
Don Libes
National Institute of Standards and Technology

Gaithersburg, MD 20899
libes@nist.gov

Abstract

Expect is a tool for automating interactive applications.
Expect was constructed using Tcl, a language library
designed to be embedded into applications. This paper
describes experiences with Expect and Tcl over a seven
year period. These experiences may help other exten-
sion designers as well as the Tcl developers or develop-
ers of any other extension language see some of the
challenges that a single extension had to deal with while
evolving at the same time as Tcl. Tcl and Expect users
may also use these ‘war stories’ to gain insight into why
Expect works and looks the way it does today.

Keywords: Expect; Lessons learned; Software archaeol-
ogy; Tcl

Expect – What is it?

Expect is a tool for automating interactive applications
such as telnet, ftp, passwd, fsck, rlogin, tip, etc.
[Libes95] Expect is also capable of testing these same
applications. Expect is implemented as an extension to
Tcl [Ousterhout]. Using Expect with other extensions is
straightforward. For example, with Tk, interactive
applications can be wrapped in modern graphic user
interfaces allowing a program that was originally com-
mand driven to be controlled with buttons, scrollbars,
etc.

Expect was first released in 1990 and rapidly became
and remains today the standard tool for automating
character-oriented applications. It is now used by hun-
dreds of thousands of companies and institutions around
the world. It is sold and supported by several vendors
and is distributed for free from NIST1 and with many
vendor software distributions. Expect has become the
de facto recommended solution for many problems
faced by programmers, system administrators, and
users. Expect is described in many FAQs, there are

1. http://expect.nist.gov

chapters on Expect in several books, and Expect is rec-
ommended by dozens of authoritative papers and arti-
cles.

Experience Papers – Why?

It is useful to look back over lengthy periods of time.
This allows observations that are uncommon. Most
‘experience’ papers have only a year or two to draw
upon. Expect is in the unusual position that it predates
almost all other extant Tcl extensions. This makes it an
excellent candidate for study in the hopes of finding les-
sons that we can apply to more recent or even future
extensions.

A second reason is that the Tcl developers are not
required to consider the ramifications of their own deci-
sions on extensions. The Tcl developers are in the envi-
able position of being able to change Tcl itself as
needed. Needless to say, building an extension can be
an entirely different experience depending upon whether
you have the freedom to modify Tcl or not.

In 1995, Phelps described many difficult problems faced
and solved in the TkMan and Rosetta projects during a
two-year period [Phelps]. Interestingly, that paper is
entirely different than this one. For instance, one of the
crucial difficulties with TkMan was how to achieve high
performance, something that is not an issue for Expect.
(“Realistically, blazing speed is hardly needed in a pro-
gram that simulates users” [Libes91].) In that and other
respects, this paper is complementary to Phelps’ and
similar papers that offer more traditional lessons
learned.

Tcl – Swamp or Savior?

It is worth pondering how Tcl affected the development
of Expect. How did Tcl help Expect? Would a different
approach have been better? Can these questions be
answered in retrospect? After seven years of Tcl, is it
possible to be objective about it? These questions are
difficult to answer and for the most part, I do not have
cogent answers. Although I will address these points
indirectly throughout the paper, I encourage readers to
try and make up their own minds as I present some of
the many war stories in Expect’s history.

Much of Expect’s beauty is due to Tcl. Tcl really does
well what it was intended to do – be a glue language.
Tcl makes it easy to incorporate new functionality.
Expect takes a general approach towards its problem
domain. It is usually possible to solve a specific case
with a specially-written program (e.g., ncftp) [Dalrym-
ple]. The advantage of Expect is that it applies to any

Writing a Tcl Extension in
Only Three Years

Four
Five
6 7

interactive program. So once you’ve learned how to
apply Expect to one program (e.g., ftp), it’s trivial to
apply it to another (i.e., telnet, passwd, crypt).

Much of the flexibility is due to Tcl itself. Tcl provides
Expect with the basic infrastructure for variables, proce-
dures, expressions, etc. Expect need only focus on the
parts of the task specific to interactions with processes.
At least, that’s the theory.

Tcl tries very hard not to force a particular view of the
world. For example, Tcl allows OO (object-oriented) or
non-OO programming – both simultaneously. And Tcl
permits the addition of new control structures. In fact, I
didn’t even realize that’s what I was doing until years
later when I tried to implement Expect in other lan-
guages.1 These are examples of approaches that Tcl
encourages. And Expect follows Tcl’s suggestions –
except in the following cases:

• Expect got there first (i.e., there was no sug-
gestion until later), and

• Tcl’s approach was confusing, painful, or I
just didn’t understand it.

I will give examples of both of these as well as talk
about problems caused by myself and other outside
influences. Having introduced key concepts (and
sagas), I will then return to cover more examples of dif-
ficult interactions with Tcl as well as other insights.

Tcl’s Approach – Unpleasant or Inadequate

Some of Tcl’s ideas which at first seem to fit well with
Expect, did not actually fit well. This section presents
several examples.

Null Strings

For many years, Tcl strings did not support nulls. This
was an understandable philosophical decision. C strings
were naturally null terminated, so using them simplified
the C API. And Tcl as a glue language had little need
for nulls. Fortunately, Expect didn’t have much need
either. Users don’t see them – they have no printed
appearance – so why would a program send nulls? In
fact, there are programs with interactive interfaces that
do send and receive nulls. For example, curses-based
programs send nulls for screen formatting. In 1990,
Expect began providing null support. Initially, it was
very basic – nulls were stripped out of strings before

1. I was familiar with this practice having used Lisp
for many years. That’s probably why I didn’t
think too much of it at the time I began using Tcl.

being matched. Eventually, the support grew more
sophisticated and capable, but the user interface was
always unnatural due to the lack of Tcl’s support.

After years of begging for null support in the core, the
Tcl developers have scheduled it for Tcl 8.0, expected to
appear sometime in 1997 – seven years after Expect’s
first workaround.

Scoping & OO

Originally, Tcl’s scoping rules were very limited. I
found them unpleasant enough that I made Expect’s
commands internally look in both the local and global
scopes for special variables such as spawn_id and time-
out. This simplified many scripts but it was not the
default Tcl behavior so it had to be explained as a spe-
cial Expect feature. Had Expect been designed after
many other extensions existed, I might have felt less
inclined to do this, but there was no tradition being vio-
lated at the time, so I didn’t think very hard about it.

A related issue is that Expect defaults to using global
variables (such as spawn_id) rather than insisting that
they be passed as parameters. Again, this simplifies
most scripts. The vast majority of users never manipu-
late more than one interactive process at a time. The
result is faintly reminiscent of an OO implementation.
At one point, I considered implementing an object-
based (OB) version of Expect in the style of Tk. But for
most Expect scripts, an OB version would be less practi-
cal. Contrast a traditional Expect sequence with the OB
style approach:

traditional
expect "Login:"
send "$username\r"

object-based
$telnet expect "Login:"
$telnet send "$username\r"

I’m not aware of any Tcl extensions that actually started
with an OB orientation and later dropped it. However,
CGI.pm, a Perl module for CGI scripting provides such
an example [Stein]. Early releases had an OB view.
While it was clean as far as scoping and namespace con-
trol, users rarely used multiple CGI objects and the OB
interface was cumbersome. Thus, a non-OB/OO inter-
face was created. In practice, CGI.pm scripts are gener-
ally a mixture of OB and non-OB/OO programming.

Pattern Strings

When I began using Tcl, I found the rules for pattern
creation to be quite confusing – partly because patterns

are not built into the grammar but are simply repre-
sented as strings which the pattern matcher would rein-
terpret. I exacerbated this problem further by using a
list to provide alternation over glob patterns. This
caused yet another round of interpretation, so that
matching trivial strings such as "No match" had to be
written: {No\ match}. Tcl 6 incorporated a regular
expression engine, thereby providing alternation for
free. This required the rewriting of many patterns but it
was worth it, drastically simplifying things.

Tcl’s general quoting conventions are still a source of
misunderstanding for many. This phenomenon is com-
mon enough that people have humorously given it a
name: Quoting Hell. Part of the problem is that the
conventions are different than anything people are used
to – such as those of the shell. Tcl and shell quoting
bear a resemblance to each other but it is superficial.
Tcl’s quoting rules are simpler and more straightfor-
ward. For this reason, it is easy to master them – as long
as a good explanation is at hand. Unfortunately, because
the quoting appears so similar at first, many people pre-
fer not to learn the rules and begin to program using
another language’s conventions, thereby getting them-
selves confused and leaving the impression that Tcl’s
conventions are even more illogical than the shell.

In short, Tcl’s quoting hell is actually bliss. The con-
ventions are so simple and regular that they are trivial to
learn. By comparison with most other languages, Tcl
syntax is a pleasure to use.

Other languages, such as Perl, take the approach that
patterns are a special type. This has advantages and dis-
advantages. One advantage is that you can have rules
specifically for pattern formation, making patterns eas-
ier to write and more readable once written. The corre-
sponding disadvantage is that additional rules
themselves can be a burden on the bulk of users who
cannot afford the time or brainpower to master the large
number of them [Friedl].

It is worth considering the analogy to expressions. In
early releases, Tcl’s expr command did not support the
traditional functional notation that it does today. For
example, sin($x) had to be written [sin $x]. The current
expr command is much more like a traditional language,
but at the same time unlike anything else in Tcl. I, per-
sonally, was not thrilled at the change. Indeed, it is
widely agreed that some of the shortcuts in the expr
command should be avoided. It is interesting to contrast
this with Perl where the number of shortcuts is one of
the attractions of the language.

Expect Got There First

In some cases, Expect’s design choices were made
before Tcl’s. When Tcl later changed, this occasionally
resulted in outright conflicts that required substantial
code rewrites. In other cases, Expect’s choices were
incorporated by Tcl or accepted by the Tcl community
as a standard solution. But in either case, the cost of
leading the way was expensive.

Command Name Collisions

The first release of Tcl had no file I/O and therefore no
open, close, etc. Although Expect did not do general-
ized I/O, “close” was a natural name for one of its func-
tions. So when Tcl finally incorporated file I/O with a
command by the same name, there was a collision. For-
tunately, it was easy to tell which close was intended by
a trivial examination of the arguments. In fact, Expect’s
close command calls Tcl’s close command if that’s what
the arguments indicate. Similar fixes were not possible
in other cases. For example, Expect’s send command
collided with Tk’s send command and there was no way
to distinguish which was intended from the arguments
alone. A general solution was adopted of making all
Expect commands that did not already begin with ‘exp’
available with an ‘exp_’ prefix.

After running into enough of these collisions, I eventu-
ally adopted an extremely conservative policy: Before
declaring each Expect command, Expect checks
whether a command already exists by that name. If so,
the command is only declared with the exp_ extension.
Thus, it doesn’t bother Expect if other App_Inits rede-
fine Expect’s commands either before or after
Exp_Init. (It is permissible to redefine commands,
although for obvious reasons, this is not common prac-
tice among other extensions.) It is interesting to com-
pare Expect to BLT [Howlett]. BLT started using the
blt_ prefix on all commands in 1993 but dropped it in
1996. Besides being notationally distasteful, it was dif-
ficult to support both the blt:: and blt_ flavor for each
command. BLT’s author also wanted to demonstrate the
need for namespace support in the Tcl core.

A related issue arose with Expect’s exp_continue com-
mand. exp_continue causes the currently executing
expect to restart, much like continue restarts a while
loop. Both continue and exp_continue make sense (and
do different things) from within an expect action. Their
implementation depends upon a shared namespace
which include values such as TCL_ERROR and
TCL_CONTINUE. Unfortunately, Tcl provides no sup-
port for allocating these values uniquely.

Other examples of unmanaged collisions persist as well,
such as zombie process identifiers. To be fair, Tcl does
manage a large number of resources. Yet it is surprising
that a language intended specifically for extension fails
to address many areas of obvious conflict [Libes97].

Substitutions

Tk’s bind command demonstrates how to obtain infor-
mation using a substitution mechanism (i.e., %). This
idea didn’t become known to me until it was too late.
By the time I became aware of Tk, Expect already used
reserved variables names (e.g., expect_out,
spawn_out). The % mechanism is unquestionably eas-
ier to read simply because it dramatically shortens com-
mands.

On the other hand, substitution has its drawbacks. For
instance, it is confusing when used with other exten-
sions or commands that perform similar substitutions
(e.g., format inside of a bind). One of the more flexible
extensions in this regard, Oratcl, performs substitutions
using @ but lets users override that character dynami-
cally, perhaps with the expectation that yet another
extension might come along and choose it too [Poindex-
ter]. In fact, there really aren’t that many ‘good’ charac-
ters to introduce substitutions and Tcl provides no
mechanism for handling the problem in a formal way.

In any case, the 8.0 compiler may put a damper on fur-
ther enthusiasm over substitutions since continually
regenerated commands make it very difficult to take
advantage of code previously generated by the compiler.

Event Management

In version 7.5, Tcl began providing event management,
in large part taken from Tk. Before this unification,
Expect had to provide its own event management for the
case when Tk was not present. For example, the interact
command necessarily waits for input from two sources
at the same time – the user and the process. The obvious
solution uses select but this doesn’t work on some sys-
tems. So Expect knew how to use poll too. And on sys-
tems where neither select nor poll worked on ptys,
Expect achieved the same result by using multiple pro-
cesses, one to wait for each input stream. This was an
ugly but standard maneuver in UNIX V7 days for man-
agement of multiple streams by any process such as cu
and telnet [Nowitz].

Tk’s style of event management was much more flexible
than that of Expect and required significant changes.
For example, consider the following code:

expect "password:" {
send "$password\r"
exp_continue

}

This tells expect to wait for “password:” and when
found, send back a password, and to do this repeatedly.
This is a typical sequence for handling a passwd-like
program where it is not known in advance how many
times the password will be prompted for. With Tk-style
events, just about anything can happen while expect is
waiting. This includes spawned processes shutting
down or even being replaced with different ones. In
such situations, not only could the action be inappropri-
ate but so could the expect itself. I still see people be
surprised by this flexibility.

Possibly one of the reasons this is surprising is that not
all of Tcl’s file operations were similarly modified to
support events. For example, consider these two opera-
tions which both read a line from the standard input:

gets stdin
expect_user \n

Only the expect command allows events to be pro-
cessed. In contrast, Tcl’s gets command blocks all
events until the gets command returns.

Needless to say, a lot of work went into Expect in order
to support four styles of event management (select, poll,
Tk-style, V7). And this had to be rewritten when Tcl
introduced the concept of the notifier.

Solving Problems that had Nothing to do with
Expect

Ferreting out bugs in Tcl itself is an example of a task
that had nothing to do with Expect itself. Less obvious
problems grew out of a need for functionality that really
had nothing to do with Expect per se. For example, a
debugger was de rigeur; however, a suitable one did not
exist so I stopped Expect development to write one
[Libes93]. A number of pieces of Expect fall into this
same category, such as signal handling, time formatting,
and others. Some of these are now available elsewhere.
For example, Tcl now directly supports the clock com-
mand and TclX provides signal handling [Diekhans].
Unfortunately, at the time, I couldn’t afford to wait a
year or two.

Designing Software Myself (or: What I
Can’t Blame on Tcl)

Some of the design choices I made were poor. Most
have been corrected. In a few cases, I decided it was

preferable to entertain the few complaints about
Expect’s design over the thousands of complaints had I
broken everyone’s code. One example is the default
timeout of expect. While the concept of an implicit tim-
eout was innovative, it is now clear that the timeout
should be off by default. Instead, expect times out after
10 seconds. Although this is changed trivially in a
script, it nonetheless is something that has always both-
ered me. Of course, I’m equally bothered by the many
other programs that also choose arbitrary time outs such
as ping (20 seconds) and rsh (75 seconds). It is ironic
that Expect is useful in dealing with so many other pro-
grams that have capricious timeouts. Who knows where
all these magic numbers come from?

In some instances, I intentionally introduced pitfalls
although I tried to do it as gracefully as possible. An
example is the interpretation of expect when given a sin-
gle argument. Consider:

expect {foo bar}

Expect interprets this as a request to wait for the string
“foo bar”. But a naive user might have intended this to
mean: wait for “foo” and then execute “bar” after writ-
ing similar statements with only different formatting:

expect {
foo bar

}

Clearly Expect has to make a guess. The heuristic
Expect uses is fairly sophisticated although it is ham-
pered by the impossibility of seeing the original quoting.
In particular, the following two statements invoke
Expect commands with the exact same arguments:

expect "foo bar"
expect {foo bar}

It is impossible for Expect to know how the statement
originally appeared, and thus the user’s implicit hint
over whether the argument was a simple string or a con-
trol structure is lost. A similar problem exists with the
interpretation of newline (or for that matter, any format-
ting character) which is represented the same way
whether it was originally used for formatting or speci-
fied as an explicit string. Consider:

expect "\n"
expect "
"

When allowing this double interpretation, I knew that
people would occasionally step into it, but I held my
breath in hopes that the number of people would be few.

And the heuristic is good enough that people have to
express things really unnaturally in order to be tripped
up. For example, intending “foo bar” as a control struc-
ture is extraordinarily unlikely because control struc-
tures are only useful when you have multiple patterns.
With one pattern, the user isn’t even going to bother
embedding the action in the expect command. And if
they perhaps got to one pattern-action by starting with
several and deleting the others, they’ll still end up with
the traditional formatting (with embedded newlines).
Fortunately, history has born out my optimism. In total,
only three people have ever reported being tripped up by
this. As a final note, the heuristic can always be avoided
entirely by calling expect with the -brace or -nobrace
flags. In fact, Expect does this internally to avoid recur-
sion.

It is interesting to compare this problem with Tcl’s
switch command. In fact, Expect was patterned after
that (nee case). One particularly unfortunate drawback
of bracing an argument list was the loss of evaluation.
This makes the behavior of the two different forms quite
different. While the braced behavior is a natural out-
come of Tcl’s normal command evaluation, the lack of
substitution and other features renders this form of
expect near useless – a high percentage of expect pat-
terns incorporate variable substitutions and special char-
acters – such as "$prompt" and "\n". Thus, Expect does
another round of evaluations in the style of the expr
command. A modern approach to this would use the
subst command but Expect still takes advantage of pri-
vate Tcl interfaces simply because this work was done
well before the introduction of subst (and the interfaces
have continued to work).

Portability – Not!

One pleasant aspect of Tcl is the portability that it pro-
vides, both to the end-user and the extension writer. Of
course, the extension writer must strive for portability as
well. And that is not always an easy task. Although the
primary aim of this paper is to present experiences
directly relevant to the Tcl community, I feel obliged to
give just one example of some of the effort that was
invested in Expect to address portability in its own prob-
lematic areas. Hopefully, this material can be of use to
vendors and the standards community – and amusement
to others.

Many people think the existence of POSIX has solved
all of our portability problems [POSIX]. Alas, it has
not. There are two reasons why:

• no POSIX support on pre-POSIX systems

• POSIX doesn’t standardize everything

These simplistic observations are more complex than
they might at first appear. Part of the problem is that
POSIX is not a simple standard. POSIX is really a fam-
ily of standards – each part of which appeared at a dif-
ferent time. And a particular operating system can pick
and choose much of which the vendor wants while still
using the term POSIX to describe it. Of course, many of
these ‘features’ can be detected using simple tests dur-
ing the installation process. Alas, some vendors seem
determined to make that as difficult as possible. For
instance, one vendor helpfully provided all of the possi-
ble POSIX include files but for libraries that didn’t exist.
In fact, much of what Expect does requires that features
work in a certain way interactively, so Expect must suc-
cessfully compile and run many test programs in order
to figure out how a system behaves. And workarounds
must be provided for each missing piece or divergent
behavior.

Another problem is that many vendors disable POSIX
features unless specifically requested, but if POSIX fea-
tures are requested, then non-POSIX extensions are dis-
abled. And because POSIX does not cover many areas,
Expect necessarily must use non-POSIX extensions on
all systems. Thus, Expect never requests POSIX sup-
port in the official way.

There are a surprisingly large number of things that
POSIX does not define. For Expect, one of the biggest
problem areas concerns pseudoterminals, or ptys for
short. Ptys are the operating system abstraction that
allow Expect to make a process believe it is interacting
with a real user at a real terminal. Unfortunately, there
is no standard pty interface.

Expect supports seven major variations of pty. Some
systems attempt to address portability by supporting two
or even three of the variations. Of course, they are never
the same two or three, and systems rarely document
which are the preferred interfaces. Most of these varia-
tions have subvariations, making the number of pty
interfaces over two dozen. Here are some of the pty
behaviors with which Expect has to deal:

• How is a pty allocated? On some systems,
the file system must be searched for them.
On others, a function (e.g., getpty) is pro-
vided. There is no standard name or
behavior for such functions.

• What accessibility/usability tests have to
be applied to the pty? Some systems
return a master but you have to success-
fully open it and the slave before you can
really be sure it is valid. Some systems

require example I/O be executed to test it
as well – just opening isn’t enough.

• How is the pty initialized? Are the termi-
nal modes of the pty pre-initialized (and
what are they? Can they be changed and
on what basis? I.e., system-wide, session-
wide? Or must we assume the pty is in
some unknown state? (Some systems pre-
initialize the pty, but since this isn’t docu-
mented we can’t rely upon it, thus we
spend time re-initializing anyway.)

• Is the pty drained on slave-side close after
some specified time period. Can the time
be changed/disabled? Stream-implemen-
tations do this, but with varying time peri-
ods.

• Do slave side operations have to be
acknowledged? Some implementations
require that the master ‘approve’ of certain
slave system calls that affect the pty.

• How does the master-side detect a slave-
side close? Some systems have read()
return -1 with errno = EIO. Some force
the use of select. Some have select return
a readable fd while some have select return
an exception fd. (None do what I would
consider the right (and obvious) thing with
read which is return 0 like any other file
descriptor.)

• What ioctl’s initially have to be applied to
the slave side? Some systems want
I_PUSH ldterm; others also want ptem and
ttcompat. Some don’t want anything.

• Is setuid required? Must an entry be made
in wtmp/utmp? What is the interface?

• What #includes are necessary for all of
this? Each system seems to have its own
unique collection of include files to
describe this mess.

Obviously ptys are a quagmire. But the complexity
doesn’t end there. Many of the operations performed on
ptys are also nonportable. This has nothing to do with
ptys – these same operations are nonportable on ttys,
too. For instance, there are a variety of ways to gain a
controlling terminal. The usual answer seen on
comp.unix.programmer is setsid() followed by open("/
dev/tty",...). However, this doesn’t actually work on a
lot of systems and there’s no right or wrong because,
again, POSIX leaves this undefined.

Getting the answers to questions like these is often a
painful ordeal. While man pages exist for pty(4) and
setsid(1), there are no man pages for interactions
between them. The man pages that do exist, never pro-
vide complete explanations, leaving trial-and-error as
the mechanism to finding how things really work. Of
course, this is really bad. Undocumented behavior often
changes from one release of the same OS to another.
(Actually, even documented behavior often changes.)
So contributed fixes that are ifdef’d for a particular ven-
dor are often inappropriate, always suspect, and there is
no trivial way to address the problem. It is depressing to
receive patches from people that cannot be used because
there is no assurance that it won’t break support for
other versions of the identical OS or even identical ver-
sions but on different platforms.

With ptys, I was forced to address each different pty
interface. There was no way of avoiding it. A different
solution was taken with regard to setting terminal
modes. Terminal modes fall into the category of ‘semi-
standard’. There are well-known interfaces (two, of
course) for setting terminal modes: ioctl and tcget/
setattr. The latter is partially specified by POSIX. So
Expect makes use of this specification when possible.

Unfortunately, POSIX only defines a subset of terminal
modes. Vendors always extend the modes. In order to
allow users to make use of native extensions in their
familiar tongue, Expect merely calls stty after encoun-
tering anything it doesn’t recognize. Calling stty is very
much in the spirit of Expect which encourages reuse of
existing programs whenever possible.

Unfortunately, stty cannot portably be called directly by
the user for several reasons:

• Some stty implementations require redirec-
tion differently than others. BSD stty tradi-
tionally applies to the device on the standard
output while SV stty applies to the device on
the standard input. The obvious solution is
to redirect both. Alas, a feature of modern
BSD is to complain if the ‘wrong’ descriptor
is redirected. So if the user invokes Expect’s
stty command with unrecognized arguments,
Expect internally calls stty with the correct
redirection.

• Common stty modes are interpreted differ-
ently. For instance, even though most users
intuitively want to specify ‘raw’ mode, there
is no ‘standard’ definition of such a mode.
Indeed, some sttys don’t even have such a
mode.

• Window size information is nonstandard.
One would think that the concept of ‘rows’
and ‘columns’ is not particularly challeng-
ing. Yet there is no standard output syntax
for window size information. Not surpris-
ingly, internally each system uses different
ioctls to support it. Some systems don’t sup-
port window size at all. Since window size
information is so frequently used, Expect
handles this itself bypassing stty. This
enables scripts to be portable.

Configuration

Tcl was originally envisioned as a small language
library for embedding in applications. At the first pre-
sentation on Tcl that I attended, I immediately saw the
merit in this. And ignored it. Expect reversed the idea,
promoting Tcl to be the important application with just a
small augment of process-control commands. Viewed
this way, it made sense to ignore some of Ousterhout’s
early recommendations, such as:

• Include the Tcl distribution with every Tcl-
application. Expect never did this – to its
benefit. As Tcl became enormously popular,
it would have been silly to reship the bulky
Tcl distribution over for each Tcl applica-
tion. And for the most part, Expect didn’t
care which version of Tcl it had available.
Early on, however, I did receive many com-
plaints that Expect was too hard to use
because it required people to install Tcl first.

• Embed Tcl’s version number in the applica-
tion version number. This was a reaction to
the incompatibilities of different Tcl ver-
sions. Since Expect was always able to sup-
port the last several versions of Tcl,
embedded Tcl’s version number seemed
pointless. (This may not remain true in the
future, though.)

As Expect was ported from one system to another, the
configuration difficulties became enormous. There were
more and more configuration choices in the Makefile
and users were having a hard time figuring out how to
configure things. In early 1993, Rob Savoye at Cygnus
Support stepped in and automated Expect’s configure
process using GNU Autoconf. Autoconf had problems
of its own, of course, but they were minor by compari-
son with manual configuration. Although the effort to
maintain Autoconf configure scripts is high, the end
result is that user’s lives are vastly simplified and devel-
opers escape the daily barrage of installation questions.
Cygnus, of course, benefited too. They had dozens of

different machines on which they wanted to support
Expect and installing it on each manually was unwieldy
and expensive.

Making the switch to Autoconf required a bit of faith to
take the plunge, and Tcl dove in as well several months
later. This delay didn’t directly hurt Expect, but once
again it felt like the tail wagging the dog.

In contrast to Autoconf, Tcl caused Expect much worse
configuration problems. For instance, Tcl generated a
set of compiler flags defining whether certain functions
or include files were available. However, these compiler
flags were kept private so Expect had to repeat the logic
and regenerate the flags during its installation. Only in
recent versions, did Tcl finally make available its config-
uration options in a public way – through tclConfig.sh.
Unfortunately, although public, these interfaces remain
undocumented.

Problems Successfully Avoided

In contrast to many of the reinvented wheels, Expect
also avoided many. Whether this was wisdom or luck is
an open question. For instance, early versions of Tcl
had no file support. This wasn’t a major problem for
Expect since it was possible to use existing utilities to
read and write files – just as a user would. Indeed, an
early paper demonstrated how to retrieve some informa-
tion out of /etc/printcap by reading it – using ed [Libes
91]! (To be fair, ed did some scanning to locate the
information that would have been harder without it or
some other similar tool.)

More recent problems revolve around shared/dynamic
library support. I steadfastly refused to add shared
library support to Expect until the Tcl support had been
considerably shaken out – this took several years. Even
then, problems remain. For example, Tk’s configure
does not distinguish between the libraries required for
Tk versus those required purely for Tcl. Because some
systems object to repeated library specifications when
building dependency lists for new shared libraries,
Expect has to figure out which libraries it needs sepa-
rately for Tcl and for Tk. Problems like this would have
been evident had Tk been delivered with other shared
libraries. In fact, there are many parts of Tcl that could
be delivered as separate libraries – socket and channel
support are two examples. The reluctance of the Tcl
developers to use their own library/package manage-
ment system has allowed that section of Tcl to be
weaker than it would have otherwise been.

A different kind of problem is illustrated by Tcl’s idea of
main. Originally, Tcl had no main. There was no need

for it – Tcl was simply a library after all. But people
wanted to write pure Tcl programs – perhaps with the
tiniest of extensions. Since this was so prevalent, a main
was added to the library. The drawback, of course, was
that although Tcl’s main satisfied many people, there
was always something it didn’t quite do – or do cor-
rectly. It changed frequently and became an annoyance
to extension writers who wanted to rely on it. In con-
trast, Expect just used its own main, avoiding the prob-
lem entirely.

Problems Successfully Fallen Into

Earlier I mentioned that Tcl began providing a regular
expression engine (mid ‘91). To Expect users, it seemed
as if Expect simply leveraged that. In fact, Expect’s pat-
tern matching needs are not met by the regexp engine.
For example, the interact command must be able to
report not only ‘match’ and ‘no match’ but also whether
a pattern could match if more characters arrive. Several
other pattern matching capabilities are required by
Expect and for this reason, Expect includes a complete
reimplementation of Tcl’s regexp engine as well as Tcl’s
glob pattern matcher.

The Tcl debugger shows a similar example of this phe-
nomenon. Its ability to allow users to move up and
down the stack is implemented by providing a complete
reimplementation of TclGetFrame.

Fortunately these types of code rewrites didn’t interfere
with Tcl itself although they often required dependen-
cies on TclInt.h as well as Tcl’s source. The obvious
risk here is that they could break at any time and with no
recourse.

The I/O driver mechanism in Tcl demonstrates yet
another slant on this problem. Expect requires more
sophisticated buffering than Tcl offers. Thus, Expect
had to provide its own file/buffer system. Expect
doesn’t use any of Tcl’s I/O commands (e.g., read, gets,
puts) and Tcl’s buffering only serves to slow down
Expect’s I/O.

Documentation

I considered documentation crucial to Expect. The
whole point of the software was so that people would
not have to reinvent the automation wheel – and good
documentation was a natural extension of that idea –
people shouldn’t have to figure out Expect either. And
although the basics of Expect were intuitive (but then I
would think so), many novel applications and aspects of
Expect were quite non-intuitive and really needed exam-
ples and explanations.

The Expect book was a significant investment in my
time – about three years from start to final publication
[Libes95]. Official NIST funding was not available so I
took it on as a personal activity. Much of the first year
was spent waiting for permission from NIST and its par-
ent organization, the US Department of Commerce.
During that time, it wasn’t even obvious that they would
allow me to write such a book. But I desperately felt
one was necessary. I was inundated by questions and
requests for more information, despite having written
almost a dozen technical papers for various journals and
conferences. (Oddly, this is my first Expect paper at the
Tcl/Tk workshop.) I also thought the book would bring
a sense of closure to the work – a good theory even if it
wasn’t true – while at the same time making a contribu-
tion to a relatively new and significant field, interaction
automation, that hadn’t been formally recognized with
any other books.

The book also had some other nice effects worth men-
tioning because they aren’t at all evident from reading it.
First, writing down an explanation often forces an
author to reexamine implementation decisions. There
were several aspects of Expect that I rewrote after I real-
ized that my explanations in the book drafts were overly
complex for no good reason. These rewrites delayed the
book by many months but I was happy each time even
though it meant rewriting both code and text in several
chapters. The delays in the book were also fortuitous in
that Tcl itself was changing. Although Tcl has contin-
ued to evolve, the bulk of the book is still accurate. In
fact, the only piece of the book that should now be
ignored is the section in the last chapter on Expect’s
timestamp command – this has been superseded by
Tcl’s clock command. (Expect continues to support
timestamp for backward compatibility but the command
is officially deprecated.)

The book had other consequences. For instance, it
required me to learn more about Tcl. I felt obliged to be
accurate about what I wrote and not gloss over things
just because I didn’t understand them. I also included a
tutorial on Tcl itself. Not only were there no good ones
at the time, but I still felt that Expect might be consid-
ered by many as a stand-alone application for people
with no knowledge of (or interest in) Tcl. At the same
time, I thought it was important to Tcl itself that it
should have a book not written by the author of Tcl, to
show that it was a language usable by and significant to
others, and to show a set of practical applications.

Writing quality code and man pages is only half the bat-
tle. I encourage extension writers as well as application
programmers to document their work through web

pages and other online documentation, classes, papers,
and books. We desperately need more.

Surprises

Many of my experiences with Tcl involved surprises.
For instance, I was surprised that Tcl caught on – in the
sense that people would write papers and have extended
philosophical debates about it. When I began using it
for Expect, it seemed irrelevant that no one had used Tcl
– or might never use it for any other reason. Tcl looked
like such a natural fit that I assumed people would not
require any big effort to use Expect. At first, most of the
scripts people wrote were just a dozen or so lines. It’s
hard to imagine how any language could further sim-
plify statements such as:

expect "Login: "
send "$username\r"

In comparison, Expect rewrites in other languages such
as Perl and C are much more clumsy. Although other
languages have their advantages for various tasks,
Expect is one of the few tools that hasn’t been replicated
as cleanly elsewhere. I’ve attempted or assisted such
work with six different languages.

Due to constant request, I subsetted the Expect core into
a Tcl-less library that could be integrated into other lan-
guages such as C and C++. I wasn’t happy doing that –
I’ve never written an Expect program that uses C for
control. What’s the point? Expect itself is neither mem-
ory- nor CPU-bound. Most of the time is spent waiting
for the spawned program to respond. So Expect doesn’t
buy much in a compiled language. Interpretable lan-
guages like Python and Lisp make much more sense for
high-level control tasks [Rossum][Mayer]. Indeed, the
Expect library has been successfully integrated with
both of these languages.

My philosophies diverged with Tcl in many other ways.
For instance, as I had been trained, my early Expect
code carefully checked for memory allocation failures.
I kept that up well after finding out about Ousterhout’s
memory is endless and if it’s not, we’re all in trouble
policy. Perhaps a year later, I finally ripped it all out.
This left my code much more readable yet I felt quite
uneasy for some time after. (The standalone Expect
library continues to do memory allocation checking
since the library can be embedded in other languages
and systems that don’t share the same policy.)

I was also surprised by users. People put Expect to use
in ways I could never have imagined myself, making my
own claims for Expect’s application seem downright

pedestrian. On the other hand, I was occasionally
stunned by mail from Tcl users telling me that they
couldn’t use Expect because it was an extension and
their management didn’t allow them to use extensions
with Tcl.

Change is Hell

Being on the leading edge is painful – change never
stops. While Expect is no longer on the leading edge, it
is definitely still subject to change. There is still a list of
requests for ‘improvements’. And a lot of these are
understandable – such as porting it to the Windows and
Macintosh platforms.

Other changes demand near instant response. Major
changes to Tcl can mean major work for me. Some-
times even the most minor changes can mean major
work for extension writers. For example, new instances
of tclConfig.sh often require substantial study of and
revision to Expect’s configuration suite.

I have great sympathy for extensions that required
changes to the core, such as iTcl [McLennan]. I suc-
cessfully avoided that trap, although in the case of the
debugger, only by sacrificing significant functionality –
leaving users without access to line numbers.

Almost as bad however is Expect’s use of Tcl’s private
undocumented interfaces. Such interfaces were often
the only way to solve a problem. And since they rarely
changed, their impact was insignificant. In fact, the
major difficulty was simply listening to people complain
about how TclInt.h wasn’t available thereby preventing
successful compilation of Expect. Distributing TclInt.h
with Expect was too risky as it is full of magic numbers
that change capriciously.

Lest my observations appear to belittle the Tcl develop-
ers, I will say it outright: It is clear to me that they take
seriously the changes that impact extensions. Consider-
ing Tcl’s recent capabilities and improvements, the Tcl
developers have done a good job of minimizing the
impact.

Clearly, change is a question that weighs heavily on all
our minds. When is it acceptable to make incompatible
changes? When Cygnus told me that they had Expect
suites which performed over a million tests, I realized
that there were likely others in similar position and that
further changes could no longer be done so capriciously
as had occurred in the past. This turned out to be just as
well since publication of the book was yet another clear
reason not to make any more changes.

Despite the relative stability of Expect’s user interface
for the past several years, it is likely that Expect will
change, partly in order to incorporate ports to the Win-
dows and Mac platforms. It will be very tempting to
also try and correct the remaining deficiencies in
Expect’s user interface at the same time. Even ignoring
corrections, Tcl’s “reinventions” (especially I/O chan-
nels, binary I/O, and multithreading) can only be fully
leveraged by redesigning Expect throughout – both the
internals and user interface must change. The unnerving
aspect is not the amount of work this will take, but the
likelihood that future Tcl innovations may require yet
more changes.

Concluding Notes

A project, not funded nor planned for the seven year
effort it took, necessarily has many chapters to tell and
some of them make sense only long after their occur-
rence. There are many more stories to Tcl – I’m limited
here to present only a few. So I’ve selected stories that
illustrate successes as well as stories that illustrate fail-
ures. We need both to learn from. And I implore educa-
tors who cite this paper not to pull lessons out of
context.

Perhaps the most significant lesson of this paper is that
what seems like a stable and dependable extension has
required a tremendous amount of effort just to keep it
working. Not only should the Tcl developers and the
vendors appreciate the difficulties they cause but so
should extension writers.

Expect originally started out as a small tool. It is still
possible to use it that way. But Expect now features
over 40 commands and requires a 600-page book to
completely describe it and its applications. Like Tcl,
Expect has grown. However, I often feel that control is
out of my hands. Many of the changes in Expect have
been forced by changes to Tcl. While in some cases, a
change in Tcl has acted as an enabler, other times it has
merely been a stumbling block. Expect’s use of Tcl is
especially worth critical examination because so many
of the underlying assumptions originally motivating the
choice of Tcl have changed. On the other hand,
Expect’s purposes have also changed, due in large part
to Tcl’s expanded capabilities. While the cost in track-
ing Tcl has been high, for the most part, Expect has ben-
efited from it proportionally.

Acknowledgments

Thanks to George Howlett, Michael McLennan, David
Beazley, Josh Lubell, Przemek Klosowski, Kari Harper,
Howard Bloom, Rick Jackson, Chris Kuyatt, and Steve

Ray for reviewing this paper and making suggestions
which dramatically improved it.

References

[Dalrymple] Dalrymple, Michael J., “User’s Guide
To NCFTP And The FTP Protocol”,
Colorado Center For Astrodynamics
Research, University of Colorado,
Boulder, CO, undated.

[Diekhans] Diekhans, Mark and Lehenbauer, Karl,
“TclX – Extended Tcl”, http://
www.neosoft.com/tcl/TclX.html.

[Friedl] Friedl, Jeffrey E.F., “Mastering Regular
Expressions”, O’Reilly and Associates,
January 1997.

[Howlett] Howlett, George A., “BLT”, http://
www.tcltk.com/blt/index.html.

[Libes91] Libes, Don, “Expect: Scripts for
Controlling Interactive Processes,”
Computing Systems, Vol. 4, No. 2,
University of California Press Journals,
Spring 1991.

[Libes93] Libes, Don, “A Debugger for Tcl
Applications,” Proceedings of the 1993
Tcl/Tk Workshop, Berkeley, CA, June
10-11, 1993.

[Libes95] Libes, Don, “Exploring Expect: A Tcl-
Based Toolkit for Automating
Interactive Programs”, O’Reilly and
Associates, January 1995.

[Libes97] Libes, Don, “Managing Tcl’s
Namespaces Collaboratively”,
Proceedings of the 1997 Tcl/Tk
Workshop, Boston, MA, July 14-17,
1997.

[Mayer] Mayer, Neils P., “The OSF/Motif
Widget Interpreter”, http://www.eit.com
/software/winterp/doc/winterp.doc, July
24, 1994.

[McLennan] McLennan, Michael, “[incr tcl] –
Object-Oriented Programming in Tcl,
Proceedings of the 1993 Tcl/Tk
Workshop, Berkeley, CA, June 10-11,
1993.

[Nowitz] Nowitz, D. A., “UUCP Implementation
Description”, UNIX Programmer’s

Manual, Section 2, AT&T Bell
Laboratories.

[Ousterhout] Ousterhout, John. K., “Tcl and the Tk
Toolkit”, Addison-Wesley, 1994.

[Phelps] Phelps, Thomas A., “Two Years with
TkMan: Lessons and Innovations, Tcl/
Tk Workshop, Toronto, Canada, July 6-
8, 1995.

[Poindexter] Poindexter, Tom, “Oratcl”, Tcl/Tk
Extensions, ed., Mark Harrison,
O’Reilly & Associates, to appear.

[POSIX] International Organization for
Standardization, International
Electrotechnical Commission, “ISO/IEC
9945, Portable Operating System
Interface (POSIX)”, IEEE, New York,
NY, 1990.

[Rossum] Rossum, Guido v., Python Language
Home Page, http://www.python.org.

[Stein] Stein, L., “CGI.pm: A Perl Module for
Creating Dynamic HTML Documents
with CGI Scripts”, SANS 96, May ‘96.

