Distributed Testing of an
Equipment-Level Interface Specification

John Horst, Thomas Kramer, Keith Stouffer, Joseph Falco,
Hui-Min Huang, Frederick Proctor, and Albert Wavering
National Institute of Standards and Technology (NIST),

Gaithersburg, Maryland, USA.
E-mail: {john.horst, thomas.kramer, keith.stouffer, joseph.falco,
hui-min.huang, frederick.proctor, albert.wavering}@nist.gov

Abstract— A test suite for a key interface within a dimensional
measuring system (coordinate measuring machine or CMM) is pre-
sented. The test suite consists of test procedures, test definitions,
and various testing utilities. A real-time, distributed test utilizing
the test suite has been performed and is described.

Keywords— conformance test, coordinate measuring machine,
distributed testing, interface specifications, metrology, object-
oriented, real-time systems, test suite, validation test

[. INTRODUCTION

Software testing has become critical to software qual-
ity. However, interface specification development ef-
forts often treat testing as non-essential. We argue for
the early and rigorous application of testing to speci-
fication development and implementation, prior to the
standardization process. The goal of interface specifi-
cation development is to create a widely accepted com-
mon (or neutral) language at the interface, and the goal
of the common language is system interoperability.

We will be looking at the following systems on ei-
ther side of a two-way interface: application software
on one side and a real-time logic and motion control
device on the other. The device is a coordinate measur-
ing machine (CMM) consisting of device control software
(for logic and motion control), motion control hardware,
sensors, and actuators. The application software per-
forms many operations including interface to the CMM
operator, interpreting inspection programs in higher
level languages, analyzing sensor data, and estimating
high level features from low-level sensed data.

NIST has been working with those responsible for a
particular interface specification, developing and imple-
menting testing procedures and tools. This document
describes what those procedures and tools are, what
tasks they perform, and what remaining work needs to
be done.

Real-time and object-oriented issues such as remote
testing, controller-to-device interface specifications and
testing, and the role of object-oriented languages in the
specification and test suite will be discussed.

II. CMM DEVICE-LEVEL SPECIFICATION

A CMM equipment-level interface specification cur-
rently under development has received a broad level

of industry support [1], called the "I++ DME-Interface”
specification. It consists of requirements for commu-
nications protocol, software execution paradigm, and
the syntax and semantics for command and response
across the interface. For example, communications pro-
tocol might be TCP/IP or direct serial link. Software exe-
cution paradigms might include cyclic execution of com-
mands and responses, preemptive execution, or a com-
bination of both. Syntax may require ASCII text format
and the type and ordering of allowable characters. Se-
mantics will specify the precise meaning of commands
and responses. This includes definition of the allowable
error types and what each error type means.

The audience of the specification is the technical im-
plementors who will be creating interpreters for appli-
cation software or device software that either convert
from the native language to the common or vice-versa.
It is expected that users will not be involved in many
of the details of the specification. However, users may
need to interact with the CMM system directly, not just
through the application software, and the interface un-
der consideration is between the application software
and the CMM. Functional requirements also are essen-
tial inputs from the users.

III. TEST SUITE

We define the total collection of all testing-related en-
tities as the "test suite.” The entire test suite consists of
the following elements, most of which are under varying
stages of development at NIST.

. test types

- validation tests
- conformance tests
* CMM implementation tests
* application implementation tests
* cross testing (simultaneous testing of two im-
plementations)
. testing utilities
- test cases
* inspection plans
* test artifacts
- common test software
* application simulator
* response simulator

- command and response classes
- analysis tools and metrics
. testing procedure
The test suite ostensibly checks to make sure an im-
plementation is written according to the specification.
However, the test suite is ultimately meant to improve
the specification. As we conduct the tests, we will invari-
ably find that certain aspects of the specification need
adjustment. As we perform and analyze tests, we will
also discover that the test suite itself needs to be im-
proved. So, testing is iterative with the implementation
development, the specification, and the test suite itself.
Each of these elements in the test suite will now be
described.

IV. TYPES OF TESTS

Conformance testing is the effort to determine the
level of compliance of implementations of the specifica-
tion to the specification itself. Validation testing is the
attempt to guarantee that all the functionality needed
on the interface is explicit in the specification.

Validation testing should be done early in the specifi-
cation development process, so that all necessary func-
tionality is being integrated into the specification. In the
same manner, conformance testing should begin early
in the development process and be used to test every
new implementation of the specification. The valida-
tion test will not have such continued use. For a good
overview of conformance testing see [2].

A. Validation Tests

Validation testing is necessary to assure the develop-
ers that all the functionality required by users of the
interface is sufficiently expressible in commands and
responses detailed in the specification. The specifica-
tion under discussion [1] has not, as far as we know,
undergone any formal validation tests for functionality.
Functionality "coverage" has been accomplished infor-
mally (as thought experiments).

B. Conformance Tests

A useful family of conformance tests for the specifica-
tion might consist of three classes of tests. The first two
are conformance tests and the last is an interoperability
test.

1) A suite of test files containing specification compli-
ant strings are placed on a socket by the common appli-
cation utility (see Section V-A.3) and sent to a CMM sim-
ulator or a real CMM that has an implementation of the
specification. The test will automatically (or manually)
compare the real output to the expected output and log
the results of this comparison for analysis. The test files
will command the CMM to perform various inspection
tasks on a common test artifact. Test files include er-
roneous commands to test for proper response to such
inputs. This is done for n CMM systems. A "soft" real-
time, distributed, cross-continental test was performed

on July 13, 2001 and is described in Section VIII.

2) A suite of test response files is generated for use
by the (common) CMM utility software (see Section V-
A.4). The response files will include a variety of rules
for producing various kinds of responses depending on
the input received by the CMM utility. The rules will
look at the commands, command sequence, and ran-
dom events to determine the appropriate response for
each test. The response files will contain rules for pro-
ducing legal and illegal responses for both semantics
and syntax to fully exercise the application level imple-
mentation. Response files coupled with the CMM utility
will be employed with all m application software pack-
ages. High level test inspection plans may also be nec-
essary and helpful. The CMM utility will automatically
(or manually) compare the real output of the applica-
tion software (subsequent commands) to the expected
output and log the results of this comparison for anal-
ysis. The goal in testing application implementations is
to minimize (or avoid altogether) any required testing
modules in the application software.

3) A suite of test files consisting of high level inspec-
tion plans are input to an implementation of the specifi-
cation by an application software package that performs
inspection plan execution and sends it to a CMM simu-
lator or a real CMM that also has an implementation of
the specification. The output of the application soft-
ware will also be sent into the common receiver utility,
and comparisons and results will be logged for analysis.
The test files (again including errors) will command the
CMM to perform various inspection tasks on a common
test artifact. This test will be repeated for the m x n
combinations of m inspection plan execution software
packages and n CMM systems. An analysis utility will
compare the real output (subsequent commands) of the
high level inspection program to the expected output
and log the results of this comparison for analysis.

The goal of performing these tests is to verify the cor-
rectness of implementations, produce a complete and
unambiguous specification, and facilitate interoperabil-

ity.

V. TESTING UTILITIES

Successful design and implementation of the valida-
tion and conformance tests requires that there be a mix
of testing utilities to support these tests. The general
idea is to have the same (common) utilities used by ev-
eryone conducting tests. This minimizes variations in
the meaning of the test results. If errors in the test
utilities occur, all testing participants should experi-
ence them and the common testing utilities can be fixed.
Testing utilities include the following:
. test cases
- test artifacts
- inspection plans

. common test software
- application simulator
- response simulator

. analysis tools and metrics
We need to test implementations on both sides of the
interface. Interestingly, such tests are not symmetric.
Tests for implementations on the CMM side simply re-
quire a sufficient set of test cases, each consisting of a
test artifact paired with a test inspection plan for that
artifact. However, the testing of an implementation on
the application side is more subtle and challenging as is
described in Section IV-B.

We have not created application software testing util-
ities as yet, except that we have a CMM response utility
that parses specification compliant commands and very
roughly simulates CMM-like responses. Simulation in-
volves simply appropriate delays for "move" and "mea-
sure" commands. We now describe tools for testing
CMM implementations of the specification.

A. Test Cases

A single test case consists of a test artifact paired with
a test inspection plan for that artifact. We want these
test cases to provide sufficient coverage of the types of
commands allowed in the specification. We use these
test cases to sufficiently exercise the commands from
the specification as realized in each implementation un-
der test.

A.1 Test Artifacts

Common test artifacts are needed to minimize the
sources of error in the various implementations. We
need to be able to ensure that any problem in execution
of a test inspection plan is not attributable to the test
artifact. If we restrict all tests to specific and common
test artifacts, we stand a better chance of efficiently de-
bugging problems in the various implementations of a
specification and ensuring that the implementation con-
forms to the specification.

A.2 Inspection Plans

Though currently not the case, we expect that the
test inspection plans will consist of files of both high
level (e.g., the Dimensional Measuring Interface Stan-
dard (DMIS) [3]) commands and files consisting of lists
of specification compliant strings written by hand. We
must have the latter in order to successfully introduce
errors into the list of commands. A subset of these
files will simply contain one command per file. Log files
consisting of the correct responses will exist for each
file. The inspection plans should not require any arti-
fact other than the test artifact(s). We want the files
to test both syntax errors and semantical errors. The
latter would include errors in execution, for example,
the probe being sent to measure a non-existent point
or the probe encountering an obstacle prior to an ap-
proach point in a "measure” command or in a "move"
command. Some of the files we wrote, after debugging,
were error-free, some were filled with intentional errors,
and some had only a smattering of intentional errors.

The error-free files included:

1. Some similar to what a list of specification com-
pliant messages coming from a DMIS interpreter
might look like when DMIS code was being inter-
preted for inspecting a simple feature such as a
cylinder or a plane.

2. Some that simply tested part of the specification
by including all messages of a certain type (such
as all messages for getting and setting parameter
values).

The error-filled files were of two types:

1. Sets of command messages with various syntax er-
rors. Files of this sort may contain an error on ev-
ery line.

2. Sets of command messages that cause execution
errors. This type of file necessarily contains about
two-thirds correct commands, since most execu-
tion errors can only occur when a particular ma-
chine state has been reached, and it usually takes
two or three correct commands to reach a desired
state.

For each command file, we wrote a corresponding
trace file. The trace file is similar to what would be ex-
pected to be in a log file prepared by the application util-
ity. The file consists of pairs of lines, the first being a
line from the corresponding command file, and the sec-
ond being the responses that would be expected from
a system executing the command. A real log file, how-
ever, would have only one response per line and would
not be so nicely ordered, since queueing is used (result-
ing in "done" messages arriving much later). Also, in
the hand-written file, all probed points are at the exact
nominal location, whereas in a real file, it would be sur-
prising if any point were exactly at the nominal location.

We wrote a test program (specification compliant
command file) for the test artifact that was used in an
international demo with LK Metrology, Ltd based on an
earlier specification for the same interface [4] (called
the "CMM-driver" specification). The demo is described
in Section VIII. D. Smith of LK Metrology, Ltd. added
substantially to this program. In connection with the
test program we wrote C++ software for translating goal
points in a specification compliant command file. This
was needed since the test artifact might be located on
any part of the table of the CMM doing the inspection.

A.3 Application utility software

An application utility has been fully developed for dis-
tributed testing of the CMM-driver specification defined
in [4] and it is in the process of conversion to the I++
DME-Interface specification. The application utility is
a graphical user interface (GUI)-based, object-oriented
program that runs on a personal computer (PC) plat-
form and was developed in Visual C++. The commands
are sent over a TCP/IP socket to a specification compli-
ant controller. The controller receives the commands,
executes them, and returns the appropriate response

back to the application utility via the socket. The ap-
plication utility creates a time-stamped log file of com-
mands sent and received over the socket and performs a
validation test on the returned responses to determine if
the CMM controller is compliant with the specification.
The application utility and a small set of test command
files (inspection plans) were delivered to several CMM
vendors for evaluation and testing of their specification
compliant controllers.

The user executes the application utility through a
GUI The user first selects which type of file to run and
the name of the file to run. The application utility can
run either of two types of files, a low-level command file
or a DMIS file. When a DMIS file is selected, the file is
run though an interpreter that converts the DMIS com-
mand to the appropriate specification compliant low-
level command(s). Only a subset of DMIS commands
are supported at this time. The user then selects the
name of the log file where the time-stamped data will
be recorded. The user specifies the host name of the
controller. The host name can be entered as either a
fully qualified host name or IP address. The user then
specifies the port number. The default port number is
1294 as specified in [4]. When the user pushes the "Con-
nect to CMM Controller" button, a non-blocking TCP/IP
socket is created between the application utility and the
CMM controller on the specified port. Once the applica-
tion is connected to the controller, the user can either
enter a command manually, single step through the pro-
gram file that was selected, or run the entire file. A sta-
tus window displays the current status of the executing
program, including what command was just sent or re-
ceived and any error conditions that exist.

A.4 CMM utility software

The CMM utility software will eventually allow an ap-
plication software vendor to test his or her implemen-
tation of the specification. The idea is to have a set of
files consisting of response rules that given a specific
event will output a specific response or sequence of re-
sponses. The event that triggers the response may be a
specific command, or a specific command sequence, or
the tick of a clock, or some random event. The utility
will examine the nature of the subsequent commands
from the application, looking for expected command se-
quences.

We may also want to create high-level test inspection
plans, e.g. in DMIS, for use with the CMM utility test
software. However, the problem here is as follows. First,
we cannot force the generation of certain low-level com-
mands (such as "get parameter") with the detailing of a
high-level command. The application developer, in his
or her test measurement routines, may never test cer-
tain low-level commands. Certain response rules will
never fire because the events needed to fire those rules
never occur. This will be a complete test of an imple-
mentation only if those particular commands are never
needed by the application, which is doubtful. Secondly,

the particular low-level commands (and the order of ex-
ecution of those commands) accompanying a particular
high-level command will be to some degree the unique
choice of the application software developer. On the
other hand, certain high level commands, e.g., to "mea-
sure a point” or to "go to a point" will of necessity require
a low-level "measure" and/or a "move." This issue needs
to be debated and resolved as the metrology industry
moves along the specification development and testing
process.

The current CMM utility includes a command pars-
ing engine coupled with both a real CMM and a simple
CMM simulator. NIST developed CMM-driver specifica-
tion compliant message parsing software, which was in-
tegrated into the CMM utility software.

The CMM utility is expected to interact with the ap-
plication implementation in terms of receiving and han-
dling specification compliant CMM control commands
from any application and generating appropriate re-
sponses. The commands are to be coded as ASCII char-
acter strings and sent through a communication socket
with a mutually agreed port number.

This CMM utility software provides the following com-
mand reception functions:

. Read text strings from the pre-designated commu-

nication socket.

. Interpret the strings according to the specification
and either extract for command information or de-
termine error severity and report the errors.

. Manage the commands, i.e., either place them in a
queue or abort them.

Both specifications detail the syntax and semantics
for error responses. For example, the CMM simulator
produces errors such as "parameter out of range" and
"illegal probe type." In order to be able to execute these
error responses and to be able to verify the correctness
of the command reception, the software provides the
following CMM simulation functions:

« Retrieve the commands from the queue. Execute

them using a state machine model.

. Simulate the machine behavior, in low fidelity, to
provide feedback for command execution.

« Report errors if execution fails.

The CMM utility executes at a uniform rate. Its first
function is to read the socket for command strings. A
parser processes the command string into command se-
rial number, command name, and command parame-
ters. Each segment must conform to the format stated
in the specification. When reading a command name,
the parser reads until either a left parenthesis or end-of-
command character is recognized. Blank spaces in be-
tween the characters are allowed but ignored. The com-
mand parameter parser is a generic one that handles all
the commands, hence, it accommodates variable length
commands. For example, a "home" command contains
no parameter and a "move axis" command can contain
one, two, or three axis parametric values.

The testing utilities also contain a set of common com-

mand classes for each of the commands (the common
command and response classes are described in Sec-
tion V-B). Once the parser verifies the command name,
the corresponding command class will be used to store
the associated parameters. Methods relating to each
command are predefined in each command class. A
variable-length linked list stores the valid input com-
mand class instances in the order that they are received.
Currently, if the CMM utility receives an "abort" com-
mand, it will clear the queue.

At the end of the parsing, the CMM utility sends a
confirmation signal back to the application. The confir-
mation conveys a message that the input is either a valid
or erroneous command. The parser contains a function
to determine the severity of the errors.

We partition the CMM utility software such that users
can either take the parser and integrate only that into
their own machine controllers or also use the execution
and simulation modules that are a part of the CMM util-
ity software.

The execution of each of the commands has been im-
plemented using a finite state machine (FSM) model.
Prior to execution of the FSM, a command is retrieved
from the command queue. Upon execution of the FSM, a
new-command flag is verified and, if true, a new instance
of the command class is generated and populated with
the information that is specific to the command. It
then checks for certain common errors in the command
string, such as "CMM not initialized" and "invalid com-
mand parameters.” After the errors are checked out, the
FSM calls the simulator for the command. A new in-
stance of the response class is generated and the at-
tributes updated throughout the execution.

B. Command and Response Classes

An important part of the testing utilities is a common
set of command and response classes. Only the CMM
utility uses this common set of definitions for command
and response. Using these (or similar) command and
status classes in implementations of a specification will
reduce development and debug time and will streamline
the testing and analysis process. NIST has developed a
set of command and response classes which are cur-
rently being used within the CMM utility software along
with a specification compliant version of the NIST DMIS
interpreter. These were written for the earlier specifica-
tion [4]. The command and response classes are written
in C++. Accompanying these classes are C++ files defin-
ing various methods for each of these classes. In order
to simplify the class structure, the actual command and
response classes are derived classes from command and
response base classes, respectively. The primary func-
tion of these classes is to provide a common set of data
structures for passing data and generating command
and response strings. Also defined are classes for han-
dling data types and errors defined within the specifi-
cation. The data classes contain the necessary logic for
formatting the data per the specification when a com-

mand or response string is being generated.

Command and response classes for the I++ DME-
Interface specification are discussed in Section VII. The
object model for the I++ DME-Interface specification is
a required part of the specification.

C. Analysis Tools and Metrics

In order to better utilize conformance testing, quan-
titative metrics are essential. This will give all imple-
mentors measurable incentive to persevere until their
implementation receives high marks in all tests. It will
also help as a presentation tool to management in all the
organizations involved in testing, to quantify progress
with simple graphs. Several spreadsheets have been de-
veloped. Some preliminary metrics for measuring CMM
implementations tests have been developed.

The data analysis tool currently extracts communica-
tion performance information from the data log files
that both the application and CMM utilities generate.
The analysis tool generates a performance report that
consists of two parts, for each individual command and
for the command file. For each individual command,
the analysis tool indicates whether the command has
been handled at every stage and within user specified
timing ranges, and whether an error condition has oc-
curred. The command performance for the following
critical stages were listed:

1. command sent, whether and when (relative to the
execution starting time)
command receipt
command acknowledgement, signal sending
command acknowledgement, signal receiving
command complete, signal sending
. command complete, signal receiving.

The summary part of the performance report totals
the numbers of commands that are properly and not
properly handled, including commands not received
and those taking too long to respond.

@ v W

VI. TESTING PROCEDURES

Validation (functional) testing and conformance test-
ing of any specification are both essential. Neither for-
mal validation testing nor formal conformance testing
has yet been done on either specification. The imple-
mentation and testing that has been done on the CMM-
driver specification, however, has provided informal
validation and conformance testing. Informal testing
should continue and formal testing should begin. It will
be useful if an organization consisting of NIST and ven-
dors from both sides of the interface is formed to col-
laborate in testing. A procedure or process is needed
to guide the conformance testing to achieve testing ef-
ficiency and high quality implementations.

A. Validation Testing Procedures

Informal validation occurs naturally as part of imple-
mentation. For example, when an application vendor

writes the software that generates commands provided
in the specification, if the vendor discovers that there is
no command to perform a required action, the vendor
raises an issue against the specification.

Validation testing is also a side-effect of conformance
testing. If a vendor attempting to build software that
conforms to the specification finds that it is unreason-
able or impossible to make the software conform, the
vendor raises an issue against the specification.

It will be useful to devise a procedure for collecting
issues discovered during implementation and confor-
mance testing and considering whether and how the
specification might be changed. The Standard Improve-
ment Request process used by the DMIS National Com-
mittee provides a model of how this might be done.

Formal validation testing is conducting by identify-
ing functional scenarios that should be supported by a
specification and trying to carry out each scenario using
the specification. The total set of functional scenarios
should cover the entire range of functionality expected
to be supported by the specification. This set should be
agreed on by the community interested in the specifica-
tion.

Scenarios might be given in natural language, such as
"inspect hole A and plane B on the part whose design
is in CAD file C," or they might be given in inspection
programs written in DMIS or some other high-level lan-
guage. Manual use scenarios should also be included,
since the specification needs to support manual use.

The role of NIST in validation testing has not yet been
determined, but it is likely to include helping devise val-
idation tests and conducting validation testing.

As part of validation testing, it is essential to conduct
interoperability testing. In interoperability testing, each
application tries working with several CMM vendors and
each CMM vendor tries working with several applica-
tions. At the stage where software on side A of the in-
terface has been made to work with only one vendor’s
software on side B of the interface, it is nearly certain
that the side A software will not work with a second
vendor’s side B software. The failures are most likely to
reveal that one side or both are not actually conform-
ing. The failures, however, are also likely to reveal am-
biguities or other inadequacies in the specification and
inadequacies of conformance tests. These should be re-
ported when discovered.

B. Conformance Testing Procedure

A conformance testing procedure is meant to test the
compliance of an implementation to the specification.
Metrics and analysis are needed to determine the degree
of compliance. Conformance tests may be conducted
privately by a vendor or they may be conducted by a
testing service set up to do conformance testing and is-
sue certificates (or other assurances) of conformance.
At one extreme, a conformance testing service might
make detailed results of all conformance tests publicly
available. At the other extreme, a conformance testing

service might make nothing public except certificates
of conformance. Test results and trends may be per-
formed privately or at some independent site. The de-
gree of openness is determined by what users and ven-
dors prefer. A side effect of the conformance testing
process is to effect an improved interface specification,
which can ultimately lead to quantifiable CMM system
interoperability results.

The test files and procedures used by a conformance
testing service should be publicly available. Ideally, a
vendor will have run all the tests and adjusted the soft-
ware so that it passes all the tests before submitting it to
a conformance testing service. Large users might con-
duct conformance tests themselves. It is expected that
particularly interoperability testing will be performed
in a distributed manner. Potential commercial imple-
mentations of the specification need to be involved in
the testing. Care must be taken to insure that testing
results are not made available to unwanted parties.

The role of NIST in conformance testing is to devise
testing files and procedures that may be used by testing
services, vendors and users.

C. Collaborative Testing

It will be useful to form an organization of represen-
tatives from NIST and metrology systems vendors (on
both sides of the interface) to do informal validation and
conformance testing. We assume here that this organi-
zation also is responsible for development and modifi-
cation of the specification; if that is not the case, proce-
dures for changing the specification will be less direct
than described below.

We envision two or three phases for this procedure.
Phases one and two are differentiated by an expanding
scope of commands. Phase three (not yet fully defined)
expands to more devices accompanied by a formaliza-
tion of the specification into a standard. Metrics that
will be the measure of testing success are discussed in V-
C.

C.1 Phase One Testing

Phase one scope would include some of the following
commands:

« two degree of freedom (DOF) probe head and three

DOF move of CMM arm (five DOF total)

. measuring in same five DOF

. abort

. get and set parameters

Phase one will exclude error correction and recovery,
scanning, rotary motion, and probe calibration. Among
other benefits, this will help to debug the conformance
testing procedure itself. Phase one testing will consist
of tests on the various CMMs and/or their simulators
as well as tests on third party inspection program ex-
ecution software, independently and together. Various
high level languages, e.g., DMIS, inspection plans will be
required, files of command strings in the format of the

emerging specification, and response rules files. Soft-
ware tools agreed to for use by all participants must be
employed in testing to minimize variability.

C.2 Phase Two Testing

The scope of phase two will include error correction
and recovery, scanning, rotary motion, and probe cal-
ibration as well as the entire set of commands in the
specification.

C.3 Conformance Testing Procedure for Both Phases

1. Design (or select or modify) and agree upon an ap-
propriate artifact or artifacts.

2. Develop and achieve consensus on appropriate
high level inspection programs and specification
compliant command files for each chosen artifact,
and response rules for the CMM utility software.

3. Develop, collect, and publish on the web any nec-
essary files (i.e., DMIS files, specification command
files,and response rules) along with file format
specification (allowing automated output file val-
idation) that will be the standard baseline for test-
ing. Specification-compliant command files will be
used in testing because we will not be able to en-
code in certain high level languages certain behav-
iors we can perform with CMM driver commands.
Furthermore, high level to low level language in-
terpreters will not, in general, be able to produce
certain important types of errors.

4. Develop and publish on the web performance anal-
ysis tools consisting of various metrics of perfor-
mance and reporting facilities. These tools will be
used to quantify the success of the test results.
All participants will agree to these metrics before
testing begins.

5. Using the specification compliant inspection pro-
grams and application utility software, vendors
and users will implement the specification, con-
duct tests, and do performance analysis.

6. Using the NIST test suite, third party inspection
program software vendors and third party soft-
ware users will conduct tests and do performance
analysis.

7. Using high level inspection plans and test arti-
facts, application software vendors, application
software users, CMM vendors, and CMM users will
conduct tests on an integrated system and col-
lect data. These tests may be done remotely in a
distributed manner, assuming that high level pro-
grams require no real-time interaction with the
CMM from command to command.

8. Performance results will be collected, stored, and
analyzed using agreed performance metrics. Re-
sults of this analysis will be made known only
to participants, their managers, and any oversight
committee.

9. An issues log will be maintained and all partici-
pants will log issues resulting from the testing.

Regular conference calls following testing sessions
will be centered on the resolution of these issues.

10. Modify the specification as needed.

11. Modify the common utility testing software as
needed.

12. If the specification is stable or a previously deter-
mined time period has expired, conclude and move
to next phase. If the specification is not stable, go
back to the first step in this procedure.

VII. REAL-TIME AND OBJECT-ORIENTED ISSUES

The equipment-level interface is currently a "soft"
real-time interface in the sense that both the CMM-driver
and I++ DME-Interface specifications are so written that
absolute or relative times are not required either be-
tween adjacent commands or command and response.
This allowed us without reservation to test a CMM im-
plementation of the specification over the Internet. Of
course, motion commands like "measure" and "move"
were the key commands that would require true real-
time operation, but as long as "measure" and "move"
commands have final speeds equal to zero, there is no
real-time problem. However, if non-zero final speeds
of the probe head are allowed, the system is then de-
pendent on the timing of the subsequent command(s)
and responses. However, this problem can be resolved
if commands are allowed to be queued in the CMM im-
plementation. The I++ DME-Interface specification al-
lows for such queueing, and it implicitly requires it of
the CMM implementation. Therefore, assuming that all
application implementations expect command queue-
ing in the CMM implementation, the application will
send subsequent commands upon receipt of an "OK"
response only versus "OK" plus "done" (or "error"). The
CMM implementation can then look ahead and wait to
execute all adjacent "move" commands together which
will allow non-zero final velocities for some of the
"move" commands.

In the broader sense of real-time, the specification
must be developed, implemented, and tested success-
fully by a broad majority of vendors and users within
a certain time frame that might be defined as the tech-
nology change window, i.e., the specification cannot be
obsolete by the time it appears in new products.

A. The Device Interface

Within the CMM is the "hard" real-time device inter-
face, between the controller on the one hand and the
motors and sensors on the other. This interface has
been talked about as a candidate for standardization.
NIST has done substantial research on making this de-
vice interface open, if not common. We developed and
reported on a component-based, object-oriented soft-
ware controller system that outputs motor voltages and
read raw sensor values in "hard" real-time [5].

There are several challenges for the development of
a device level specification for a CMM. Proprietary de-
vice interfaces would have to change at some cost to

CMM vendors. It may be hard to get broad agreement
across the industry on certain parameters on the inter-
face. Because of the danger of probe and equipment
damage, with CMMs and probes being so costly (often
in the $100,000 range), liability is a problem. There is
perhaps an even greater liability problem having to do
with the assurance of measurement accuracy and many
vendors claim that only with a proprietary interface def-
inition can measurement accuracy be ensured.

However, a standard device interface would allow
best-in-class controllers paired with best-in-class CMMs
which offer hope to increase performance and lower
cost of total systems as has happened in several other
well-known technology areas. Additionally, the liability
for measurement accuracy and damage problems can
be shared with some effort to define appropriate liabil-
ity boundaries. Furthermore, the device interface is rel-
atively a simple interface involving voltages to motors,
position and speed of the CMM arm, and a probe tip
"touch" event precisely synchronized with the position
of the CMM arm when the event occurred.

To develop a test suite for the device interface, remote
testing must be abandoned. There would be a need dur-
ing tests to define as metrics the performance of the
machine motion under different controllers. As before,
standard artifacts and inspection plans would be essen-
tial for successful testing.

B. Object-Oriented Issues

The issue of objects has been in the forefront of devel-
opment in both specifications. The I++ DME-Interface
specification has chosen to make objects (in the form
of Unified Modelling Language (UML) models) as part
of the specification, whereas the CMM-driver specifica-
tion makes no such requirement. However, we argue
for a middle ground where the object models are part
of the testing and implementation tool set that allow
implementors to facilitate implementation, testing, and
integration. This will both facilitate implementation de-
velopment (and subsequently interoperability) and will
allow implementors to choose non-object oriented im-
plementations while still complying with the specifica-
tion.

VIII. DISTRIBUTED REAL-TIME TESTS

A ("soft") real-time, distributed, and cross-continental
demonstration was conducted on July 13, 2001 in which
a CMM-driver specification compliant file was used
as input for sending commands to LK Metrology in
Darby, United Kingdom (UK) from the National Insti-
tute of Standards and Technologies (NIST) in Gaithers-
burg, Maryland, USA, where the commands were used
for inspecting the test artifact. A user-controlled
pan/tilt/zoom camera was also integrated into the en-
vironment with a web-based video server to allow the
inspection program to be viewed at either location. The
demonstration used only one inspection plan test file.

This demonstration helped us improve NIST testing
utilities and showed that distributed testing is not only
possible but efficient and beneficial to any future testing
events.

IX. FUTURE WORK

Depending on the needs of the CMM industry, we may
create and perform explicit validation tests. Addition-
ally, more precise metrics need to be defined in concert
with the CMM community of users and vendors. Our
current set of metrics (Section V-C) is preliminary only.

The current set of testing utilities is focused on the
CMM-driver specification detailed in [4]. Based on a re-
cent study and comparison of the two specifications [6],
itis clear that the two specifications have more similari-
ties than differences. It currently appears that the com-
munity of CMM system users and vendors is moving to
integrate the two specifications into one while using the
I++ DME-Interface specification [1] as the baseline. NIST
is presently performing the modifications necessary to
make the current testing utilities compatible with the
I++ DME-Interface specification.

Perhaps the most important single item lacking in our
test suite is to develop a comprehensive response simu-
lator for use in application implementation testing. This
may also be the most challenging part of test suite devel-
opment. We also need to discern whether to couple our
response simulator (which includes the response rules)
with high-level test inspection plans, e.g. in DMIS, for
use with the CMM utility test software. Also, whether
testresult logging code needs to be compiled with appli-
cation level implementations. The questions and prob-
lems associated with this decision are discussed in Sec-
tion V-A.4.

REFERENCES

[1] Hans-Martin Biedenbach [Audi], Josef Brunner [BMW], Kai Glas-
ner [DaimlerChrysler], Glinter Moritz [Messtechnik Wetzlar],
Jorg Pfeifle [DaimlerChrysler], and Josef Resch [Zeiss IMT], “I++
DME-Interface,” Release 0.99, 2002.

[2] Martha Gray, Alan Goldfine, Lynne Rosenthal, and Lisa Carna-
han, “Conformance Testing,” http:;//www.itl.nist.gov/div897/
ctg/conformProject.shtml, 2000.

[3] Consortium for Advanced Manufacturing - International, Dimen-
sional Measuring Interface Standard, Revision 3.0, ANSI/CAM-I
101-1995, CAM-I, Arlington, Texas, 1995.

[4] David Smith [LK Metrology], Lutz Karras [Zeiss IMT], Michel Pen-

lae [Xygent], and William Wilcox [Wilcox Associates], “CMM-
driver Specification,” Release 1.9, 2001.
[5] John Horst, “Architecture, Design Methodology, and

Component-Based Tools for a Real-Time Inspection System,”
Newport Beach, CA, 2000, 3rd International Symposium on
Object-Oriented, Real-Time, Distributed Computing (ISORC).

[6] Thomas Kramer and John Horst, “A comparison of the CMM-
driver Specification Release #1.9 with the I++DME-Interface Re-
lease 0.9,” 2001.

