
(PRediction In Dynamic Environments) framework. 
This framework supports the prediction of the future 
location of moving objects at various levels of 
resolution, thus providing prediction information at 
the frequency and level of abstraction necessary for 
planners at different levels within the hierarchy. The 
PRIDE framework is different than other related 
efforts in that it introduces a novel way to perform 
moving object prediction based upon a multi-
resolutional, hierarchical approach which incorporates 
multiple prediction algorithms into a single, unifying 
framework. To date, two prediction approaches have 
been applied within this framework. The higher levels 
utilize a probabilistic prediction approach based upon 
situation recognition with an underlying cost model. 
At the lower levels, we utilize estimation-theoretic 
short-term predictions via an Extended Kalman Filter 
(EKF) algorithm using sensor data to predict the 
future location of moving objects with an associated 
confidence measure.  

 

Fig. 1. A Real-time Control System (RCS) node. 
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In this article, we concentrate on estimation-
theoretic short-term predictions of moving objects by 
analyzing the role played by vehicle process models. 
In particular, the importance of vehicle kinematic 
models and their effect on predicting the positions and 
orientations (collectively referred to as the pose) of 
moving objects for autonomous ground vehicle 
navigation is examined using both simulated and real 
field data. The main contributions of the research 
reported in this article lie in the theoretical 
development of vehicle models of increasing 
complexity and the utility and verification of the 
developed models for predicting the pose of two 
kinematically different vehicles operating in outdoor 
environments.  

The article is structured as follows: Section 2 
details how short-term prediction of moving objects is 
performed within the PRIDE framework. Sections 3 
and 4 describe the development of process models for 
a four-wheel-drive (4WD) vehicle and an Articulated 
Ground Vehicle (AGV) and discuss their effects in 
estimating the positions and orientations of the 
vehicles. Section 5 presents experimental and 
simulation results of the developed vehicle models 
followed by conclusions and further work in Section 6. 

 
2. PREDICTION OF MOVING OBJECTS 

  
The purpose of the PRIDE framework is to inform 

a planner about the probable location of moving 
objects in the environment so that the planner can 
make appropriate plans in dynamic environments. The 
MOP output is composed of a list of time steps in the 
future, external vehicle information (ID and type of 
the vehicle), all the possible future locations (Xposition, 
Yposition) and probability information. Every predicted 
location has an associated probability to represent the 
probability that the vehicle will be at that location at a 
certain time in the future. Some of these predicted 
positions are not relevant due to a low probability, so 
a threshold can be applied to ignore those locations 
whose probabilities are under the threshold value.  

 Planners use the probability information from the 
PRIDE framework to determine the damage potential 
of occupying a location in space at a given time. 
Specifically, this damage potential will be based on 
the object the vehicle will encounter and the 
probability that the object will be there. For example, 
if the MOP algorithms determine that a HMMWV 
(High-Mobility Multipurpose Wheeled Vehicle), 
which we assume has a maximum damage potential of 
200, has a 40% chance of occupying a point in space, 
then the planner may associate a damage potential 
(due to the presence of moving objects) of 80 (40% of 
200) when determining the optimal path. With this 
information, a planner can produce appropriate plans 
in a dynamic environment.  

As mentioned in Section 1, two prediction 
approaches have been applied within the PRIDE 
framework. At the higher levels of the framework, 
moving object prediction needs to occur at a relatively 
low frequency and a relatively greater level of 
inaccuracy is tolerable. At these levels, moving 
objects are identified as far as the sensors can detect, 
and a determination is made as to which objects 
should be classified as “objects of interest”. In this 
context, an object of interest is an object that has a 
possibility of affecting our path in the time horizon in 
which we are planning. At this level, we use a moving 
object prediction approach based on situation 
recognition and probabilistic prediction algorithms to 
predict where we expect that object to be at various 
time steps into the future. Situation recognition is 
performed using spatio-temporal reasoning and 
pattern matching with an a priori database of 
situations that are expected to be seen in the 
environment. In these algorithms, we are typically 
looking at planning horizons on the order of tens of 
seconds into the future with one second plan steps. At 
this level, we are not looking to predict the exact 
location of the moving object. Instead, we are 
attempting to characterize the types of actions we 
expect the moving object to take and the approximate 
location the moving object would be in if it took that 
action. More information about this approach can be 
found in [19,20]. 

 
2.1. Short-term prediction of moving objects 

At the lower levels of the framework, we utilize 
estimation theoretic short-term predictions via an 
extended Kalman filter-based algorithm using sensor 
data to predict the future location of moving objects 
with an associated confidence measure. The proposed 
short-term prediction approach does not incorporate a 
priori knowledge such as road networks and traffic 
signage and assumes uninfluenced constant trajectory 
and is thus suited for short-term prediction in both on-
road and off-road driving.  

Estimation-theoretic schemes using Kalman Filters 
(KFs) are well established recursive state estimation 
techniques where estimates of the states of a system 
are computed using the process and observation 
models [13]. The recursive nature of the algorithm 
utilizes the system’s CPU more uniformly to provide 
estimates without the latency resulting from batch 
processing techniques. The (linear) KF is simply a 
recursive estimation algorithm that provides minimum 
mean squared estimates of the states of a linear system 
utilizing knowledge about the process and 
measurement dynamics, process and measurement 
noise statistics subject to Gaussian assumptions and 
initial condition information. When these assumptions 
are satisfied, the estimates provided by the Kalman 
filter are optimal. The extension of linear Kalman 
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filtering to a nonlinear system is termed extended 
Kalman filtering. The Extended Kalman Filter is a 
linear estimator for a nonlinear system obtained by 
linearization of the nonlinear state and observation 
equations. For any nonlinear system, the EKF is the 
best linear unbiased estimator with respect to 
minimum mean squared error criteria.  

Within the PRIDE framework, short-term 
prediction of objects moving at variable speeds and at 
given look-ahead time instants are predicted using the 
EKF. Active research is exploring the integration of 
these two prediction approaches in a way that the 
predictions from one can help to reinforce or weaken 
the predictions of the other. The strength of using an 
EKF is that it provides a covariance matrix that is 
indicative of the uncertainty in the prediction. An EKF 
employs a process model to estimate the future 
location of the object of interest. Since the object 
classification module provides the type of moving 
object whose position and orientation needs to be 
predicted, we have envisaged a bank of EKFs for each 
type of classified object. In turn, this has the added 
advantage of cross-corroborating the object 
classification itself as the uncertainty in the EKF 
prediction will be an indicator of the quality of the 
prediction. The higher the uncertainty, the lower the 
confidence in the selection of the correct set of object 
models and thus consequent decreasing confidence of 
the object classification. Thus, our approach combines 
low-level (image segmentation/classifica-tion) and 
mid-level (recursive trajectory estimation) information 
to obtain the short-term prediction and combines it 
with the cross-corroboration to work symbiotically to 
effectively reduce the total uncertainty in predicting 
the positions and orientations of moving objects.  

For short-term predictions, it was found that 
separate EKFs are necessary for different types of 
moving objects as opposed to a separate EKF for each 
individual moving object. In essence, a separate 
prediction equation is needed when the dynamics of 
the moving object significantly change. For example, 
multiple variations of tracked tanks could all use the 
same prediction equations since the kinematics of 
these tanks do not differ significantly. However, these 
equations could not be used for wheeled vehicles. 
Additionally, a generalized prediction equation was 
sufficient for near-term planning until the moving 
object could be classified. For example, in our 
simulated experiments, classification could be 
performed within 50 sensor observations. At a typical 
sensor rate of 30 Hz, this resulted in an initial 
classification within two seconds. Therefore, a 
generalized prediction equation was used for the first 
two seconds until the object was classified, at which 
point, the object-specific prediction equation was 
applied.  

The next two sections examine the effect of process 

models on short-term prediction of moving objects. 
We develop the kinematic models of two vehicles: a 
four-wheel-drive (4WD) vehicle and an Articulated 
Ground Vehicle (AGV), by accounting for variables 
enabling the sufficient capture of vehicle motion that 
is key to short-term moving object prediction and thus 
central to successful autonomous navigation. 

 
3. PROCESS MODELS FOR A FOUR-

WHEEL-DRIVE VEHICLE 
 
The model geometry of the 4WD vehicle is shown 

in Fig. 2. The vehicle states include the cartesian 
position ( )v vx y,  centered mid-way between the rear 
wheels and the orientation, vφ  of the vehicle. V  is 
the measured velocity of the rear wheels, 'V  is the 
velocity of the front wheels along the steered angle γ  
and B  is the vehicle wheel-base.  

The continuous model of the vehicle with all 
quantities referenced to the center of the rear axle of 
the vehicle can be written as: 

( ) ( )cos ( ),
( ) ( )sin ( ),

1( ) '( )sin γ( ).

v v

vv

v

t V t tx
t V t ty

t V t t
B

φ
φ

φ

=

=

⎡ ⎤= ⎢ ⎥⎣ ⎦

 

Since  

( )'( )
cos γ( )

V tV t
t

= ,  

the model equations of the vehicle referenced to the 
center of the rear axle of the vehicle become: 

( ) ( )cos ( )v vt V t tx φ= , 
( ) ( )sin ( )vv t V t ty φ= ,                      (1) 

1( ) ( ) tan γ( )v t V t t
B

φ
⎡ ⎤= ⎢ ⎥⎣ ⎦

. 

 
3.1. Accounting for wheel slip 

When a significant amount of wheel slip is present, 
the shaft velocity encoder measurements are no longer 

 

 
 

Fig. 2. Process model geometry for the 4WD vehicle.
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representative of the vehicle speed but are indicative 
of the wheel speed. So a wheel radius state, vr , is 
introduced in addition to the vehicle pose states. The 
wheel radius is modeled as a discrete additive 
disturbance rate error (a random walk) such that the 
error is the integral of white noise. Although in 
practice this variable may not evolve in a strictly 
Brownian manner, the Brownian model reflects the 
growth in uncertainty in its true value and the rate at 
which the true value is considered to vary. Wheel 
radius changes are a function of tire pressures, loading 
effects, temperature, wear and tear, and vehicle 
dynamics [6]. 

The velocity measured by the shaft encoder may be 
replaced by the product of the wheel radius and the 
wheel angular speed so that  

( ) ( )ω( )vV t r t t= . 

(1) now becomes 

( ) ( )ω( )cos ( )v v vt r t t tx φ= , 
( ) ( )ω( )sin ( ),v vv t r t t ty φ=                   (2) 

1( ) ( )ω( ) tan γ( )vv t r t t t
B

φ
⎡ ⎤= ⎢ ⎥⎣ ⎦

, 

( ) 0v tr = . 

The control signals applied to the vehicle are:  

ω γk k k⎡ ⎤⎣ ⎦= ,u , 

where ωk  is the angular velocity and γk  is the 
steering angle of the 4WD vehicle at time-instant k .  

By integrating (2) using the Euler approximation 
and assuming that the control signals, ω  and γ , are 
approximately constant over the sample period, the 
nominal discrete process model equations at time-
instant k  can be written as: 

1 1
1

1 1
1

1 1

1
1

ω cos

ω sin
Δ 1 ω tan γ

δ

k k
k k

k k
k k

k k k

k k
k

k v v
v v

k v v
v v

v v k v k

v v
v

rx x
ry y

T
r

B
r r r

φ

φ

φ φ

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ − −

⎜ ⎟ ⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟− ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟−⎝ ⎠

= + ⎡ ⎤
⎢ ⎥⎣ ⎦

,      (3) 

where ΔT  is the synchronous sampling interval 
between states at discrete-time instants, ( 1)k − and k . 

The errors due to the control inputs ω  and γ  are 
modeled as simple additive noise sources, δω  and 
δγ  about their respective means ω  and γ  as 
below:  

ω δω ,
γ δγ .

kk k

k kk

ω
γ

= +

= +
 

The error source vector due to both modeling errors 
and uncertainty in control is now defined as:  

δ δω δγ δ
k

T
k k k vr

⎡ ⎤
⎢ ⎥⎣ ⎦

= , ,w , 

where T  denotes matrix transposition. The source 
errors δω , δγ  and δ vr  are assumed to be zero-
mean, uncorrelated Gaussian sequences with constant 
variances 2

ωσ , 2
γσ  and 2σ

vr , respectively. 

3.2. Estimation cycle for the 4WD vehicle 
To formulate a Kalman filter algorithm, process and 

observation (measurement) models are needed. In 
view of the availability of data at discrete instants of 
time from asynchronous sensors and implementation 
based on digital computers, a discrete time 
formulation of the continuous time vehicle kinematic 
models are necessary. In discrete time, only discrete 
sampling instants 0 1 …t t, ,  are considered. The 
discrete time process model is usually derived by 
integrating the continuous time process model 
between two consecutive time steps.  

A general discrete time process model can be 
expressed as  

( )1k k k kk−= , , +x f x u w ,                   (4) 

where ( )k⋅,⋅,f  is a discrete function that maps the 
previous state and control inputs to the current state, 

kx  is the state at time instant k , ku  is a known 
control vector, and kw  is the discrete process noise.  

Observations of the state kx  are made according 
to the observation model: 

( )k k kk= , +z h x v ,                       (5) 

where ( )k⋅,h  is the discrete function that maps the 
current state to observations.  

The process noise, kw  and the measurement noise 

kv  are assumed to be Gaussian-distributed random 
variables of zero mean with covariances kQ  and 

kR , respectively, and are written as:  

( )
( )

N 0 E 0 ,

N 0 E 0 ,
k k k

k k k

k

k

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

, ; = ∀

, ; = ∀

w Q w

v R v

∼

∼
 

where [ ]E ⋅  is the mathematical expectation operator. 
the notation ( )N ,x m P∼  indicates that x  is a 
Gaussian (normal) random vector with mean m  and 
covariance .P  

In an autonomous vehicle navigation context, the 
prediction stage uses a model of the motion of the 
vehicle (a process model having the form described in 
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(4)) to predict the vehicle position, ( 1)ˆ k k| −x , at instant 
k  given the information available until and including 
instant ( 1k − ). The state prediction function ( )⋅f  is 
defined by (4) assuming zero process and control 
noise. The prediction of state is therefore obtained by 
simply substituting the previous state and current 
control inputs into the state transition equation with 
no noise. Taking expected values of (3) conditioned 
on the first ( 1)k −  observations, the state prediction 
becomes: 

( 1 1) ( 1 1)
( 1) ( 1 1)

( 1 1) ( 1 1)
( 1) ( 1 1)

( 1) ( 1 1)

( 1) ( 1 1)

ω cos

ω sin
Δ 1 ω

k k k k
k k k k

k k k k
k k k k

k k k k

k k k k

k v vv v

k v vv v

v v k

v v
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T

B
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φ

φ

φ φ

⎛ ⎞ ⎛ ⎞ − | − − | −⎜ ⎟ ⎜ ⎟| − − | −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ − | − − | −⎜ ⎟ ⎜ ⎟| − − | −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟| − − | −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟| − − | −⎝ ⎠ ⎝ ⎠

= + ⎡ ⎤
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( 1 1)
tanγ

0
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− | −
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎝ ⎠

. 

The prediction covariance can now be computed 
using: 

( 1) ( 1 1) Σ
v v k kk k

T T
k k k k c| − − | −= ∇ ∇ +∇ ∇x x w wP f P f f f , (6) 

where 
vk

∇ xf  represents the Jacobian evaluated with 

respect to the states, 
k

∇ wf  is the Jacobian with 

respect to the error sources and Σc  is the noise 
strength matrix given by: 
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When an exteroceptive sensor observation becomes 
available, the states of the EKF (comprising the 
moving object’s position and orientation) are to be 
updated so that during the next cycle the prediction 
starts from a reasonably known position. This is 
important since the EKF computes the future position 
based on the current position. If the prediction starts 
from a wrong position, the cumulative errors will 

result in an estimate that will be far from the truth. 
Once the state and covariance predictions are 

available, the next step is to compute a predicted 
observation and a corresponding innovation for 
updating the predicted state. Expanding (5) as a Taylor 
series about the predicted state ( 1)ˆ k k| −x  

( )( 1) ( 1)

2
( 1)

ˆ ˆ ˆ

,ˆ

kk k k k kk k

k k k k

k

O

⎡ ⎤
| − | −⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤⎜ ⎟| −⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

= , , + ∇ −

+ − +

xh u h xz x x

x vx
 

where
k

∇ xh is the Jacobian evaluated at ( 1)ˆ k kk | −=x x . 
The predicted observation ( 1)ˆ k k| −z  is found by 

using the nonlinear relation described in (5) and 
taking expectations conditioned on the first ( 1)k −  
observations by considering only terms up to the first 
order and neglecting higher order terms such that 

( 1) ( 1)( )ˆ ˆk k k k| − | −hz x . 

The difference between the actual observation and 
the predicted observation at time step k  is termed 
the innovation and is written as: ( 1)ν ˆ k kk k | −= −z z . 
The innovation covariance is found by squaring the 
estimated observation error and taking expectations 
conditioned on the first ( 1)k −  measurements 

( 1)k k
T

k k k k| −= ∇ ∇ +x xS h P h R . 

The observations that arrive are accepted only if the 
observation falls inside the normalized innovation 
validation gate: 

1
γν ν εT

k k k
− ≤S , 

where νk  is the innovation defined as the difference 
between the actual and predicted positions. The value 
of γε  can be chosen from the fact that the 

normalized innovation sequence is a 2χ  random 
variable with m  degrees of freedom ( m  being the 
dimension of the observation) [16]. 

Once a validated observation is available, the 
update of the estimate equal to the weighted sum of 
the observation and the prediction can be computed 
as: 

( ) ( 1) νˆ ˆk k k k k k| | −= + Wx x , 

where kW  is the Kalman gain matrix determined by 
the relative confidence in vehicle prediction and 
observation and determines the influence of the 
innovation on the updated estimate. 

The error in the updated estimate is 
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( ) ( )

( 1) ( 1)

ˆ

ν ν .ˆ

k k k kk

k k k kk k k k k

| |

⎡ ⎤
| − | −⎢ ⎥⎣ ⎦

= −

= − + = −

xx x

x W Wx x
 

The covariance update is 

( )( ) ( 1)( )E TT
k kk k k k k k kk k|| | −|

⎡ ⎤= = −⎣ ⎦P P W S Wx x , 

where the Kalman gain matrix is given by 

1
( 1) k

T
k k k k

−
| −= ∇ xW P h S . 

 
3.3. Accounting for wheel slip and skid 

To account for both slip and skid of the vehicle that 
might be present, two states sV  and γs  can be 
added to the process model. The errors in slip and skid 
of the vehicle are modeled as discrete random walks 
such that they are the integral of white noise and are 
found to provide better performance.  

The control signals applied to the vehicle in this 
case are γk k kV⎡ ⎤⎣ ⎦= ,u  where kV  and γk  are the 
speed and steering angle of the 4WD vehicle, 
respectively. The nominal discrete process model 
equations at time instant k  can now be written as:  

( )
( ) ( )

1 11

111

1 1 1

1
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. 

The errors due to the control inputs V  and γ  are 
modeled as simple additive noise sources, δV  and 
δγ  about their respective means V  and γ  as 
below:  

δ ,
γ δγ .
k kk

k kk

V VV
γ

= +

= +
 

The error source vector is defined as: 

δ δ δγ δ δγ
k k

T
k k k s sV V⎡ ⎤

⎢ ⎥⎣ ⎦
= , , ,w . 

The source errors δV , δγ , δ sV  and δγs  are 
assumed to be zero-mean, uncorrelated Gaussian 
sequences with constant variances 2σV , 2

γσ , 2σ
sV  

and 2
γσ s

, respectively. 
Additionally, the vehicle position estimates 

( vx , vy ) are correlated with the vehicle orientation 

( vφ ) estimates; errors as a result of the orientation 
cause errors in the vehicle position estimates. When 
the steering rate is high, the orientation error is also at 
its highest and the position subsequently becomes 
highly correlated with the orientation estimates. The 
addition of the Σs  matrix helps to decorrelate the 
effects of orientation on the position estimates of the 
vehicle. The value of Σs  was chosen such that the 
control signals γk kV⎡ ⎤⎣ ⎦,  were weighted more heavily 
than the slip and skid of the vehicle, sV  and γs . In 
addition, since the vehicle slips more than skidding 
due to the inherent kinematics, sV  was weighted 
more heavily than γs . These values were obtained 
based on data from several field trials. Σs  is added to 
(6) for computing the predicted covariance in this case. 

The Jacobians and the stabilizing noise matrix are 
as given below: 
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kk sk
−
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4. PROCESS MODEL FOR AN 
ARTICULATED GROUND VEHICLE 

 
Articulated vehicles are widely used both in 

commercial and military applications. Examples of 
these vehicles include the Load-Haul-Dump (LHD) 
trucks used in the mining industry and the Small Unit 
Support Vehicle (SUSV) used by the military. The 
AGV described in this article has a front and a rear 
body which can rotate relative to each other and the 
front and rear wheel sets are fixed to remain parallel 
with the body of the vehicle. It is mounted on rubber 
tires and propelled by four-wheel drive. Steering is 
achieved by driving the articulation joint (located 
mid-way between the front and rear axles) through 
hinge pins connecting the two main frames. 
Combined with power steering, this feature provides 
high maneuverability and a small turning radius. Both 
the front and rear wheel sets are driven at the same 
speed through a single transmission. Bidirectional 
operation with the same number of speeds forward 
and reverse allows loads to be hauled in either 
direction with the same efficiency.  

 In general, the front and rear axles of the vehicle 
cannot be assumed to be equidistant from the 
articulation joint [18]. Here, the different lengths, 1L  
and 2L  (see Fig. 3) are explicitly taken into account. 
The state vector for the AGV contains the pose of the 
vehicle ( v v vx y φ, , ), the wheel radius vr , the rear and 
front slip-angles ( αv ,βv ). An inexpensive fiber optic 
gyro was employed in the AGV trials. These trials 
were of longer duration than the 4WD trials and thus 
the accompanying gyro drift was much more than that 
experienced during the 4WD trials. Accordingly a 
shaping state, vss  was added to the state vector to 
compensate for the gyro drift. In the absence of this 
shaping state, the error due to the drift will corrupt the 
vehicle pose estimate. The addition of the shaping 
state ensures that the low frequency errors in the gyro 
are estimated by the EKF.  

The nominal continuous-time model of the AGV 
can be written as: 

[ ]( ) ω( ) ( )cos α ( ) ( )v v v vt t r t t tx φ= + , 

[ ]( ) ω( ) ( )sin α ( ) ( )v v vv t t r t t ty φ= + ,             (7) 

[ ]
[ ]

2

2 1

ω( ) ( )sin β ( ) α ( ) γ( ) ( ) cosβ ( )
( ) ,

cosβ ( ) cos β ( ) γ( )
v v v v

v
v v

t r t t t t t L t
t

L t L t t
γ

φ
− + −

=
+ +

( ) 0v tr = , ( ) 0v tα = , ( ) 0v tβ = , ( ) 0v tss = . 

The control vector is given by: 

ω γ T
k k k kγ⎡ ⎤= , ,⎣ ⎦u , 

where ωk  is the angular velocity, γk  is the 
articulation angle of the AGV and kγ  is the 
computed derivative of γk  at time-instant k . 

Similar to the 4WD vehicle, a discrete 
representation of the continuous process model in (7) 
was obtained by a first-order Euler approximation as 
the control signals ω , γ  and γ  and the sensor 
observations are sampled at discrete instants of time. 
The errors in wheel radius, slip angles and the low 
frequency gyro errors are difficult to model accurately. 
However, a compromise that has been found to work 
well is to model the errors in these variables as 
random walks such that the error in each of the 
variables is the integral of white noise. 

The nominal process model at the discrete-time 
instant k  is given by: 
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Fig. 3. Kinematic representation of the AGV. 
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  The primary sources of error are due to ω , γ , γ , 
αv , βv  and vss  since the errors in these variables 
feed directly through to the states. The errors in 
control inputs are modeled as simple additive noise 
sources δω , δγ  and δγ  about their respective 
means ω , γ  and γ  such that 

ω δω ,
γ γ δγ ,

γ δ .γ γ

kk k

k k k

kk k

ω= +

= +

= +

 

The error source vector is defined as: 

δ δω δγ δ δ δα δβ δ
k k k k

T
k k k v v v vk r ssγ⎡ ⎤

⎢ ⎥⎣ ⎦
= , , , , , ,w . 

The source errors δω , δγ , δγ , δ vr , δαv , δβv  
and δ vss  are assumed to be zero-mean, uncorrelated 

Gaussian sequences with constant variances 2
ωσ , 2

γσ , 
2σγ , 2σ

vr , 2
ασ v

, 2
βσ v

 and 2σ
vss , respectively. 

 
4.1. Estimation cycle for the AGV 

Taking expected values of (8) conditioned on the 
first ( 1)k −  observations, the state prediction 
becomes:  
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As before, the predicted covariance requires the 

computation of 
vk

∇ xf , 
k

∇ wf  and Σc . 
vk

∇ xf  

represents the Jacobian evaluated with respect to the 
states, 

k
∇ wf  represents the Jacobian with respect to 

the error sources and Σc  represents the noise 
strength matrix and are given as below: 
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5. EXPERIMENTAL RESULTS AND 

DISCUSSION 
 
To validate the process models, we present results 

using both simulated and real field data. The 
simulation data were obtained using a Distributed 
Interactive Simulation (DIS) platform namely One 
Semi-Automated Force (OneSAF), a training and 
research system developed by the U.S. Army’s 
Program Executive Office for Simulation, Training, 
and Instrumentation Command. Typically, OneSAF 
models are employed to represent individual soldiers 
or vehicles and their coordination into orderly-moving 
squads and platoons; but, their tactical actions as units 
are planned and executed by a human controller. 
OneSAF uses state transition constructs inspired by 
finite state machines (FSMs) to represent the behavior 
and functionality of a process for a pre-defined 
number of states [11]. By querying OneSAF, we can 
retrieve an object’s location at any given time. The 
real field data were logged as the 4WD vehicle and 
the AGV traversed unstructured and undulating 
outdoor terrain. This vehicle was equipped with a 
bearing-only laser and wheel and steering encoders. 
External corrections were provided using observations 
from landmarks in the environments that were 
detected by the bearing-only laser. For additional 
details, see [14,15].  

Figs. 4(a) and 4(b) show the estimated path and 
orientation of the 4WD vehicle, respectively, using the 
process model that accounts for both vehicle slip and 
skid, where the dots represent the artificial landmark 
locations. The exclusion of the slip and skid variables 
in addition to the stabilizing noise matrix would result 
in the estimated vehicle path drifting and the error 
growing without bounds. This is easy to understand as 
the estimated vehicle position at a given instant 
depends on the previous estimate which makes it 

difficult to eliminate errors associated with the 
previous cycle due to sensor inaccuracies, the 
assumption that the heading remains constant over the 
sampling interval, wheel slippage and quantization 
effects. As a consequence, the vehicle pose (position 
and especially the orientation) would become less and 
less certain and the errors associated with the pose 
grow without bound.  

In Fig. 5(a), the periodic rise and fall of the pose 
standard deviations can be seen. The decrease in the 
standard deviations is due to certain landmarks 
coming into view and being detected reliably. The 
increase in standard deviations is due to the vehicle 
moving away from the landmarks and its position 
being estimated based on the prediction alone. When 
the landmarks provide no aiding information towards 
estimating the pose of the vehicle, the standard 
deviation is at a maximum. Thus the algorithm 
continually corrects the diverging dead-reckoning 

(a) 

(b) 

Fig. 4. (a) and (b) show the estimated path and the 
orientation of the 4WD vehicle, respectively. 
In (a), the starting location of the vehicle is at 
(142 76 38 31. ,− . ). The direction of travel is 
from right to left. 

,

,
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estimates based on external sensing information 
provided by the landmarks (also see Fig. 4(a)).  

We found the use of innovation gating critical for 
the data association problems encountered in the 
research described in this article. A difficult decision 
in such data association problems is that, if more than 
one observation falls within the allowed thresholds, 
which one(s) should be selected? Possible strategies 
include selecting the closest one, selecting the average 
of all that fall within the threshold or not selecting any 
at all. Since a wrongly matched observation can have 
catastrophic effects on the pose estimate and 
subsequently on vehicle control, if more than one 
association was made, such observations were 
discarded to avoid any ambiguity. If no landmarks are 
found to satisfy the above two conditions then that 
observation was also discarded. If only one landmark 
passes both of the above tests, then the updates are 
performed with that observation. The bearing-only 
laser innovation sequence along with the 95% (2σ)  
bounds is shown in Fig. 5(b). Due to the observation 

validation procedure, the innovations are clearly 
bounded. The rise and fall pattern is also observed 
with the innovation, standard deviation of the laser.  

Fig. 6 depicts the results obtained using data from 
the simulation platform. Here, we are able to generate 
ground truth to compare with the estimated position 
estimates generated by the vehicle model shown in (3). 
The position of the 4WD vehicle is predicted until the 
errors exceed a predefined threshold. Once the errors 
are above a given threshold, an update is deemed to be 
performed by utilizing the observations from OneSAF. 
We check the validity of the observation by testing if 
it falls within the normalized innovation gate. A 
validated observation is then used to update the states 
of the EKF and the estimation cycle continues as in 
the 4WD vehicle case.  

(a) 

(b) 
Fig. 5. The pose standard deviations are shown in (a)

and the innovation sequence is shown in (b)
with 95% confidence bounds (dotted line).  

 
(a) 

(b) 
Fig. 6. (a), and (b) show the estimated path, the errors

in position between the estimated path and the
ground truth with 95% confidence bounds
(dotted line), respectively. The traverse is
approximately 7 km long and takes about 15
minutes of simulation time to travel at a speed
of 8 m/s. The updates were generated at a rate
of 15 Hz. 
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Figs. 6(a) and 6(b) show the estimated path and the 
position errors with the 2σ  observation confidence 
bounds, respectively. It can be seen that the estimated 
path and the ground truth agree well. As the estimated 
path and the corresponding ground truth are very close, 
extra effort is required on the part of the reader to 
distinguish between the two. As before, the validated 
innovation sequence falls within the prescribed 95%  
(2σ) bounds indicative of consistent vehicle state 
estimates.  

Figs. 7(a) and 7(b) show the estimated path and 
orientation for the AGV. The direction of vehicle 
travel is from right to left and is in the anti-clockwise 
direction around the loop at the left extreme of Fig. 
7(a). The dots represent the artificial landmark 

locations. Figs. 8(a) and 8(b) show the estimated 
standard deviation of the vehicle pose and the 95%  
confidence bounds for the innovation sequence. As in 
the 4WD case, the rise and fall of the standard 
deviations for both the pose and the innovation 
sequence are indicative of the fact that these 
deviations rise when there are no landmarks reliably 
detected or landmarks are far away from the vehicle 
and the fall in the standard deviations are indicative of 
information contribution from landmarks. It can also 
be seen from Fig. 8(b) that the validated innovation 
sequence is clearly within the 2σ  bounds indicative 
of a well-tuned filter thus resulting in consistent 
vehicle state estimates.  

Figs. 9(a), 9(b), and 10(a) show the wheel radius, 
the rear-slip angle, the front-slip angle and their 
standard deviations, respectively. Due to the 
correlation between the articulation angle and the slip 
angles, the vehicle will slip much more during a 

(a) 

(b) 

Fig. 7. The estimated path (a) and orientation (b) of
the AGV. The dots represent the surveyed
artificial landmark locations. The traversed
path runs from right to left and is in the anti-
clockwise direction around the loop at the left
end of the figure. The starting location is at
(81 1 30 9. ,− . ) in (a). 

(a) 

(b) 

Fig. 8. The estimated standard deviations of the AGV
pose are shown in (a). The laser innovation
sequence and the 2σ  confidence bounds are
shown in (b). 
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cornering maneuver in agreement with intuition. It can 
also be seen that the rear of the vehicle slips more 
than the front of the vehicle. The wheel radius also 
decreases during the cornering of the vehicle since the 
change in the forward velocity is interpreted as change 
in the wheel radius of the vehicle by the EKF. Fig. 
10(b) shows the shaping state for the gyro-drift and its 
standard deviation.  

 
6. CONCLUSIONS AND FURTHER WORK 
 
The effect of vehicle process models on the short-

term prediction of moving objects within a 
hierarchical, multi-resolutional framework for 
autonomous driving was the main theme of this article. 
The framework currently employs two different 
prediction methodologies that lend themselves best to 
the constraints imposed by the planning horizon and 
replanning rates of the planners at different levels of 

the control hierarchy. An estimation-theoretic 
approach is used at the lower levels of the hierarchy 
that require a fast replanning rate and where 
constraints on the environment do not greatly affect 
the predicted location of the moving object. A 
situation-based probabilistic prediction approach is 
used at the higher levels of the control hierarchy that 
require slower replanning rates and where constraints 
on the environment greatly affect the probabilities of 
where the moving object will be in the future.  

The importance of vehicle process models and their 
effect on predicting the positions and orientations of 
two different vehicles were examined. The main 
contributions of the research reported in this article 
are the theoretical development of vehicle models of 
increasing complexity and the utility and verification 
of the developed models for predicting the pose of 
autonomous ground vehicles. Experimental results 
were presented using both simulated and real data for 

(a) 

(b) 

Fig. 9. The estimated wheel radius and its standard
deviation for the AGV are shown in (a). The
rear slip angle and its standard deviation are
shown in (b). 

(a) 

(b) 

Fig. 10. The estimated front slip angle and its
standard deviation for the AGV are shown
in (a). The shaping state and its standard
deviation are shown in (b). 
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a 4WD vehicle and an articulated ground vehicle 
operating in outdoor environments. The results clearly 
showed the need for sufficiently adequate process 
models and their importance in short-term prediction.  

As we move forward with the PRIDE framework, 
many issues remain to be addressed. For the short-
term EKF based approach, we need to build additional 
kinematic and dynamic models corresponding to 
different types of vehicles we perceive in the 
environment. Such models will allow for more 
accurate predictions that are specific to the types of 
vehicles we encounter. For the situation-based 
probabilistic approach, we need to encode additional 
situations (and pertinent actions when encountering 
those situations), and a more elaborate cost model.  

The short-term predictions will also need to be 
quantitatively compared to the longer-term predictions 
being determined at the higher levels of the 
architecture. In addition, the short-term predictions 
may be used as inputs to the longer-term prediction to 
better refine the estimates. We also plan to investigate 
the applicability of other prediction algorithms such as 
particle filters within the framework.  
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