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8Abstract. An iterative temporal registration algorithm is presented in this article for registering

93D range images obtained from unmanned ground and aerial vehicles traversing unstructured

10environments. We are primarily motivated by the development of 3D registration algorithms to

11overcome both the unavailability and unreliability of Global Positioning System (GPS) within

12required accuracy bounds for Unmanned Ground Vehicle (UGV) navigation. After suitable

13modifications to the well-known Iterative Closest Point (ICP) algorithm, the modified algorithm is

14shown to be robust to outliers and false matches during the registration of successive range images

15obtained from a scanning LADAR rangefinder on the UGV. Towards registering LADAR images

16from the UGV with those from an Unmanned Aerial Vehicle (UAV) that flies over the terrain

17being traversed, we then propose a hybrid registration approach. In this approach to air to ground

18registration to estimate and update the position of the UGV, we register range data from two

19LADARs by combining a feature-based method with the aforementioned modified ICP algorithm.

20Registration of range data guarantees an estimate of the vehicle’s position even when only one of

21the vehicles has GPS information. Temporal range registration enables position information to be

22continually maintained even when both vehicles can no longer maintain GPS contact. We present

23results of the registration algorithm in rugged terrain and urban environments using real field data

24acquired from two different LADARs on the UGV.

25Key words: iterative registration, position estimation, unmanned ground and aerial vehicles,

26LADAR.

271. Introduction

28The National Institute of Standards and Technology (NIST) is developing archi-

29tectures and algorithms for unmanned vehicles with funding from the Army Re-

30search Laboratory (ARL) and the Defense Advanced Research Projects Agency

31(DARPA). The NIST Highly Mobile Multipurpose Wheeled Vehicle (HMMWV)
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32and an eXperimental Unmanned Vehicle (XUV) developed under the Army’s

33Demo III program [31] serve as test beds for this research. These vehicles are

34commanded by the hierarchical, distributed, hybrid 4D/RCS (Real-time Control

35System) architecture [1, 2].

36The 4D/RCS architecture developed for Demo III specifies the simultaneous

37representation of information about entities and events in a hierarchical

38distributed knowledge database wherein information is presented in a form that

39is ideally suited for path planning and task decomposition. Maps are populated

40both with knowledge from a priori sources such as digital terrain databases, and

41with knowledge from sensors. The range and resolution of maps at different

42levels are specified to correspond to the range and resolution of planning

43algorithms. This limits the amount of computational power required to maintain

44maps and symbolic data structures with a latency that is acceptable for planning

45and reactive processes at each level.

46The position estimation for the above Unmanned Ground Vehicles (UGVs)

47relies on fusing Global Positioning System (GPS) reported estimates with other

48on-board navigation sensors. The required accuracy of the GPS estimates cannot

49be guaranteed for the entirety of a particular mission as the direct line of sight to

50the satellites cannot be maintained at all times. GPS can be lost due to

51multipathing effects and terrain conditions, especially for on-road driving tasks.

52Sufficiently accurate vehicle positions are necessary to derive correct locations of

53sensed data towards accurate representations of the world and for correctly

54executing planned trajectories and missions. In order to compensate for such

55unavailability and unreliability of GPS, another form of secondary position esti-

56mation becomes inevitable.

57The following reasons also warrant the need to develop robust 3D data

58registration algorithms:

60� Within RCS, the use of a priori maps would enhance the scope of the world

61model. These maps may take a variety of forms including survey and aerial

62maps and may provide significant information about existing topology and

63structures. In order to take advantage of this knowledge, research is needed

64to register these a priori maps with the sensor-centric maps [15]. Addi-

65tionally, for incorporating a priori knowledge into the world model, some

66form of weighting is required and this depends on how well the a priori data

67and the sensed information are registered.
68� There is also the need to generate higher resolution a priori terrain maps as

69the current survey maps are too coarse for off-road autonomous driving and

70also for maintaining up-to-date representations of the world even if the maps

71are of higher resolution.
72� Another potential application for registering LADAR data is the computa-

73tion of ground truth as such registration is not dependent on time-based drift

74(unlike inertial navigation systems), vehicle maneuvers and terrain of travel.

R. MADHAVAN ET AL.
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75Such ground truth is necessary for evaluating performance of navigation

76algorithms and systems.

77Active range sensing has become an integral part of any unmanned vehicle

78navigation system due its ability to produce unambiguous, direct, robust, and

79precise images consisting of range pixels, for example, using LAser Detection

80And Ranging (LADAR) imagery. This is in direct contrast to passive sensing

81where the inference of range largely remains computationally intensive and not

82robust enough for use in natural outdoor environments. Depending on the speed

83of the vehicle, operating environment, and data rate, such range images acquired

84from a moving platform need to be registered to make efficient use of

85information contained in them for various navigation tasks within the 4D/RCS

86architecture.

87One of the following two approaches is commonly employed for matching

88range images to a priori maps [13]:

90� Feature-based Matching: In this approach, two sets of features, F 1
i and F 2

j ,

91are extracted from two sets to be matched and then correspondences between

92features, F 1
ik and F 2

jk , k 2 i, j, that are globally consistent, are found. The

93displacement between the two sets can then be computed to deduce the

94sensor pose.
95� Point Matching: This approach directly works on two sets of data points, P1

96and P2, by minimizing a cost function of the form F T P2
� �

;P1
� �

, where

97T P2
� �

is the second set of points subjected to a transformation T. Any

98sensible cost is acceptable as long as its minimum corresponds to a best

99estimate of T in some sense. Usually, the minimization leads to an iterative

100gradient-like algorithm.

102Lines and edges are two of the most widely used feature primitives. Matching

103between sensor observations and modeled features in a map have been

104considered as a search in an Interpretation Tree [10]. Drumheller extracts lines

105from sonar data and matches them against a room model to enable robot

106localization [8]. The complexity of the search problem is minimized by applying

107local constraints (distances, angles and normal directions) to the set of possible

108pairings between observed and modeled features. The Hough transform is a

109shape detection technique which can be used to isolate features of a particular

110shape within an image or Time-of-Flight (TOF) sensor data. Schiele and Crowley

111extract line segments using the Hough transform from an occupancy grid and

112update the position of the robot using a Kalman filter [28]. Other researchers [9,

11319] have combined odometric data and laser measurements using an extended

114Kalman filter where the range weighted Hough transform is employed to extract

115lines from laser data. The resulting peaks are used as feature coordinates. Even

116though the Hough transform provides good results in indoor cluttered environ-
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117ments, it is restricted to operating in rectangular-shaped scenarios where no more

118than two predominant walls are present.

119Kanade et al. [18] compared elevation maps obtained from 3D range images

120to determine vehicle location. A similar point matching approach has also been

121adopted by Shaffer [29]. Cox [6] proposes a point matching method for an indoor

122robot named Blanche where scan-points from an optical rangefinder are matched

123to an a priori map composed of straight line segments. Blanche’s position

124estimation system utilizes a robust matching algorithm which estimates the

125precision of the corresponding match/correction that is then optimally combined

126with odometric position to provide an improved estimate of robot position.

127Hoffman et al. employ a point matching algorithm for obtaining the inter-frame

128rotation and translation in a vision-based rover application [14]. Lu [20] finds

129corresponding points between two successive scans to compute the relative

130rotation and translation. An Iterative Dual Correspondence (IDC) algorithm is

131formulated based on closest point and matching range rules. Olson [26, 27]

132constructs a three-dimensional occupancy map of the terrain using stereo vision

133and iconically matches with a similar map to obtain the relative position between

134the maps enabling a mobile robot to perform self-localization.

135The major drawback of the above approaches is that their use is limited to

136structured office or factory environments rather than unstructured natural en-

137vironments. Straightforward correlation-based schemes (for e.g., see [35]), in

138general, are unable to handle outliers. As cross-correlation calculates the sim-

139ilarity, the two scans must be similar and thus this method cannot accommodate

140occlusions. This is easy to understand since if areas visible in one scan are not

141visible in another due to occlusion, then correlation of these scans may produce

142arbitrarily bad pose estimates. Also correlation usually places a high burden on

143computation especially when the scans are at different orientations.

144In this article, we present algorithms for registering 3D range images to

145overcome both the unavailability and unreliability of GPS within required ac-

146curacy bounds for UGV navigation.j At the core of the registration process is a

147modified version of the well-known Iterative Closest Point (ICP) algorithm.

148These modifications render robustness to outliers, occlusions and false matches/

149spurious points. We then propose extensions to the ICP algorithm that make it

150possible to register range images obtained from a UGV to range images obtained

151from an Unmanned Aerial Vehicle (UAV). Registration of range data guarantees

152an estimate of the vehicle’s position even when only one of the vehicles has GPS

153information. Temporal range registration enables position information to be

154continually maintained even when both vehicles can no longer maintain GPS

j It is important to note that the focus of the present work is primarily on position estimation

using registration of range images and not (the related area of) Simultaneous Localization And

Mapping (SLAM).

R. MADHAVAN ET AL.
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155contact. We present results of the registration algorithm using real field data

156acquired from two different LADARs on the UGV [22].

157The article is organized as follows: Section 2 details the ICP algorithm with

158suitable modifications for robustness. Section 3 presents the results of the

159proposed algorithm when applied for registering consecutive range images

160obtained from two LADARs mounted on a moving UGV. Section 4 extends the

161modified ICP algorithm for air to ground registration by a hybrid feature-based

162registration approach and elaborates the results of the hybrid approach when

163employed for registering aerial and ground range images. Finally, Section 5

164provides conclusions and describes further research work.

1652. Iterative Temporal Range Registration Algorithm

166We term the process of registration as follows: Given two sets of 3D range

167images (model set: M and data set: D): Find a 3D transformation (rotation and

168translation) which when applied to D minimizes a distance measure between the

169two point sets.

170The goal can be stated more formally as:

minðR;TÞ
X
i

Mi � RDi þ Tð Þk k2 ð1Þ

172where R is a 3 � 3 rotation matrix, T is a 3 � 1 translation vector and the

173subscript i refers to the corresponding points of the sets M and D.

174We adapt the ICP algorithm for registering 3D LADAR range images. The

175algorithm as we have applied to register range images with suitable modifications

176is given in the next section.

1772.1. ITERATIVE CLOSEST POINT ALGORITHM

178The ICP algorithm [4] can be summarized as follows: Given an initial motion

179transformation between the two 3D point sets, a set of correspondences are

180developed between data points in one set and the next. For each point in the first

181data set, find the point in the second that is closest to it under the current

182transformation. It should be noted that correspondences between the two points

183sets is initially unknown and that point correspondences provided by sets of

184closest points is a reasonable approximation to the true point correspondence.

185From the set of correspondences, an incremental motion can be computed facil-

186itating further alignment of the data points in one set to the other. This find

187correspondence/compute motion process is iterated until a predetermined thresh-

188old termination condition.

TEMPORAL RANGE REGISTRATION FOR UNMANNED GROUND AND AERIAL VEHICLES
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189In its simplest form, the ICP algorithm can be described by the following

190steps:

1911. For each point in data set D, compute its closest point in data set M. In this

192article, this is accomplished via 3D nearest point search from the set

193comprising ND data and NM model points.

1942. Compute the incremental transformation (R, T) using Singular Value

195Decomposition (SVD) using correspondences obtained in step 1.

1963. Apply the incremental transformation from step 2. to D.

1974. If relative changes in R and T are less than a threshold, terminate. Else go to

198step 1.

199To deal with spurious points/false matches and to account for occlusions and

200outliers, we modify and weight the least-squares objective function in Equation

201(1) such that [36]:

minðR;TÞ
X
i

wi Mi � RDi þ Tð Þk k2 ð2Þ

202If the Euclidean distance between a point xi in one set and its closest point yi
205in the other, denoted by di

4¼4¼4¼ d xi; yið Þ, is bigger than the maximum tolerable

206distance threshold Dmax, then wi is set to zero in Equation (2). This means that

207an xi cannot be paired with a yi since the distance between reasonable pairs

208cannot be very big. The value of Dmax is set adaptively in a robust manner by

209analyzing distance statistics.

210Let {xi, yi, di} be the set of original points, the set of closest points and their

211distances, respectively. The mean and standard deviation of the distances are

212computed as:

� ¼ 1

N

XN
i¼1

di; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

di � �ð Þ2
vuut

213where N is the total number of pairs.

215The pseudo-code for the adaptive thresholding of the distance Dmax is given

216below:

if � < D
Ditn

max ¼ �þ 3�;
else if � < 3D
Ditn

max ¼ �þ 2�;
else if � < 6D
Ditn

max ¼ �þ �;
else Ditn

max ¼ �;

R. MADHAVAN ET AL.
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217where itn denotes the iteration number and D is a function of the resolution of

219the range data.

220During implementation, D was selected based on the following two

221observations:

2221) If D is too small, then several iterations are required for the algorithm to

223converge and several good matches will be discarded, and

2242) If D is too big, then the algorithm may not converge at all since many

225spurious matches will be included. The interested reader is referred to [36]

226for more details on the effect and selection of D and � on the convergence of

227the algorithm.

228At the end of this step, two corresponding point sets, PM:{pi} and PD:{qi} are

229available.

230The incremental 3D transformation (rotation and translation) of step 2. is

231obtained as follows [3]:

233� Calculate H ¼
PND

i¼1 pi � pcð Þ qi � qcð ÞT ; pc;qcð Þ are the centroids of the

234point sets (PM, PD).
235� Find the Singular Value Decomposition (SVD) of H such that H = UWVT

236where U and V are unitary matrices whose columns are the singular vectors

237and W is a diagonal matrix containing the singular values.
238� The rotation matrix relating the two point sets is given by R = VUT.
239� The translation between the two point sets is given by T = qc j Rpc.

240This process is iterated as stated in step 4. until the mean Euclidean distance

241between the corresponding point sets PM and PD is less than or equal to a

242predetermined distance or until a given number of iterations is exceeded.

2433. Temporal Registration of 3D Range Images

244In this section, we present the results of the modified iterative algorithm on

245two sets of LADAR data (henceforth referred to as UGVL1 and UGVL2).

246Utilizing knowledge about the LADAR mount position and calibration factors,

247the range information provided by the LADARs are transformed to cartesian

248coordinates.

2493.1. EXPERIMENTAL SETUP AND RESULTS

250The eXperimental Unmanned Vehicle (XUV) shown in Figure 1(a) is a

251hydrostatic diesel, four-wheel-drive, four-wheel-steer vehicle. The military High

252Mobility Multipurpose Wheeled Vehicle (HMMWV) shown in Figure 1(b) is a

253one and one quarter ton, diesel-powered four-wheel-drive truck actuated with

TEMPORAL RANGE REGISTRATION FOR UNMANNED GROUND AND AERIAL VEHICLES
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254electric motors for steering, braking, throttle, transmission, transfer case, and

255park rake and sensors to monitor speed, engine RPM and temperature.

256Both vehicles utilize the NIST developed RCS architecture using Neutral

257Message Language (NML) communications for autonomous navigation in

258unstructured and off-road driving conditions. The sensor suite of the XUV and

259the HMMWV (shown in Figure 1(b)) consists of a pair of cameras for stereo

260vision, a Schwartz Electro-Optics LADAR, a stereo pair of Forward Looking

261Infra-Red (FLIR) cameras, a stereo pair of monochrome cameras, Global Posi-

262tioning System (GPS), Inertial Navigation System (INS), a force bumper sensor

263and actuators for steering, braking and transmission. An integrated Kalman filter

264navigation system fuses observations from odometry, inertial and differential

265GPS sensors for position estimation.

266UGVL1 data was obtained during field trials as the XUV traversed rugged

267terrain with vegetation. The LADAR was mounted on this UGV on a pan/tilt

268platform to increase its narrow 20- field of view. The range of the tilt motion is

269T30- resulting in an effective field of view of about 90-. UGVL1 provides a

270range image of 32 lines � 180 pixels where each data point contains the distance

Figure 1. The Demo III XUV shown in (a) can drive autonomously at speeds of up to 60

km/h on-road, 35 km/h off-road in daylight, and 15 km/h off-road at night or under

inclement weather conditions. (b) shows the NIST HMMWV and (c) its sensor suite.
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271to a target in the operating environment. The angular resolution of this LADAR

272is 0.658- � 0.5- in the horizontal and vertical directions, respectively.

273UGVL2 (Riegl LADAR in Figure 1(b)) data was collected from a sensor

274mounted on the HMMWV as the vehicle traversed urban environments. The

275effective field of view is 80- � 330- thus providing an almost panoramic view of

276the environment with an angular resolution of 0.036-. The scan rate of UGVL2 is

2771-/s j 15-/s providing 10,000 pts/s with range up to 800 m thus making it much

278lower than that of UGVL1 but the resulting 3D range image is of a much higher

279resolution. For more details on the LADARs, see [30].

280In the case of UGVL2, the 3D point cloud was acquired from two different

281view points whereas for UGVL1, the 3D point cloud represents scan points that

282were acquired between two consecutive vehicle locations. Additionally, for

283UGVL1, range image D was also translated a meter along each of the (x, y, z)

284axes in addition to the translation and rotation that the image underwent due to

285the motion of the vehicle. It is important to note here that even though the range

286image points arrive in the same sequence for both the model and data sets, it is

287not guaranteed that both sets will have the same number of points as some facets

288of the LADAR data sets might return empty values.

289Figures 2(a) and (b) show the results when the modified ICP algorithm is used

290to register 3D range images obtained from UGVL1 and Figures 3(a) and (b)

291show that for UGVL2. The number of model (M) and data (D) points for the two

292LADARs are {2,857, 2,878} and {125,396, 123,826}, respectively. As can be

293seen from Figures 2 and 3, the images are well registered. The closest point

294distance for UGVL1 before and after registration shown in Figure 4 also proves

295that the images are sufficiently registered. The mean distance (m) after regis-

296tration for the above three cases are {0.11, 0.84, 0.43}, respectively.

297Table I summarizes the registration results for two data sets obtained using

298UGVL1. In data set #2, point sets separated by 20 scans were matched. In data

299set #4, range image D of data set #1 was rotated 10- and was also translated 3 m

300along each of the (x, y, z) axes. Due to the above translation and rotation, it can

301be seen that both the number of iterations and the mean distance after registration

302have increased but the range images are still sufficiently registered. Note that

303such amounts of translation and rotation are highly unlikely to occur between

304consecutive range images.

3054. Air to Ground Feature-Based Registration

306Another way to minimize the dependency on GPS for UGV navigation is to

307use aerial survey maps constructed using a downward-looking LADAR

308mounted on an Unmanned Aerial Vehicle (UAV). If the LADAR range images

309from the UGV can be registered to those from the UAV, then these results can

310serve as secondary position estimates in the event of absence or degradation of

GPS.

TEMPORAL RANGE REGISTRATION FOR UNMANNED GROUND AND AERIAL VEHICLES
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Figure 2. 3D LADAR range images before and after registration. (a) and (b) show the

unregistered and registered UGVL1 range images, respectively. Here, the data range image

(D denoted by F)_ in yellow) was deliberately translated 1 m along the (x, y, z) axes in

addition to the inherent translation to demonstrate the robustness of the iterative algorithm.
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Figure 3. (a) and (b) show the unregistered and registered range images corresponding to

two sets of UGVL2 range images. In (a) and (b), the model (M) range image is shown in

green, unregistered and registered data (D) range images are shown in red and white,

respectively.
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320In this section, we propose a hybrid approach by combining the modified ICP

321algorithm with a feature-based method for registering two sets of LADAR range

322images. The proposed approach is conceptually similar to Hebert et al. [12] who

323employ range imagery to compute vehicle displacement between two viewing

324positions by using a two-stage technique (feature matching followed by point

325matching). The advantage of our hybrid approach lies in the fact that the

326accuracy of the point matching technique is retained while keeping the

327computational burden under control as the feature-based method provides a

328good initial estimate for refinement.

Figure 4. The closest point distance before and after registration of UGVL1 range images.
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Table I. Quantitative comparison of performance.

Data set Description Mean dist. after

registration [cm]

Number of

iterations t1.2

#1 M:4852 D:4848 Consecutive scans 5.77 6 t1.3
#2 M:5349 D:5352 20 scans apart 4.64 3 t1.4
#3 M:5349 D:5352 R(0)T(1)[#2] 4.64 38 t1.5
#4 M:4852 D:4848 R(10)T(3)[#1] 11.66 83 t1.6

R. MADHAVAN ET AL.
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329The value of aerial imagery obtained via active range sensing for aiding

330ground vehicle navigation is being recognized within the UGV community. For

331example, in [34], aerial and ground views from unmanned vehicles are registered

332by extracting a geometrically consistent set of correspondences using surface

333signatures from which a registration transformation is estimated. It is not clear,

334given the computational burden associated with the extraction of surface sig-

335natures, whether this approach can be implemented in real-time. In [33], an aerial

336vehicle, a Flying Eye (FE), flies ahead of an UGV acting as a Fscout_ to detect

337difficult obstacles from an overhead perspective thus benefitting ground vehicle

338navigation. The above article briefly mentions the need for registering the data

339from the FE to the ground vehicle but the details of the registration process are

340not presented. The hybrid approach proposed in this article exploits the sim-

341plicity and speed of the iterative closest point algorithm thus lending itself to

342real-time implementation.

343The underlying assumption in the iterative registration algorithm is that the

344rotation angle between the range images that need to be registered is not too

345large and also that these images are not too far apart. For the current case of

346UAV and UGV LADAR data, this assumption is overly restrictive and an aiding

347mechanism for the registration of the range images becomes necessary.

348The correspondence determination step is the most difficult and computa-

349tionally expensive step of the iterative algorithm. Despite the apparent simplicity

350of this problem, establishing reliable correspondences is extremely difficult as

351the UGV is subjected to heavy pitching and rolling motion characteristic of

352travel over undulating terrain. This is further exacerbated by the uncertainty of

353the location of the sensor platform relative to the global frame of reference. In

354addition to these factors, noise inherently present in LADAR range images com-

355plicates the process of determining reliable correspondences. One solution to

356overcome the above deficiencies is to extract naturally occurring view-invariant

357features, for example, corners, from the LADAR scans. Such control points can

358then be used for establishing reliable registration with the ICP algorithm con-

359verging to the global minimum.

360Towards guaranteeing robust and accurate registration, we first obtain the

361z translation value by estimating the ground z (elevation) values on the UGV

362and UAV LADAR data in the vicinity of the UGV’s current location. For the

363UGV, the ground values are obtained from the LADAR points that are within a

364given radius immediately in front of the vehicle and those for the UAV are

365obtained by finding the minimum of the LADAR values. Then we project the

366UAV and UGVLADAR data into the base ground planes as depicted in Figure 5(a)

367and construct the feature planes by using the Canny edge detector [5]. The corner

368features are detected based on the intersections of lines formed by edges. The

369corner features are independently extracted from both LADAR data sets by con-

370sidering those points that are above a given height from the ground as shown in

371Figure 5(b).
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372The two sets of the projected corner points (UAV LADAR set: A and UGV

373LADAR set: G) are used to estimate a 2D translation. Given two sets of 2D

374corner points:

A 4¼4¼4¼ aj ¼

a1j
a2j

..

.

anj

2
6664

3
7775; j ¼ 1; 2; � � � n; G 4¼4¼4¼ gk ¼

g1k
g2k

..

.

gnk

2
6664

3
7775; k ¼ 1; 2; � � � n;

Figure 5. Projection of LADAR data to base ground planes is shown in (a). The extracted

features (corners) from the UGV (black) and UAV (white) LADARs are shown in (b) as

white and black squares, respectively.
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377To find a translation along the x and y directions, we first calculate the means

378of sets A and G:

a ¼ 1

n

Xn
j¼1

aj; g ¼ 1

n

Xn
k¼1

gk;

381The difference between the means of x, y and that between the aerial and

382ground z values provide a rough estimate of the required 3D translation between

383the two sets of LADAR data. The 3D translational offset when applied to the

384UGV range image enables the ICP algorithm to provide reliable registration

385results.

3864.1. EXPERIMENTAL SETUP AND RESULTS

387The UAV LADAR produces a 3D range image at up to 6,000 terrain pts/s within

388a 100 m scanning range. For additional details, see [24, 25]. It provides an aerial

389survey map with significant information about existing topology and structures.

390Figure 6 shows a top view of unregistered range images obtained from the

391UGV (in white) and UAV (in black) LADARs, respectively. Figures 7 and 8 depict

392the results of the feature-based registration algorithm. Figure 7(a) shows a top

393view of the LADAR range images after applying the translation obtained using

394the corner features. Figure 8(a) shows the results of the iterative registration

395algorithm applied to the LADAR range images in Figure 7(a). Figures 7(b) and

3968(b) show a magnified view of stages depicted in Figures 7(a) and 8(a), re-

397spectively. From Figures 6–8, it is evident that the LADAR range images are

398registered. More results are available from [7].

399A similar sequence of results presented in Figures 9 and 10 again shows the

400efficacy of the proposed feature-based iterative algorithm in registering aerial

401and ground LADAR range images.

4025. Conclusions and Further Work

403Registering 3D range images from unmanned ground and aerial vehicles was the

404main theme of this article. The need for such registration is motivated by the

405requirement to continually estimate the position of the unmanned vehicle within

406accuracy bounds dictated by a particular mission even when the GPS position

407estimates are unreliable or unavailable. By making suitable modifications to the

408ICP algorithm it was shown that the modified algorithm provides reliable and

409robust registration in rugged terrain and urban environments for registering

410successive range images obtained from two different LADARs on a UGV.

411The proposed algorithm was then extended to register aerial images obtained

412from a UAV with those from the UGV. A hybrid approach was proposed to this

413end by combining the modified ICP algorithm with a feature-based method. The
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Figure 6. A top view of unregistered UGV (black) and UAV (white) LADAR range images

is shown in (a). A magnified side view of (a) is shown in (b).
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Figure 7. A top view of the feature-based translation obtained using the extracted corners

is shown in (a) and a magnified side view of the same is shown in (b).
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Figure 8. (a) shows a top view of the registered UAV (black) and UGV (white) LADAR

range images obtained by utilizing the feature-based translation results and (b) is a

magnified view of (a). See text for further details.
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422feature-based hybrid approach was also shown to be effective in producing

423reliable registration for UGV navigation.

424The results presented in the article demonstrated the potential of this approach

425lending itself to real-time implementation. For practical purposes, the sets of

426LADAR data utilized in this article can be assumed to be of the same resolution

427even though typically the aerial data tend to be of lower resolution than that of

428the UGV LADAR. To address this issue, we are currently developing schemes

429for use within the ICP algorithm that will inherently account for varying reso-

430lution in data sets that need to be registered. Towards this, we are also de-

Figure 9. A top view of unregistered range images of UGV (black) and UAV (white)

LADARs and the feature-based translation obtained using the extracted corners are shown in

(a) and (c), respectively. (b) and (d), respectively, show magnified side views of their

counterparts in the left column.

P
rin

t
w
ill

b
e
in

b
la
ck

a
n
d
w
h
ite.

TEMPORAL RANGE REGISTRATION FOR UNMANNED GROUND AND AERIAL VEHICLES

JrnlID 10846_ArtID 9025_Proof# 1 - 14/10/2005



U
N
C
O
R
R
EC
TE
D
PR
O
O
F

431veloping corner detection schemes using the Harris [11] and SUSAN corner

432detectors [32] on the 3D projected base ground planes.

433As ICP will only converge to the closest local minimum, in this article, the

434use of control points enabled us to guarantee that this local minimum will cor-

435respond to the actual global minimum. If wrong convergence proves to be an

436issue in cases where control points cannot be established, stochastic optimization

437algorithms (e.g., Simulated Annealing) can be used to alleviate this problem. SA

438is extremely slow in converging to the global minimum and thus a hybrid al-

439gorithm that combines it with the proposed iterative algorithm would be more

440appropriate. As the convergence of the algorithm depends on an initial estimate,

441a sufficiently good initial estimate is required for superior registration. An initial

442estimate is almost always available in our case as it can be obtained from either

443the vehicle’s dead reckoning or GPS estimates.

444Computing the correspondence is the most computationally expensive part of

445the algorithm. kd-trees have been proposed for faster correspondence where the

446complexity is reduced from O(NDNM) Y O(NDlogNM). We have also employed

447Quaternions [17] (instead of SVD) to determine the 3D transformation but it

448results only in a slight improvement in the resultant registration for the tested

449field data.

450In case of non-unique data sets (meaning less Fstructure_ in the environment),

451extraction of naturally occurring control points was shown to be a good means of

452guaranteeing the convergence of the algorithm for reliable registration. In the

453field trials, the vehicle was driven at a top speed of 20 mph for which case a good

454initial estimate is readily available and this immensely speeds up the corre-

Figure 10. The registered UAV (black) and UGV (white) LADAR range images obtained

by utilizing the feature-based translation results are shown in (a). (b) shows a magnified side

view of (a).
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455spondence determination. In the results reported in this article, we have been able

456to establish reliable registration in 10–12 iterations (at the most). This makes the

457proposed registration scheme very viable for real-time implementation.

458We have evaluated the performance of the registration algorithm for UGV

459navigation and have developed measures to quantify the performance of the

460algorithm [23]. The quality of the 3D registration will significantly improve if the

461uncertainty of the LADAR range images are taken into account and has been so

462verified for 2D laser scan registration [21]. We are currently investigating the

463extension of these results to the 3D case. To quantify the accuracy of the reg-

464istration results, we are investigating methods for estimating a covariance matrix

465of the error function that is minimized. We anticipate the covariance matrix to be

466useful when fusing the position estimates obtained via registration with other

467sensors.

468We have not had an opportunity to subject our LADAR to factors that might

469cause performance deterioration (for e.g., rain and fog). But these effects have

470been studied (on another LADAR) at NIST [16] in which the authors discuss

471the back scattering effect caused by fog that causes a spurious range value to

472be returned by the LADAR. There also exist research in the open literature

473on performance degradation of 2D LADAR under rainy conditions. For the

474LADAR used in the research reported in this article, these effects remain to be

475investigated.
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