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Abstract 
In this paper, we show how 4D/RCS incorporates and 
integrates multiple types of disparate knowledge 
representation techniques into a common, unifying 
architecture. 4D/RCS is based on the supposition that 
different knowledge representation techniques offer 
different advantages, and 4D/RCS is designed in such a way 
as to combine the strengths of all of these techniques into a 
common unifying architecture in order to exploit the 
advantages of each. In the context of applying the 
architecture to the control of autonomous vehicles, we 
describe the procedural and declarative types of knowledge 
that has been developed and applied, and value that each 
brings to the achieving the ultimate goal of autonomous 
navigation. We also look at symbolic vs. iconic knowledge 
representation, and show how 4D/RCS accommodates both 
of these types of representations and uses the strengths of 
each to strive towards achieving human-level intelligence in 
autonomous systems. 
 
Keywords: declarative, procedural, symbolic, iconic, 
knowledge, autonomous navigation, 4D/RCS 

1. Introduction 
During the past century, the neurosciences have provided 
deep insights into the anatomical, physiological, chemical, 
and computational basis of cognition. Neuroanatomy has 
described the structure and function of the basic 
computational element of the brain – the neuron, and 
produced extensive maps of the computational modules 
and interconnecting data flow pathways making up the 
anatomy of the brain. Behavioral psychology provides 
information about stimulus-response behavior and 
instrumental conditioning. Cognitive psychology is 
exploring how the brain represents knowledge; how it 
perceives objects, events, situations, and relationships; 
how it analyzes the past and plans for the future; and how 
it selects and controls behavior that satisfies desires and 
achieves goals 
 
Over the last five decades, the invention of the electronic 
computer has brought rapid advances in computational 
power, making it feasible to launch serious attempts at 
building intelligent systems. Artificial intelligence and 
robotics have produced significant results in planning, 

problem-solving, rule-based reasoning, image analysis, and 
speech understanding. Autonomous vehicle research has 
produced advances in real-time sensory processing, world 
modeling, navigation, path planning, and obstacle 
avoidance. Research in industrial automation and process 
control has produced hierarchical control systems, 
distributed databases, and models for representing 
processes and products. Modern control theory has 
developed precise understanding of stability, adaptability, 
and controllability under various conditions of uncertainty 
and noise. Progress is rapid in each of the above fields, and 
there exists an enormous and rapidly growing body of 
literature in all of these areas.  
 
What is lacking is a widely accepted theoretical 
architecture that can integrate concepts from all of these 
different fields into a unified whole. This paper describes 
the 4D/RCS architecture and describes how it has been 
implemented to leverage and integrate multiple different 
types of knowledge representation in the domain of 
autonomous vehicle navigation.  
 
Section 2 gives an overview of existing intelligent 
architectures. Section 3 gives some background on 
4D/RCS. Section 4 describes that knowledge that is 
captured in 4D/RCS as it relates to enabling intelligence in 
autonomous vehicles. Section 5 describes some results and 
Section 6 concludes the paper.   

2. Related Architectures 
One of the earliest architectures was the ACT architecture 
[6].  ACT grew out of research on human memory.  Over 
the years, ACT has evolved into ACT* and more recently, 
ACT-R.  ACT-R is being used in several research projects 
in an Advanced Decision Architectures Collaborative 
Technology Alliance for the U.S. Army [14].  ACT-R is 
also being used by thousands of schools across the country 
as an algebra tutor – an instructional system that supports 
learning-by-doing.  Another well-known and widely used 
architecture is Soar [16].  Soar grew out of research on 
human problem solving, and has been used for many 
academic and military research projects in problem 
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solving, language understanding, computational 
linguistics, theorem proving, and cognitive modeling. 
 
Other architectures include Prodigy, ICARUS, IMPRINT 
(Improved Performance Research Integration Tool), EPIC 
(Executive-Process Interactive Control), and 4D/RCS 
(Real-time Control Systems).  Like Soar, Prodigy uses 
search through a problem space to achieve goals cast as 
first-order expressions [19].  ICARUS is a reactive 
architecture that encodes knowledge as reactive skills [23].  
IMPRINT is a task description language designed for the 
Army to capture the procedural specification of tactical 
behavior scenarios [8]. It contains a dynamic, stochastic, 
discrete-event network modelling tool designed to help 
assess the interaction of soldier and system performance 
throughout the system lifecycle – from concept and design 
through field testing and system upgrades. IMPRINT has 
been integrated with ACT-R to model military behaviors 
[7].  EPIC is an architecture that models the detailed timing 
of human perceptual, cognitive, and motor activity, 
including the input/output characteristics of the nervous 
system connecting the higher level cognitive functions to 
the external world [15].  4D/RCS is a control system 
architecture inspired by a theory of cerebellar function [1].  
4D/RCS models the brain as a hierarchy of goal-directed 
sensory-interactive intelligent control processes that 
theoretically could be implemented by neural nets, finite 
state automata, cost-guided search, or production rules [5]. 
 
4D/RCS is similar to other cognitive architectures in that it 
represents procedural knowledge in terms of production 
rules, and represents declarative knowledge in abstract data 
structures such as frames, classes, and semantic nets.  
4D/RCS differs from other cognitive architectures in that it 
also includes signals, images, and maps in its knowledge 
database, and maintains a tight real-time coupling between 
iconic and symbolic data structures in its world model.  
4D/RCS is also different in: a) its focus on task 
decomposition as the fundamental organizing principle; b) 
its level of specificity in the assignment of duties and 
responsibilities to agents and units in the behavior 
generating hierarchy; and c) its emphasis on controlling 
real machines in real-world environments. 

3.  Background of 4D/RCS 
4D/RCS evolved from the bottom up as a real-time 
intelligent control system for real machines operating on 
real objects in the real world.  The first version of RCS 
was developed as a sensory-interactive goal-directed 
controller for a laboratory robot [10]. The fundamental 
element is the control loop with a goal, a transition 
function, a feedback loop, and an action output such as a 
force, velocity, or position. Over the years, RCS has 
evolved into an intelligent controller for industrial robots, 
machine tools, intelligent manufacturing systems, 
automated general mail facilities, automated stamp 
distribution systems, automated mining equipment, 

unmanned underwater vehicles, and unmanned ground 
vehicles [2,11].  The most recent version of RCS 
(4D/RCS) embeds elements of Dickmanns [13] 4-D 
approach to machine vision within the 4D/RCS control 
architecture.  4D/RCS was designed for the U.S. Army 
Research Lab AUTONAV and Demo III Experimental 
Unmanned Vehicle programs and has been adopted by the 
Army Future Combat System program for Autonomous 
Navigation Systems [3,4]. 
 
4D/RCS consists of a multi-layered multi-resolutional 
hierarchy of computational nodes each containing elements 
of sensory processing (SP), world modeling (WM), value 
judgment (VJ), behavior generation (BG), and a 
knowledge database (KD), as shown in Figure 1.  
Throughout the hierarchy, interaction between SP, WM, 
VJ, BG, and KD give rise to perception, cognition, and 
reasoning.  At low levels, representations of space and 
time are short-range and high-resolution. At high levels, 
distance and time are long-range and low-resolution.  This 
enables high-precision fast-action response at low levels, 
while long-range plans and abstract concepts are being 
simultaneously formulated at high levels.  The hierarchical 
approach also helps to manage computational complexity.  
 
4D/RCS closes feedback loops at every level, through 
every node. SP processes focus attention (i.e., window 
regions of space or time), group (i.e., segment regions into 
entities), compute entity attributes, estimate entity state, 
and assign entities to classes at every level.  WM processes 
maintain a rich and dynamic database of knowledge about 
the world in the form of images, maps, entities, events, and 
relationships at every level.  Other WM processes use that 
knowledge to generate estimates and predictions that 
support perception, reasoning, and planning at every level.  
VJ processes assign worth and importance to objects and 
events, compute confidence levels for variables in the 
knowledge database, and evaluate the anticipated results of 
hypothesized plans. 

4. Intelligence in Autonomous Vehicles 
4D/RCS is designed in such a way as to accommodate 
 

Figure 1. RCS Node  
Figure 1: 4D/RCS Node 
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multiple types of representation formalisms and provide an 
elegant way to integrate these formalisms into a common, 
unifying architecture. This section will describe the types 
of knowledge representations that have been researched 
and/or implemented within the 4D/RCS architecture for 
autonomous driving and the mechanisms that have been 
deployed to integrate them. 
 
As mentioned previously, 4D/RCS is a hierarchical 
architecture, and as such, supports knowledge 
representation at different levels of abstraction. 
Traditionally, the lowest levels of the architecture 
primarily contain state variables such as actuator positions, 
velocities, and forces, pressure sensor readings, position of 
switches, gearshift settings, and inertial sensors for 
detecting gravitational and locomotion acceleration and 
rotary motion.  The next higher level of the hierarchy (and 
above) contains map-based information, with decreasing 
resolution and increasing spatial extent as one proceeds 
higher up the hierarchy. The further up the hierarchy, a 
combination of map-based representations and object 
knowledge bases are used, which contain names and 
attributes of environmental features such as road edges, 
holes, obstacles, ditches, and targets. These maps represent 
the shape and location of terrain features and obstacle 
boundaries. Still higher up the hierarchy is symbolic 
information referring to the location of vehicles, targets, 
landmarks, and local terrain features such as buildings, 
roads, woods, fields, streams, fences, ponds, etc. The top 
levels of the hierarchy primarily deal with groups of 
objects, such as groups of people, buildings, or vehicles. 
These groups are treated as a single entity, with average 

characteristics (e.g., speed, location, color) used to 
describe them.    
 
This knowledge is stored within the Knowledge Database 
(KD). The KD consists of data structures that contain the 
static and dynamic information that collectively form a 
model of the world.  The KD contains the information 
needed by the world model to support the behavior 
generation, sensory processing, and value judgment 
processes within each node. Knowledge in the KD 
includes the system’s best estimate of the current state of 
the world plus parameters that define how the world state 
can be expected to evolve in the future under a variety of 
circumstances. 
 
Figure 2 shows the many different types of knowledge 
representation formalisms that are currently being 
implemented within the 4D/RCS architecture as applied to 
autonomous driving. These formalisms range from iconic 
to symbolic and from procedural to declarative. 
Knowledge is captured in formalisms and at levels of 
abstraction that are suitable for the way that it is expected 
to be used. Different knowledge representation techniques 
offer different advantages, and 4D/RCS is designed in such 
a way as to combine the strengths of all of these techniques 
into a common unifying architecture in order to exploit the 
advantages of each. In the following subsections, we will 
describe some of the formalisms depicted, classifying 
knowledge as either procedural or declarative. 

4.1. Procedural Knowledge 
Procedural knowledge is the knowledge of how to perform 
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tasks. Procedural knowledge is different from other kinds 
of knowledge, such as declarative knowledge, in that it can 
be directly applied to a task. Within 4D/RCS, procedural 
knowledge is primarily used for planning and control 
purposes. As such, we will describe two planning 
approaches that are currently being implemented in 
4D/RCS and describe the knowledge that underlies each. 
 
Both planning approaches start with the same 4D/RCS 
methodology for determining the knowledge which needs 
to be represented to accomplish the planning task. The 
methodology starts as follows: 
 

1. The first step involves an intensive analysis of 
domain knowledge from manuals and subject 
matter experts, especially using scenarios of 
particular subtask operations.  The output of the 
effort is a structuring of this knowledge into a 
task decision tree consisting of simpler and 
simpler commands (actions/verbs) at simpler and 
simpler levels of task description. 

2. The second step defines the hierarchical 
organization of agent control modules that will 
execute these layers of commands in such a 

manner as to reasonably accomplish the tasks.  
This is the same as coming up with a business or 
military organizational structure of agent control 
modules (people, soldiers) to accomplish the 
desired tasks.  This step forces a more formal 
structuring of all of the subtask activities and 
responsibilities, as well as defining the execution 
structure. 

 
At this point, the two approaches diverge in the procedure 
for determining the types of knowledge necessary to 
accomplish the planning task. Subsequent steps are 
described in the following  subsections. 
 
4.1.1. State Machine-Based Planning (a) 
 
The state machine-based methodology, shown in Figure 3,  
concentrates on the task decomposition as the primary 
means of understanding the knowledge required for 
intelligent control.  Once the previous two steps are 
performed, the procedure proceeds as follows: 
 

3a. The third step clarifies the processing of each 
agent's input command through the use of rules to 

 

Figure 3: The RCS State Machine-based Planning Approach
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identify all of the task branching conditions with 
their corresponding output commands. Each of 
these command decompositions at each agent 
control module will be represented in the form of 
a state-table of ordered production rules (which is 
an implementation of an extended finite state 
machine (FSM)).  The sequence of simpler output 
commands required to accomplish the input 
command and the named situations (branching 
conditions) that transition the state-table to the 
next output command are the primary knowledge 
represented in this step. 

4a.  In the fourth step, the above named situations that 
are the task branching conditions are defined in 
great detail in terms of their dependencies on 
world and task states.  This step attempts to define 
the detailed precursor states of the world that 
cause a particular situation to be true.  

5a.  In the fifth step, we identify and name all of the 
objects and entities together with their particular 
features and attributes that are relevant to defining 
the above world states and situations. Current 
efforts are exploring the use of ontologies and 
databases to represent this information. 

6a. The sixth step uses the context of the particular 
task activities to establish the distances and, 
therefore, the resolutions at which the above 
objects and entities must be measured and 
recognized by the sensory processing component.  
This step establishes a set of requirements and/or 
specifications for the sensor system at the level of 
each separate subtask activity.  

 
4.1.2. Cost-Based Planning Representations (b) 
 
The cost based methodology concentrates on decomposing 
each of its assigned tasks into an optimal sequence of 
commands that will be assigned to its subordinates. This is 
accomplished through the incremental creation and 
evaluation of a planning graph [9]. Once again, the first 
two steps from Section 4.1 must be performed and are then 
followed by: 
 

3b. The third step develops an action model that 
delineates how each of the subordinate’s 
commands will affect the system state at the 
current level of resolution. This allows a 
simulation system to experiment with various 
command options in order to obtain the state 
transitions that are required to fulfill the level’s 
goals. 

4b. The fourth step develops a set of user constraints 
and objectives that could affect the cost/benefit 
ratio of performing a given action or occupying a 
given state. For example, the cost/benefit of 
running a red light would be substantially 
different for a casual driver than it would be for a 

person driving his wife to the hospital to deliver a 
baby.  

5b. Step 5 examines the potential state variable 
transitions that have been identified along with 
the potential user constraints and objective in 
order to construct a cost function that will be 
utilized by the value judgment module during the 
graph expansion process. 

 
By developing the state transition simulator from step 3b 
we are able to incrementally build a planning graph based 
on potential actions that a subordinate may take. The cost 
function developed in step 5b may then be used to evaluate 
the individual arcs of the planning graph in order to control 
the expansion order and find the cost optimal path through 
the planning graph. 
 
To represent the knowledge coming out of these 
methodologies, active efforts have been exploring the 
development of an ontology to model tactical behaviors. 
The ontology is based upon the OWL-S specification 
(Web Ontology Language - Services) [24]. In this context, 
behaviors are actions that an autonomous vehicle is 
expected to perform when confronted with a predefined 
situation. The ontology is stored within the 4D/RCS 
knowledge database, and the behaviors are spawned when 
situations in the world are determined to be true, as judged 
by sensor information and the value judgment components. 
More information about this effort can be found in [22]. 

4.2. Declarative Knowledge  
 
Declarative knowledge is represented in a format that may 
be manipulated, decomposed, and analyzed by reasoners. 
Unlike procedural knowledge, it does not describe how to 
perform a given task. Instead, it provides the ability to use 
knowledge in ways that the system designer did not 
foresee. Two classes of declarative knowledge that is 
captured within 4D/RCS are symbolic knowledge and 
iconic knowledge. In the follow two subsections, we 
describe details about these two types of knowledge 
representations. 
 
4.2.1. Symbolic Knowledge 
 
Symbolic representations provide ways of expressing 
knowledge and relationships, and of manipulating 
knowledge, including the ability to address objects by 
property.   
 
Tying symbolic knowledge back into the spatial 
representation provides symbol grounding, thereby solving 
the previously noted problem inherent to purely symbolic 
knowledge representations, It also provides the valuable 
ability to identify objects from partial observations and 
then extrapolate facts or future behaviors from the 
symbolic knowledge. 
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Two types of symbolic representations that are being 
implemented within 4D/RCS are ontologies and relational 
databases.  
 
Ontologies represent key concepts, their properties, their 
relationships, and their rules and constraints within a given 
domain. Ontologies often focus more on the meaning of 
concepts than on the terms that are used to represent them. 
Two efforts have focused on the development of 
ontologies for autonomous navigation.  
 
An ontology for roadway driving has been developed for 
autonomous driving, which is used to determine if objects 
in the environment are potential obstacles to our vehicle. 
The system is composed of an ontology of objects 
representing “things” that may be encountered in our 
current environment, in conjunction with rules for 
estimating the damage that would be incurred by collisions 
with the different objects in different situations. Automated 
reasoning is used to estimate collision damage, and this 
information is fed to the route planner to help it decide 
whether to avoid the object. More information about this 
effort can be found at [20]. 
 
In addition to ontologies, databases have been developed 
to house symbolic information. The database that has 
received the most attention to date is the Road Network 
Database. [21] The database includes detailed information 
about the roadway, such as where the road lies, rules 
dictating the traversal of intersections, lane markings, road 
barriers, road surface characteristics, etc. The purpose of 
the Road Network Database is to provide the data 
structures necessary to capture all of the information 
necessary about road networks so that a planner or control 
system on an autonomous vehicle can plan routes along the 
roadway at any level of abstraction. At one extreme, the 
database provides structures to represent information so 
that a low-level planner can develop detailed trajectories to 
navigate a vehicle over the span of a few meters. At the 
other extreme, the database provides structures to represent 
information so that a high-level planner can plan a course 
across a country. Each level of planning requires data at 
different levels of abstraction, and as such, the Road 
Network Database must accommodate these requirements. 
 
4.2.2. Iconic Knowledge 
 
Iconic knowledge is often spatial in nature and can be 
defined as 2D or 3D array data in which the dimensions of 
the array correspond to dimensions in physical space. The 
value of each element of the array may be Boolean data, 
real number, or vector data representing a physical 
property such as light intensity, color, altitude, range, or 
density.  Each element may also contain spatial or temporal 
gradients of intensity, color, range, or rate of motion.  Each 
element may also contain a pointer to a geometric entity 

(such as an edge, vertex, surface, or object) to which the 
pixel belongs. 
 
Examples of iconic knowledge used within 4D/RCS 
include digital terrain maps, sensor images, models of the 
kinematics of the machines being controlled, and 
knowledge of the spatial geometry of parts or other objects 
that are sensed and with which the machine interacts in 
some way.  This is where objects and their relationship in 
space and time are modeled in such a way as to represent 
and preserve those spatial and temporal relationships, as in 
a map, image, or trajectory. 
 
Within 4D/RCS, maps enhance the scope of the world 
model. Such iconic maps may take a variety of forms 
including survey and aerial maps and may provide 
significant information about existing topology and 
structures. The higher levels in the 4D/RCS control 
hierarchy includes feature and elevation data from a priori 
digital terrain maps such as information about roads, 
bridges, streams, woods, and buildings. This information 
needs to be registered and merged with data from the lower 
level maps that are generated by sensors. Additionally, for 
incorporating a priori knowledge into the world model, 
some form of weighting is required and this depends on 
how well the a priori data and the sensed information are 
registered. There is also the need to generate higher 
resolution a priori terrain maps as the current survey maps 
are too coarse for autonomous driving. Another potential 
application for registering sensor data is the computation 
of ground truth. 
 
Towards registering LADAR (Laser Range Detection) 
range images to a priori maps, we have developed an 
iterative algorithm that can deal with false/spurious 
matches, occlusions and outliers for UGV (unmanned 
ground vehicle) navigation [18]. The iterative registration 
algorithm can be summarized as follows: Given an initial 
motion transformation between two 3D point sets, a set of 
correspondences are developed between data points in one 
set and the next. For each point in the first data set, we find 
the point in the second that is closest to it under the current 
transformation. It should be noted that correspondence 
between the two points sets is initially unknown and that 
point correspondences provided by sets of closest points is 
a reasonable approximation to the true point 
correspondence. From the set of correspondences, an 
incremental motion can be computed facilitating further 
alignment of the data points in one set to the other. This 
correspondence/compute motion process is iterated until a 
predetermined threshold termination condition. 
 
A hybrid iterative algorithm has also been developed for 
registering 3D LADAR range images obtained from 
unmanned aerial and ground vehicles [17]. Combined with 
a feature-based approach, the algorithm was shown to 
produce accurate registration for the two sets of LADAR 
data. Registration of the UGV LADAR to the aerial survey 
map minimizes the dependency on GPS for position 
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estimation especially when the GPS estimates are 
unreliable or unavailable. 

5. Results 
Experimental validation of the 4D/RCS architecture and 
the knowledge representation within has been provided by 
the performance of the Demo III eXperimental Unmanned 
ground Vehicles (XUVs) in an extended series of 
demonstrations and field tests during the winter of 2002-
2003.  
 
The XUVs were equipped with an inertial reference 
system, a commercial grade GPS receiver (accurate to 
about +/- 20 m), a LADAR camera with a frame rate of 10 
frames per second, and a variety of internal sensors.  The 
LADAR had a field of view 90 degrees wide and 20 
degrees high with resolution of about ½ degree per pixel.  
It was mounted on a pan/tilt head that enabled it to look in 
the direction that the vehicle planned to drive.  The 
LADAR detected the ground out to a range of about 20 m, 
and detected vertical surfaces (such as trees) out to a range 
of about 60 m.  Routes for XUV missions were laid out on 
a terrain map by trained Army scouts, and given to the 
XUVs in terms of GPS waypoints spaced over 50 m apart. 
 
The XUVs operated completely autonomously until they 
got into trouble and called for help.  Typical reasons for 
calling for help were the XUV was unable to proceed 
because of some terrain condition or obstacle (such as soft 
sand on a steep slope, or dense woods), and was unable to 
find an acceptable path plan after several attempts at 
backing up and heading a different direction.  At such a 
point, an operator was called in to teleoperate the vehicle 
out of difficulty.  During these operations, data was 
collected on the cause of the difficulty, the type of operator 
intervention required to extract the XUV, the time required 
before the XUV could be returned to autonomous mode, 
and the work load on the operator.   
 
During three major experiments designed to determine the 
technology readiness of autonomous driving, the Demo III 
experimental unmanned vehicles were driven 550 km, over 
rough terrain: 1) in the desert; 2) in the woods, through 
rolling fields of weeds and tall grass, and on dirt roads and 
trails; and 3) through an urban environment with narrow 
streets cluttered with parked cars, dumpsters, culverts, 
telephone poles, and manikins.  Tests were conducted 
under various conditions including night, day, clear 
weather, rain, and falling snow.  The unmanned vehicles 
operated over 90 % of both time and distance without any 
operator assistance.  An extensive report of these 
experiments has been published [12], along with high 
resolution ground truth data describing the terrain where 
the XUVs experienced difficulties [25].  

6. Conclusion 
We believe that the 4D/RCS provides an excellent 
architecture in which to integrate multiple knowledge 
representation approaches to build cognitive models and 
intelligent systems that significantly advance the level of 
intelligence we can achieve. In this paper, we have 
described how 4D/RCS supports multiple types of 
representations, ranging from iconic to symbolic and from 
declarative to procedural, and provided brief examples of 
how each of these representations are used in the context 
of autonomous driving. We also show how all of these 
knowledge representation formalisms not only fit into the 
node structure present at each level of the 4D/RCS 
hierarchy, but also play in the role in the 4D/RCS 
methodologies. 
 
It should be noted that the Demo III tests were performed 
in environments devoid of moving objects such as on-
coming traffic, pedestrians, or other vehicles. In a dynamic 
environment, the autonomous vehicle would need to 
consider the actions, and possible future actions, of these 
types of objects in the environment. To address this, 
current and future efforts will focus on the development of 
predictive algorithms, leveraging the knowledge models 
found within this paper, to predict the future actions of 
objects just as humans do when they drive. When humans 
drive, we often have expectations of how each object in the 
environment will move based upon the situation. For 
example, when a vehicle is approaching an object that is 
stopped in the road, we expect it to slow down and stop 
behind the object or try to pass it. When we see a vehicle 
with its blinker on, we expect it to turn or change lanes. 
When we see a vehicle traveling behind another vehicle at 
a constant speed, we expect it to continue traveling at that 
speed. The decisions that we make in our vehicle are 
largely a function of the assumptions we make about the 
behavior of other vehicles. It is believed that this level of 
“intelligence” is necessary to begin to achieve human-level 
AI.  
 
In general, we believe that autonomous driving is an 
excellent topic for continued research on intelligent 
systems for the following reasons: 
 
• It is a problem domain for which there is a large 

potential user base, both in the military and civilian 
sectors.  This translates into research funding. 

• It is a problem domain where physical actuators and 
power systems are readily available.  Wheeled and 
tracked vehicle technology is mature, inexpensive, and 
widely deployed.   

• It is a problem domain for which the technology is 
ready.  The invention of real-time LADAR imaging 
makes it possible to capture the 3-D geometry and 
dynamics of the world.  This has broken the perception 
barrier.  The continued exponential growth rate in 
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computing power per dollar cost has brought the 
necessary computational power within the realm of 
economic viability.  This has broken the cost barrier.  
Intelligent control theory has advanced to the point 
where the engineering of intelligent systems is feasible.  
This has broken the technology barrier. 

• It is problem domain of fundamental scientific interest.  
Locomotion is perhaps the most basic of all behaviors in 
the biological world.  Locomotion is essential to finding 
food and evading predators throughout the animal 
kingdom.  The brains of all animate creatures have 
evolved under the pressures of natural selection in 
rewarding successful locomotion behavior.   It is 
therefore, not unreasonable to suspect that building truly 
intelligent mobility systems will reveal fundamental new 
insights into the mysteries of how the mechanisms of 
brain give rise to the phenomena of intelligence, 
consciousness, and mind. 

 
4D/RCS and the autonomous driving domain provide an 
excellent opportunity to further advance research in 
human-level AI. Through the analysis of this domain, the 
process in which humans perceive and process information 
is becoming more evident. With the large amount of both 
moving and stationary objects in the environment and the 
inability of humans to be able to process every detail, 
challenges, such as focus of attentions, are starting to be 
better understood and helping to drive research in 
promising directions. A better understanding of human 
driving is allowing methodologies, such as the state 
machine-based methodologies described in Section 4.1.1, 
to be developed to better mimic the process that humans go 
through when they make decisions at different time 
horizons. These breakthroughs are also making evident the 
wealth of knowledge that humans use to make these 
decisions. The knowledge representation examples 
described in this paper only begin to skim the surface of 
the knowledge representation techniques that are needed to 
achieve a level of human-like intelligence. Continued 
research in this domain will help to make these knowledge 
requirements more evident and help to drive future 
research with the ultimate goal of approaching human-
level intelligence in AI systems. 
 

References 
 

 1.  Albus, J.,  "A Theory of Cerebellar Function," 
Mathematical Biosciences, Vol. 10, 1971, pp. 25-
61. 

 2.  Albus, J.,  "The NIST Real-time Control System 
(RCS): An approach to Intelligent Systems 
Research," Journal of Experimental and Theoretical 
Artificial Intelligence, Vol. 9, 1997, pp. 157-174. 

 3.  Albus, J. and et al., "4D/RCS Version 2.0: A 
Reference Model Architecture for Unmanned 
Vehicle Systems," NISTIR 6910, National Institute 
of Standards and Technology, Gaithersburg, MD, 
2002. 

 4.  Albus, J. and Meystel, A., Engineering of Mind, 
John Wiley & Sons, Inc. 2001. 

 5.  Albus, J. S., Brain, Behavior, and Robotics, 
McGraw-Hill 1981. 

 6.  Anderson, J., The Architecture of Cognition, 
Lawrence Erlbaum Associates, Mahwah, N.J., 1983. 

 7.  Archer, R., Lebriere, C., Warwick, W., and Schunk, 
D.,  "Integration of Task Network and Cognition 
Models to Support System Design," Proceedings of 
the Collaborative Technology Alliances 
Conference: 2003 Advanced Decision Architectures, 
College Park, MD, 2003. 

 8.  Archer, S. and Adkins, R., "IMPRINT User's 
Guide," 1999. 

 9.  Balakirsky, S., A Framework for Planning with 
Incrementally Created Graphs in Attributed 
Problem Spaces, IOS Press, Berlin, Germany, 2003. 

 10.  Barbera, T., Albus, J., and Fitzgerald, M.,  
"Hierarchical Control of Robots Using 
Microcomputers," Proceedings of the 9th 
International Symposium on Industrial Robots, 
Washington DC, 1979. 

 11.  Barbera, T., Fitzgerald, M., Albus, J., and Haynes, 
L. S.,  "RCS: The NBS Real-Time Control System," 
Proceedings of the Robots Conference and 
Exposition, Detroit, Michigan, 1984. 

 12.  Camden, R., Bodt, B., Schipani, S., Bornstein, J., 
Phelps, R., Runyon, T., French, F., and Shoemaker, 
C.,  "Autonomous Mobility Technology Assessment 
Interim Report," Army Research Laboratory (ARL-
MR-565), 2003. 

 13.  Dickmanns, E. D.,  "An Expectation-Based Multi-
Focal Saccadic (EMS) Vision System for Vehicle 
Guidance," Proceedings of the 9th International 
Symposium on Robotics Research (ISRR'99), Salt 
Lake City, 1999. 

 14.  Gonzalez, C.,  "ACT-R Implementation of an 
Instance-Based Decision Making Theory," 
Proceedings of the Collaborative Technology 
Alliance Conference: 2003 Advanced Decision 
Architectures, College Park, MD, 2003. 

 15.  Kieras, D. and Meyer, D. E.,  "An overview of the 
EPIC architecture for cognition and performance 
with application to human-computer interaction," 
Human-Computer Interaction, Vol. 12, 1997, pp. 
391-438. 

 16.  Laird, J. E., Newell, A., and Rosenbloom, P. S.,  
"SOAR: An Architecture for General Intelligence," 
Artificial Intelligence, Vol. 33, 1987, pp. 1-64. 

 17.  Madhavan, R., Hong, T., and Messina, E.,  
"Temporal Range Registration for Unmanned 
Ground and Aerial Vehicles," Proceedings of the 
IEEE International Conference on Robotics and 
Automation (ICRA), New Orleans, LA, USA, 2004, 
pp. 3180-3187. 

 18.  Madhavan, R. and Messina, E.,  "Iterative 
Registration of 3D LADAR Data for Autonomous 



 9

Navigation," Proceedings of the IEEE Intelligent 
Vehicles Symposium, Columbus, OH, USA, 2003, 
pp. 186-191. 

 19.  Minton, S. N.,  "Quantitative results concerning the 
utility of explanation-based learning," Artificial 
Intelligence, Vol. 42, 1990, pp. 363-391. 

 20.  Provine, R., Uschold, M., Smith, S., Balakirsky, S., 
and Schlenoff, C.,  "Observations on the Use of 
Ontologies for Autonomous Vehicle Navigation 
Planning," To Appear in the Robotics and 
Autonomous Systems Journal: Special Issue on the 
2004 AAAI Knowledge Representation and 
Ontologies for Autonomous Systems Spring 
Symposium, 2004. 

 21.  Schlenoff, C., Balakirsky, S., Barbera, T., Scrapper, 
C., Ajot, J., Hui, E., and Paredes, M., "The NIST 
Road Network Database: Version 1.0," National 
Institute of Standards and Technology (NIST) 
Internal Report 7136, 2004. 

 22.  Schlenoff, C., Washington, R., and Barbera, T.,  
"Experiences in Developing an Intelligent Ground 
Vehicle (IGV) Ontology in Protege," Proceedings 
of the 7th International Protege Conference, 
Bethesda, MD, 2004. 

 23.  Shapiro, D. and Langley, P.,  "Controlling physical 
agents through reactive logic programming," 
Proceedings of the Third International Conference 
on Autonomous Agents 386-387, ACM Press, 
Seattle, 1999. 

 24.  The OWL Services Coalition, "OWL-S 1.0 
Release," http://www.daml.org/services/owl-
s/1.0/owl-s.pdf, 2003. 

 25.  Witzgall, C., Cheok, G., and Gilsinn, D.,  "Terrain 
Characterization from Ground-Based LADAR," 
Proceedings of the PerMIS '03 Workshop, National 
Institute of Standards and Technology, 
Gaithersburg, MD 20899, 2003. 

 
 
 
 
 




