Machine Shop Information Model
Application, Next Step

Y. Tina Lee, Yan Luo

Manufacturing Systems Integration Division
Manufacturing Engineering Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8260, U.S.A.

Abstract: Simulation is defined as the imitation of the operation of a system or real-world
process over time, and in many cases, manufacturing provides one of the most important
applications of simulation (Zolfaghari and Roa, 2006). Standard interfaces could make
information effective sharing, and hence promote the utilization of simulators. An
information model (McLean et al., 2005), which represents machine shop data and
facilitates data sharing among machine shop’s manufacturing execution system, scheduling
system, and simulation system, has been developed at the National Institute of Standards
and Technology (NIST). Recently NIST researchers in collaboration with industrial
partners have been working on a standards development effort titled Core Manufacturing
Simulation Data (CMSD) Product Development Group (PDG) under the guidelines,
policies and procedures of the Simulation Interoperability Standards Organization (SISO).
A key activity of the CMSD PDG is to develop a CMSD information model using the
machine shop information model as the strawman. This paper briefs the machine shop
information model and the CMSD information model. This paper discusses information
exchange, using NIST’s information model, between different representations and presents
an algorithm to exchange data between a database system and an eXtensible Markup
Language (XML) [1] document. The algorithm has been built based on Document Object
Model (DOM), XML Path Language (XPath), and Open Database Connectivity Database
Engine (ODBC). The paper also describes interfaces for XML schema’s validation,
structured query, and data transfer.

Keywords: database, data interface, information model, manufacturing, simulation, XML

BACKGROUND

Landau et al., 2002, Robert et al., 2002). XML is used to

manipulate, access, and exchange data or metadata over

Simulation technology remains largely underutilized by
industry today because of complex and costly custom
development. Data communication among heterogeneous
systems is always a concern, particularly in situations where
the support of a universal data exchange standard is
unavailable. There is a new data standard for the Web called
the eXtensible Markup Language (XML) (Rezayat, 2000,

different platforms and systems. XML is regarded as next
generation data representation (Manola, 1999). There are
still problems to transfer data between existing database
system and XML representation format. The paper focuses
on this issue.

1.1 Information model

Many integration projects today rely on shared semantic
models based on standards represented using XML
technologies (Morris, 2004). An information model is a
representation of concepts, relationships, constraints, rules,
and operations to specify data semantics for a chosen
domain of discourse (Lee, 1999). The advantage of using an
information model is that it can provide shareable, stable,
and organized structure of information requirements for the
domain context. An information model serves as a medium
for transferring data among computer systems that have
some degree of compliance with this information model.
For proprietary data, implementation-specific arrangements
can be made when transferring those data. Information
model is important for effective information sharing and
integration. In general, the contents of an information model
include a scope, a set of information requirements, and a
specification. Information requirements serve as the
foundation of the specification of the information model. A
thorough requirements analysis is a necessity.

Figure 15 ample schema

< ?uml verdon="1,0" encoding="LTF-&" ==
- <usi schermna
wmin = HF"hU:p:.-“.-"www.w?u:-rngEl] 1¥EM Scherna
" elemne ntFormDef ault="qu alified "=
+ <1-- §Id: calendarsrngu 1.5
00024 21 57: 17 M55 Exp §
RELS: MG comnp act syertaq
reprezentation of "calend ars" from shop
data model --=
- <na compledType narne ="calendars"=
= <ws com plesConte it
- < HS eHtension
base="all.front. matter"=
o <ME sequUen e
<wsielerne it
maxocours="unb
ounded”
ref="calend a" /=
<fHzi sequen cex
<{'r= extension >
</ st comn plesContants
</um complexTepes
<HS l;elllement narne="calendar" type="calendar
=
= <= #m complexType name ="calendar"=
= < us! annotation =
< 1= document st on=irfarmation
about the shift schedulesthat
are in effect for a period of
time, breaks an
holidays=/ns: docurnantation =
<fnsr annotation =
= <= comn ple#Conite -
- < Ha eHtension
base="all.front. matter"=
o SRS sequUen ceE
<uzsielernent
ref="gaffactive-
start-date" /=
<uzsielernent
ref="effective-
end-date" /=
<uzsielernent
manOcanrs="unb
oundad”
ref="zh ift-
schedule" /=

=/ usi achema=

A machine shop information model (McLean et al., 2005)
has been developed at the National Institute of Standards

and Technology (NIST) as a part of efforts that support the
development of standard data interfaces. The information
model is intended to be used for representing and

exchanging machine shop data, initially among
manufacturing execution, scheduling, and simulation
systems.

An XML schema (Laurent, 1998, Freire and Benedikt,
2004) describes the structure of an XML document. The
purpose of an XML Schema is to define the legal building
blocks of an XML document. It defines elements, attributes,
elements’ child elements, the order and number of child
elements, data types, etc. The schema for the machine shop
information model has been developed in the XML Schema
language [15]. A sample schema is presented in Figure 1.

1.2 Database model

Database provides a structured means for storing and
querying data. Most existing databases are relational
databases. A database management system (DBMS), such
as Microsoft Access [2] or Oracle [4], provides software
tools for users to organize data in a flexible manner. The
machine shop database, described in this paper, has been
developed using Access (Luo, 2003). The database is
designed to represent the machine shop information model.
Access can import and export data using data access
interface, such as Data Access Objects (DAO) [5], Open
Database Connectivity (ODBC) [6], and Dynamic Data
Exchange (DDE) [7].

2 DATA EXCHANGE FRAMEWORK

NIST has developed a software architecture, standard data
interfaces, and a prototype generic machine shop simulator
that can be readily reconfigured for use by a large number
of small machine shops (McLean et al., 2002). The
architecture for the generic machine shop simulator is
divided into the following component elements: neutral
shop data file, XML data processor, system supervisor and
reporting, machine shop emulator, discrete event simulator,
and user interface system. The machine shop information
model is a key factor in effectively and efficiently
integrating the generic machine shop simulator.

Standard interface is helpful for data exchange/sharing. A
framework has been proposed to integrate simulation
application systems, as shown in Figure 2. Prototype tools
have been developed to demonstrate data exchange between
the machine shop database and XML document. The
development is built based on the widely accepted
standards, such as Document Object Model (DOM) [8] for
XML document operation; and XML Path Language
(XPath) [9] for nodes query. The machine shop database or
XML document is used to store machine shop data.
Translators support data exchange between the database and
XML document. The data interfaces of simulation systems
access XML document and query machine shop database.
The interface includes two major parts, common module

and application specific modules. The common module is
built based on the machine shop information model.
Application system gets input/output data through its
export/import modules. For example, an Arena simulation
system (Rockwell Automation, Inc.’s simulation software)
[14] can access its simulation data from an Access database
that contains special structures defined Arena.

Figure 2 The application achitecture for sinmlation

Simulation application systems

Inport/Export

Drata irterfaces

2 ommromn Spplication specEic modales

module

App. 1

App. n

Genarate! Extract recceds, data file

Machine
shop
irformation
model

melatn?
To ZML

Iackine
shop
editor

3 DATA TRANSLATOR TO MACHINE SHOP
DATABASE

This section presents an algorithm to transfer data from an
XML document to a relational database.

3.1 XML structure

XML provides a format for describing structured data, it is
used to describe the machine shop information model. The
information model is organized as tree shape, the top
element of this structure is named shop-data that has
branches or XML elements such as calendars, resources,
setup-definitions, and work. These branches/elements might
have their child elements. Figure 3 presents setup-
definitions, a machine shop XML element, as a sample.

3.2 Schema validation

An XML schema provides details about the content model:
which elements it contains and in what order, what its

content can be, and which content these attributes can
contain. It describes the vocabulary for use by others
creating XML documents and defines the elements that can
appear within an XML document and the attributes that can
be associated with an element. It is used to verify that the
incoming XML documents are in the expected format. It is
used to validate the content of an XML document,
determine whether the XML document is a valid instance of
the vocabulary (grammar or rules) expressed by the XML
schema.

An XML instance file document will be validated against
the machine shop schema before it is transferred to a
database or used as a data source for a simulation
application.

Figure 3 2 ample ML stmchue

=7?uml wersion="1,0" encoding="LTF&"7=
< zetu p-definitionz type="setup-definition s1" identifier="10000"
nurnber="setupdefinitons1"=
= sety p-definiton twpe="setupd efinition1" identifier="1" number="1"=
<narme="Emnpty table"</n ame=
< setUp -Cornp onentss
<fisture-definition -key fisture-definition -nurn ber="F001"}=
<fisturesat-definition -key fisturesst-definition -nurm ber="F1"/=
<tool-definiton-key tool-definitio n-number="TO01" >
<toolsat-definitio n-key toalsat-definitio n-number="T1"/>
</ satup ~comp onents-
= setup -resource -keys=
<rnachine-key madine-number="310"">
</ setup tesourcefeyss
= dhild-setup ke ys=
< setup-definiton-key sstup-definiton-nurmbar="2"{=
=/ child-setup-key==
</ setup-definition =
< setup-ch ang eover s
< setup-changeavers
< alfrent-setup=
< setup-definit on-key setup-definition-numbar="1"/=
</ asrent-satup=
< new-setlp
< setup-definition-key setup-definition -num ber="2"{=
<estimated-duration =
= setup-duration >
< norninal -durati on= 30</ne min al-du ration=
< setup-duration =
<je sirmnated-duration ==
</ new-setyp=
< new-setlp>
< setup-definiton-key setup-definition-numbear="2"/=
<estimated-duration =
= setup-duration >
< nomninal -duration= 15</ne min al-duration=
< setup-duration =
<fe simated-duration ==
</ new-setyp=
<}/satup~<hangeovar>
<fzetup-ch ang eovers=-

= setu p-definitio ns=

3.3 XML mapping

A database model is designed to map onto the machine shop
model. The database contains a set of relational tables
presented in a tree structure. The tables comprise the

fundamental blocks of a relational database. A table is a
grouping of selected data organized into fields (columns)
and records (rows) on a datasheet. A field identifies a data
type for a set of value in a table while a record stores a set
of values defined by fields.

Figure 4 shows a sample mapping from an XML element
to a database table. The sample element is group-
technology-code, which describes a code system that defines
a particular part. The system identifies the part’s shape,
material, color, surface finish, function, weight, process, and
cost using a predefined set of codes.

Figure 45 tichite mapping

Dambace bl

ML elemat :
y inp-tecko o preode

ap-teckmols greeode

= graup-echrologrcode = Groupde chnolog y-cod e

ashape-code f—01 T
<material -code #—h___q' shape-code
= color-code m aterial -code

«surisce-inish-code o color-code
] & surface-fnish-code
= function-code /[
T altundtion-code

=waight-code e
4 IFOCESS-COde Rt
< oot code h_-""‘i process-cods

ﬁfpm;p-h:hmlf:;;::;?;;—‘“l-mﬂ-cﬂde

Figure § Data mapping
HML dooment: Rofiday

<holidrre-
<holidry devdifer="101" >
“ramm e = Hemr Vear<dum e=
“descrptimut
e 20030 1-0 1< Adate

= holidwg

<toldrey derditer="214" =
<t e Wakrdives Do fam e=
“descriptiout
e 0302 14< Aate=

< hioliduep=

<loldry derdifer="1119" =
“rimes Clrismas <ham e
“descriptio

<o =03 123 5 Aate=
< holidrg
Tablke: foliday
Meriifier | name description, | date
101 Hemr Fear 200E-01-01
214 Wkt ives 200E-02-14
Lay
L5 Christm as 200E-12-25

Data contained in a machine shop XML document can be
extracted and populated into a machine shop database.
Figure 5 presents a data mapping sample. The holiday class
provides a means to indicate that no production is scheduled
on a specific date for the complete day. The holiday class
has identifier, name, description, and date attributes. The
identifier attribute is used to uniquely identify the object.
The name and description attributes provide a means to
specify related information about the holiday being defined.
The date attribute allows the specification of the date on
which the holiday is to take place. Only the identifier and

date attributes required for valid instances of Holiday. In
Figure 5, three holidays, New Year, Valentines Day, and
Christmas, are defined, their corresponding identifiers are
101, 214, and 1225.

3.5 DOM specification

DOM is a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and
update the content, structure, and style of documents. When
an XML instance document is loaded into memory, the
document is first converted into a DOM structure, the
structure will then be analyzed for retrieving the data.
Similarly, when generate an XML representation document,
the DOM structure will be generated first. A DOM
structure includes a root node, which is required, comments,
instructions and version information.

DOM is used in the development of interface tools that
transfer data between the machine shop database and XML
document.

3.6 XPath specification

XPath is the result of an effort to provide a common syntax
and semantics for functionality shared between the
eXtensible Stylesheet Language Family (XSL) [16]
Transformations and XML Pointer Language (XPointer)
[17]. The primary purpose of XPath is to address parts of an
XML document. XPath uses a compact, non-XML syntax to
facilitate use of XPath within Uniform Resource Identifiers
(URIs) and XML attribute values. XPath operates on the
abstract, logical structure of an XML document, rather than
its surface syntax. XPath gets its name from its use of a
path notation as in URLs for navigating through the
hierarchical structure of an XML document. XPath is also
designed so that it has a natural subset that can be used for
matching. XPath models an XML document as a tree of
nodes.

XPath is mainly used to enquire a DOM document
through the nodes tree. For example, the machine shop data
can be accessed by using the XPath grammar.

4 DATA TRANSLATOR FROM MACHINE SHOP
DATABASE

This section discusses the data exporting from a machine
shop database and generating XML document.

4.1 XML document

An XML structure is built based on the schema of machine
shop information model. XML data may come from table
records of a machine shop database. Figure 6 presents a
skeleton of a sample XML document.

Each XML document has both a logical and a physical
structure [1]. Physically, the document is composed of units

called entities. An entity may refer to other entities to cause
their inclusion in the document. A document begins in a
"root" document entity or prolog. Logically, the document is
composed of declarations, elements, comments, character
references, and processing instructions, all of which are
indicated in the document by explicit markup. The function
of the markup in an XML document is to describe its
storage and logical structure and to associate attribute name-
value pairs with its logical structures. An XML document is
valid if it has an associated document type declaration and if
the document complies with the constraints expressed in it.

Figure & XML domunent skeleton

< 7wl wersion="10" encoding="LTF-2"7=

<elernent] wrnlns eg="" attribute=""=
<elementZ- data </element 2=
<element3 data </element=

<elermentd sribute="">

<jelernent 4=

<felementl=

Figure T 4 sanple of ML dominent pmolog

< ?uml wersion="1,0" e nco ding="LITF-2">=

< Prml-styl esh eet href="/style, ce=" typ a="teut/ cos" dtd e="defauk
style sheat' 7=

< |--The model was generated on 2004-7-10-->

Figure 7 shows a sample prolog of an XML document.
The version declaration specifies the version of XML being
used. The encoding declaration identifies which encoding
being used to represent the characters in the document.
Content that is not intended for the XML parser, such as
notes about document structure or editing, can be included
in a comment. Processing instructions can be used to pass
information to applications in a way that escapes most XML
rules.

4.2 Generating XML document from database

This section discusses how to transfer data from a relational
database to an XML document. Three query tools have been
developed:

Creating document for whole database query

As discussed above, the machine shop database is built
based on the machine shop data model. The database is a
tree shape structure, the top level is element shop-data. In
this tool, shop-data is considered as root element, the
algorithm will enquiry all the records in every table of the
database and hence generate an XML document that
represents the entire database information.

Creating document for a root element

This tool provides a query to generate an XML document
for a selected root element. This query searches the related
records of tables. If the root element has more than one
records, only one record will be selected as root element
record.

Creating document for a SQL query

Structured Query Language (SQL) provides functions to
support database query. This tool provides an algorithm, as
shown in Figure 8, to generate XML file using SQL
statements.

5 NEXT STEP - STANDARDIZATION

5.1 Standard Body

The research work described above demonstrates a
feasibility of the machine shop information model. The
ultimate objective in the development of the machine shop
information model and its data sharing applications is to
promote the establishment of a standard data interface for
manufacturing simulators. The machine shop information
model has been transferred to the Core Manufacturing
Simulation Data (CMSD) Product Development Group
(PDG) of the Simulation Interoperability Standards
Organization (SISO) [10]. SISO, a standard body
recognized by Institute of Electrical and Electronics
Engineers (IEEE), focuses on facilitating simulation
interoperability and component reuse.

5.2 Overview —the CMSD information model

The key activity of the CMSD PDG is to generate a CMSD
information model (CMSDIM), using both the Unified
Modeling Language (UML) [3] and XML. The machine
shop information model is the strawman of the CMSD
information model. The CMSDIM is to describe the
essential entities in the manufacturing domain and the
relationships between those entities that are necessary to
create manufacturing simulations. The model has being
developed with the following goals in mind: (1) to foster the
development and use of simulations in manufacturing
operations, (2) to facilitate data exchange between
simulation and other manufacturing software applications,
(3) to enable and facilitate better testing and evaluation of
manufacturing software, and (4) to increase manufacturing
application interoperability. The primary objective was to
develop data structures for exchanging manufacturing data
between various manufacturing software applications,
including simulation. The major categories of
manufacturing information that are defined in this
information model include:

« Organization is used to maintain organizational structure,
contacts and address information for the manufacturing
organization and its customers and suppliers.

* Calendar identifies the shift schedules that are in effect for
a period of time, breaks and holidays.

* Resource describes all the resources that may be assigned
to tasks in the shop. The resource types available in the shop
environment include: stations and machines, cranes,
employees, tool and fixture catalog items, and user-defined
type of resource.

Figure & Export data from machine shop database

Imitialize datab ase

Create root elemernt
Add elemert to XML domument

Cmrate outpat file
Appoint root elemernt

Athibute?
Child element?

444 attrbute to domument
4dd child elerrent to domamert

Chld element’s
branch?

Open DE writh the OpenDE with the Teas
commection defanlt conmection Fenerate S0L statemert

Fequanyreslt
l | | Set poirter o the first recoxd
Define DOM pomnter i
Call C clnitializei) Generate branch elammert, sen
Create an XML DOM instance

| izet next field

Setwlite s pace
Set processing irs tuction
Jet comrmerts

Update recomdset
Get the rowr b er of

Attrbute?
Child element?

Add attubute to domumernt
£dd child elerent to dooument

the recomdset .
|
Child element’s
branch?
Ha
Tes
Chiery the fields of
recomrds of recordset
Getdats type and fleld? Ha Gensrate Z ML documert
atlute o writh a b lank element
Ceate chosen s trings | |
| .
Appoint ot elemwent T Close
[
[o]

« Skill definition lists the skills that an employee may posses
and the levels of proficiency associated with those skills.

« Setup definition typically specifies tool or fixture setups on
a machine. Tool setups are typically the tools that are
required in the tool magazine. Fixture setups are work
holding devices mounted on the machine. Setups may also
apply to cranes or stations.

* Operation definition defines the operations that may be
performed at a particular station or group of stations in the
shop.

» Maintenance definition defines preventive or corrective
maintenance to be done on machines or other maintained
resources.

» Part provides elements for part specifications, group
technology codes, customers, suppliers, as well as links to
bill of materials, process plans, drawings, part models and
other references.

« Bill-of-materials cross-references the parts and quantities
required in a hierarchical bill-of materials structure.

* Inventory identifies the instances and locations for part,
materials, tool, and fixture inventory.

» Process plan specifies a set of process plans that are
associated with production and support activities for a
particular part or parts. A process plan has routing sheets
and operation sheets that correspond to the job and task
level in the work hierarchy.

» Work is used to specify a collection of a hierarchy of
production orders, jobs, and tasks. It is also used to specify a
collection of internal support orders for maintenance
activities, inventory picking, and tool preparation.

* Schedule lists planned assignment or mapping of work to
resources and resources to work.

* Revision specifies information about a set of revisions of
the subjects. Information included in the element are each
revision’s description, date, creators, etc.

 Probability distribution specifies distributions that are
used to vary processing times, breakdown and repair time,
and availability of resources, etc.

» Reference describes the information about reference
materials that support or further define that data elements
contained within the CMSDIM data structure.

5.3 Status

The SISO CMSD PDG has released a draft version of the
CMSDIM in UML [11] for review and comment in early
2006 [12]. A CMSDIM in the XML schema is under
development. A database and editor that are based on the
CMSDIM are under development by the NIST researchers.
The CMSD database, in Microsoft Access, is designed to
map onto the CMSDIM. The objective to develop the
CMSD editor is to facilitate the use of the CMSDIM. The
editor is developed using Microsoft .NET Framework 1.1
Service [13].

Advanced manufacturing technologies are adopted in
industry because of world wide competitive (Luo, 2002;
Luo, 2003; Luo 2004). Simulation technology can reduce
product cost, shorten product development time, and
improve product quality. The machine shop information
model developed at NIST provides neutral data interfaces
for integrating machine shop software applications with
simulation. The CMSD information model, an extension of
the machine shop information model, is currently developed
by the SISO. The CMSD information model defines a data
specification for efficient exchange of manufacturing life
cycle data in a simulation environment. The specification

provides neutral data interfaces for integrating
manufacturing software applications with simulation
systems. The interface data includes organizations,

calendars, work, resources, schedules, parts, process plans,
and layout, etc. The paper discusses the data transfer
between XML document and the machine shop database.
The future work contains enhancing the information model
and database model, studying the data sharing mechanism
for distributed simulation system, and developing
application platform for the manufacturing simulations.

DISCLAIMER

Commercial software products are identified in this paper.
These products were used for demonstration purposes only.
No approval or endorsement of any commercial product by
the National Institute of Standards and Technology is
intended or implied. The work described was funded by the
United States Government and is not subject to copyright.

REFERENCES

6 DISCUSSIONS AND CONCLUSION

Charles, R. H. and Rochelle N. P. (2003) “Simulation
modeling using ProModel technology,” Proceedings of
the 2003 Winter Simulation Conference, New Orleans,
LA.

Freire, J. and Benedikt, M. (2004) “Managing XML data: an
abridged overview,” Computing in Science &
Engineering, VVol. 6, No. 4, pp. 12-19.

Landau, R. H.; Vediner, D.; Wattanakasiwich, P. and Kyle,
K. R. (2002) “Future scientific digital documents with
MathML, XML, and SVG,” Computing in Science &
Engineering, VVol. 4, No. 2, pp. 77-85.

Laurent, S. S. (1998) XML: a primer, Foster City, CA: IDG
Books Worldwide.

Lee, Y. T. (1999) “Information modeling: from design To
implementation.” Proceedings of the Second World
Manufacturing Congress, Durham, U.K.

Luo, Y. (2000) “Injection molding product application
activities models,” International Journal of Advance
Manufacturing Technology, Vol. 16, No. 4, pp. 285-288.

Luo, Y. (2002) “Manufacturing features based solution for
high speed cutting,” International Journal of Production
Engineering and Computers, Vol. 4, No. 5, pp. 25-30.

Luo, Y. (2003) “Chip formation analysis for high speed
cutting,” International Journal of Advanced
Manufacturing Systems, Vol. 2, No. 2, pp. 247-254.

Luo, Y. (2004) “Parametric tool wear estimation solution of
HSC appropriate machining,” International Journal of
Advanced Manufacturing Technology, Vol. 23, No. 7-8,
pp. 546 — 552.

Luo, Y. and Lee, Y. T. (2003) “A database application for
manufacturing simulation system integration,”
Proceedings of the IASTED International Conference:
Applied Modeling and Simulation, Marina Del Rey, CA.

Luo, Y. and Lee, Y. T. (2005) “Application of machine
shop data model in manufacturing simulation,”
Proceedings of the 2005 International Conference on
Modeling, Simulation and Visualization Methods (MSV
05), Las Vegas, NV.

McLean, C.; Jones, A.; Lee, Y. T. and Riddick, F. (2002)
“An architecture for a generic data-driven machine shop
simulator,” Proceedings of the Winter Simulation
Conference, San Diego, CA.

Manola, F. (1999) “Technologies for a web object model,”
IEEE Internet Computing, Vol. 3 No.1, pp. 38-47.

McLean, C.; Lee, Y. T.; Shao, G. G. and Riddick, F. (2005)
“Shop data model and interface specification,” NISTIR
7198, Gaithersburg, MD.

Morris, K. C.; Kulvatunyou, B.; Frechette, S.P.; Lubell, J.
and Goyal, P. (2004) “XML schema validation process
for CORE.GOV,” NISTIR 7187, Gaithersburg, MD.

Rezayat M. (2000) “Knowledge-based product development
using XML and KCs,” Computer-Aided Design, Vol.
32, No. 5-6, pp. 299-309.

Robert W. P. L.; Leong, H.V.; Dillon, T. S.; Chan, A. T. S;;
Croft, W. B. and Allan, J. (2002) “A survey in indexing
and searching XML documents,” Journal of the
American Society for Information Science and
Technology, Vol. 53, No. 6, pp. 415-437.

van der Vlist, E. (2002) XML Schema, Sebastopol, CA,
O’Reilly & Associates, Inc.

Zolfaghari, S. and Roa, E. V. L. (2006) “Cellular
manufacturing versus a hybrid system: a comparative
study,” Journal of Manufacturing Technology
Management, Vol. 17, No. 7, pp. 942-961.

NOTES

1 http://www.w3.0rg/TR/2006/REC-xmI-20060816/

2 http://office.microsoft.com/en-us/access/default.aspx

3 http://www.omg.org/uml/

4 http://lwww.oracle.com/database/index.html

5 http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/vccore/html/_core_dao.3a_.where_is.......asp

6 http://support.microsoft.com/kb/279721

7 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
winui/WinUI/WindowsUserInterface/DataExchange/DynamicD
ataExchange/AboutDynamicDataExchange.asp

8 http://www.w3.0rg/DOM/

9 http://www.w3.0rg/TR/xpath

10 http://www.sisostds.org/

11 http://lwww.microsoft.com/office/access/default.asp

12 http://discussions.sisostds.org/file.asp?file=CMSDPart1
02%2D28%2D06%2Epdf 2006

13 http://www.microsoft.com/downloads/details.aspx?disp
laylang=en&FamilylD=A8F5654F-088E-40B2-BBDB-
A83353618B38

14 http://www.arenasimulation.com/

15 http://www.w3.0rg/XML/Schema

16 http://www.w3.0org/TR/xsl/

17 http://www.w3.0rg/TR/xptr/

