
1

Proceedings of DETC‘97
1997 ASME Design Engineering Technical Conferences

September 14–17, 1997, Sacramento, California

DETC97/DFM-4373

AN INFORMATION MODELING FRAMEWORK TO
SUPPORT DESIGN DATABASES AND REPOSITORIES

J. W. Murdock†

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Simon Szykman‡ and Ram D. Sriram
Manufacturing Systems Integration Division

National Institute of Standards and Technology
Building 304, Room 12

Gaithersburg, MD 20899

† This research was performed while employed as a researcher at the National Institute of Standards and Technology.
‡ Corresponding author.

ABSTRACT
This paper introduces an information modeling framework

to support representation of design artifacts for design databases
and repositories. While most artifact representations consist
primarily of geometric information, the object-oriented design
modeling language developed through this work enables repre-
sentation of not only form, but also function and behavior.
This research has resulted in the implementation of a design
artifact database as well as an information browser that provides
the user interface to information contained therein. The imple-
mentation is demonstrated using the representation of a power
drill as an example.

1 INTRODUCTION
This paper introduces an information modeling language

that has been developed as part of the Design Repository Project
at the National Institute of Standards and Technology (NIST).
The long term objective of this project is the development of a
framework to enable the creation of design repositories, that is,
databases of design artifact and process information. Work in
the area of artifact geometry has reached a level of maturity
where international standards already exist for representation of
geometric information. As a result of this maturity, this work
makes use of STEP (ISO 10303) standards for representation of
geometry. However, representation of non-geometric informa-
tion is at a far more preliminary stage, and it is the development
of a more comprehensive information model for design artifacts
that is addressed in this paper.

Knowledge about the design of previous artifacts, and the
process by which a design is realized are of great importance to
designers. In order to create new and innovative designs, de-
signers need an understanding of what has previously been de-
signed and how those designs were realized. Merely providing
access to schematics of artifacts (as done by the patent office) is
inadequate for this purpose; this sort of information lacks the
depth to convey a thorough understanding of an artifact. Even
three-dimensional geometry serves a limited use in the absence
of additional information. In contrast, detailed, coherent models
describing not only geometry but also function and behavior are
capable of providing enough information for truly effective
design knowledge reuse.

Ultimately, the repositories created through the Design Re-
pository Project will be used to collect and make available
information about design artifacts and processes obtained
through case studies developed at NIST, as well as contributed
by industrial and academic partners. The intent is not to have a
part catalog where a designer would search for a design to meet
certain specifications. Rather, the repositories will act as a
resource through which a designer can access case studies that
are related to a problem of interest (similar artifacts, or similar
design process), and abstract from them information that can be
applied to a new problem.

The primary contribution of this work lies in the develop-
ment of an object-oriented language for modeling design knowl-
edge that is structured to aid in the objectives described above.
The language is comprised of two components: the data lan-

2

guage and the design representation language. The data lan-
guage describes the different types of data items in the informa-
tion model (objects, relationships and their classes); the design
representation language specifies the content of engineering
artifact models implemented within this data language. This
language is specifically suited to the problem of supporting
clear and precise descriptions of an artifact for efficient and effec-
tive access and comprehension by a human expert designer.
This work concerns not only information models which can
potentially impact future (non-geometric) standards develop-
ment, but also technology development through the creation of
software tools for design data access and manipulation.

The remainder of the paper is organized as follows: Section
2 discusses related work and Section 3 introduces the modeling
language, consisting of a data language and a design representa-
tion language; Section 4 describes the implementation of a
design database that utilizes the modeling language to represent
information, as well as the information browser that has been
developed to serve as the user interface for accessing information
stored in the database; Section 5 presents areas for future work.

2 RELATED WORK
Typical approaches toward product database management

(PDM) and concurrent engineering support tools focus on data-
base-related issues and do not place a primary emphasis on
information models for artifact representation (e.g., Hardwick
and Loffredo, 1995; Bliznakov et al., 1996; Kim, Han and Shin,
1996; Shah et al., 1996; Wood and Agogino, 1996). Although
these systems often represent various types of information
about the design process, representation of the artifact itself is
generally limited to geometry.

Research in the area of intelligent design systems has taken
an approach to artifact representation where modeling is typi-
cally divided into three main areas of study: the physical layout
of the artifact (form), a causal account of the operation of the
artifact (behavior), and an indication of the overall effect that the
artifact creates (function). Examples of these areas include the
qualitative simulation work in (de Kleer and Brown, 1983),
behavioral and functional representation in (Iwasaki and Chan-
drasekaran, 1992), functional representation in (Chandrasekaran
et al., 1993) and its successor “SBF models” from projects such
as KRITIK (Goel, Bhatta and Stroulia, 1996) and INTERACTIVE
KRITIK (Goel, Gomez et al., 1996), the YMIR project (Alberts
and Dikker, 1994), CONGEN (Kim, Gorti et al., 1996), and
others1. While there are major differences in the implementa-
tions of such models, the top level division into representation
of form, behavior and function is a popular one.

This work utilizes a three-tiered approach to artifact repre-
sentation which incorporates the three areas mentioned above,
both because of the success of these areas in design computing
and because this approach is inherently consistent with our own
understanding of design. This research has resulted in an object-
oriented representation format that provides a high level division
into form, behavior, and function, which correspond to the three
aforementioned areas of representation. The information associ-
ated with artifacts and with each of these three areas is described
in detail in the following section.

1 The FONM ontology (Hodges, 1995) adds a fourth area—the

“intensional level”—which represents the use of a device in the broader
context of an overall plan of action. This project does not make use of this
level, but it may become appropriate to do so in the future.

3 THE MODELING LANGUAGE
The modeling language developed through this research

consists of a data language and a design representation language.
The data language provides a syntactic formalism for describing
the way in which the information is represented. The design
representation language represents the actual content of the
artifact models. The device modeling language from the
CONGEN architecture (Kim, Gorti et al., 1996) is used as a
starting point for both of these interrelated aspects of the model-
ing language. CONGEN addresses the issue of partially-
automated support for engineering design. However, its lan-
guage was not a complete solution to the representation issues
relating to the Design Repository Project; the needs of this
project do not concern automated design support, but rather
human-comprehensible representations. Thus the language
from CONGEN has been adapted and extended for the purposes
of this work. In general the modifications have been driven by
two complementary factors:
 • There are language features and properties that facilitate

effective and efficient algorithms for reasoning about de-
signs. These are necessarily present in CONGEN due to its
intended role as an automated support tool, but are not re-
quired for this project. Along this dimension, some fea-
tures of CONGEN have been simplified or eliminated for
the language developed in this work.

 • In contrast, this work presents a need for rapid and easy
human comprehension of design data, which is less integral
to the goals of CONGEN. This imposes a new set of con-
straints on the design of the modeling language. These
constraints, in turn, drive the development of new language
features and properties that are not present in CONGEN.
In general, the development of knowledge representations

involves manipulating a trade-off between these two issues of
computation and clarity. Because the Design Repository Proj-
ect is not directly interested in pursuing the former, we claim
that it makes a superior contribution to the latter.

 3 . 1 The Data Language
Before proceeding to a description of the design representa-

tion language, it is necessary to briefly describe the representa-
tional formalism used to encode these results. The data lan-
guage used in CONGEN is based on the SHARED object model
(Wong and Sriram, 1993). That language provides capabilities
similar to those in most object-oriented representational formal-
isms but is structured to make formal reasoning and analysis
easier than for other object models.

This research has developed a database for storing data using
the modeling language, as well as tools for examining and
manipulating this data. It is expected that such databases will
eventually be used on a large scale in a distributed environment
(i.e., over the Internet). Thus there is a requirement that the
data language enable effective and efficient solutions to issues
such as storage, indexing, concurrent access, etc. These sorts of
problems are fundamentally different from those involved in
automated design reasoning performed in CONGEN. Further-
more, these tasks do not require the same level of mathematical
rigor required to achieve partial-automation of design tasks.

Therefore, this work proposes a data language which is su-
perficially similar to SHARED, but which is substantially
clearer and more concise at the cost of being less rigorous. The
syntactic mechanisms used in this project are approximately,
but not exactly, a subset of the SHARED model. However the

3

Object: Robert_Smith
parent Employee
uid 12

Attributes
title “Junior Programmer”
address [address_1]
salary 27520.00

Relationships
[has_supervisor_15]

[in_office_13]

Figure 1: Example of an object.

Class: Employee
parent Person
cid 26

Attributes
title STRING
address [address_class]
salary FLOAT

Relationships
[has_supervisor_rclass]

[in_office_rclass]

Figure 2: Example of a class.

precise semantics associated with those features that have been
retained are, in some instances, significantly different from the
analogous constructs within SHARED. Thus, the data lan-
guage can be more accurately characterized as a separate, but
similar, language rather than as a restricted subset.

Within the data language, there are four basic types of data
items: objects, classes, relationships, and relationship classes2.
At this level, the object model is generic enough that it could
be used for many applications other than representation of engi-
neering data. The design representation language and the engi-
neering context are not discussed until Section 3.2. Thus, to
illustrate the basic building blocks of the data language inde-
pendently of engineering-related issues, Section 3.1 uses exam-
ples from outside the domain of engineering design. An engi-
neering artifact (a Black & Decker® power drill) is used for the
implementation example described in Section 4.

 3 . 1 . 1 Objects. Figure 1 contains an example of an
object (data items are denoted by a data item name in brackets).
This object defines a person named Robert Smith as might
appear in a personnel database. In this example, Robert Smith
is given a title (a text string), a salary (a number), and an ad-
dress; the address is not represented by a string but is contained
in a separate object. Furthermore, Smith is involved in two
explicit data relations (represented by relationship data items): a
relationship which identifies his supervisor and one that identi-
fies the office in which he works.

In general, an object contains the following information: a
name, a parent3, a unique identifier (uid), a set of attribute-value
pairs, and a set of relationships in which it is involved. The
parent indicates the class from which the object is instantiated.
Internally to the database, data items are referenced using unique
identifiers (which are integers); externally, they are presented in
the user interface by name, as illustrated by the objects contain-
ing Smith’s address, supervisor and office in Figure 1. The
attribute-value pairs each have an attribute name and a value
which can be a object, a set of objects, or a primitive data item
such as an integer, a string, or a floating point number. The
relationships portion of the object lists all relationship data
items for which the object is a participant.

2 Although the four data items are all “objects” in the object-oriented

sense, in this paper the term “object” is not used in a generic sense but rather
denotes a specific type of data. When describing generic data structures, the
term “data item” will be used.

3 Also referred to as an instance-of or is-a link in the database literature.

The data language is silent as to which connections be-
tween objects are represented using attributes and which are
represented using relationships. For example, the Rob-
ert_Smith object could have just as easily had a supervisor
attribute and a has_address relationship instead of the other
way around. The decisions about which connections are defined
explicitly using relationships and which ones are inherent to the
nature of the particular objects being described is part of the
content theory of the domain being described. Thus in this
project, decisions about what is an attribute and what is a rela-
tionship are part of the design representation language described
in Section 3.2.

 3 . 1 . 2 Classes. Figure 2 shows an example of a
class. The Employee class is the class of which the Rob-
ert_Smith object is a member and is a subclass of the general
Person class. The Employee class defines attributes and types
for objects of that class, and refers to the relationship classes for
the relationships which generally relate to Employee objects.

Every class has a name, a unique class identifier (cid), a set
of attribute-type pairs which define attributes held by members
of the class along with their corresponding classes or primitive
data types, and a set of relationship classes that define the rela-
tionships in which objects of that class participate. Further-
more, a class may have a parent of which that class is a sub-
class; top level classes have no parent.

In general, the attributes and relationship classes of a class
will be a superset of those of its parents. For example, the
Person class would have an address attribute but no title or
salary attributes. If there were a Customer class (also sub-
class of Person), it would have the same address attribute from
the Person class but might also have additional attributes and
relationships relating to orders placed, bills outstanding, etc. In
addition to adding new slots, particular slots from a parent class
may remain unused if they are not relevant to that particular
subclass. Note that an object belonging to a class will gener-
ally have the slots defined by the class that it is a member of,
but may also choose to add extra slots and/or not use unneces-
sary ones. Thus class definitions describe the kind of content
that is normally present in them, but do not require the content
to be fully specified. This is consistent with the fact that this
data is intended to be used strictly as a presentation to the user
and not as a foundation for a programming environment.

4

Relationship: Has_supervisor_15
parent Has_supervisor
rid 17

Roles
supervisor [Michael_Thompson]
subordinates {[Robert_Smith], [Jack_Evans],

[Tom_Williams], [Steve_Jones]}
Attributes

group_budget 250000.00

Figure 3: Example of a relationship.

Relationship Class: Has_supervisor
parent
rcid 6

Roles
supervisor [employee_class]
subordinates {[employee_class]}

Attributes
group_budget FLOAT

Figure 4: Example of a relationship class.

 3 . 1 . 3 Relationships. Figure 3 provides an example
of a relationship. In this relationship, Smith is described as
being one of the employees who’s supervisor is the employee
Michael_Thompson. The relationship has two roles: the super-
visor which refers to a single employee and the subordinates
which refers to a set of employees (denoted by braces). In addi-
tion the relationship defines the budget for the entire group as
an attribute of the relationship between these employees.

In general, a relationship has a name, a unique relationship
identifier (rid), a set of roles and values for those roles (which
must be objects that have the relationship in their list of rela-
tionships), and a set of attribute-value pairs. The relationship
in Figure 3 is a binary one-to-many relationship (i.e., there is
one supervisor, and a set of subordinate employees each of
which have this relationship in their object). In general, the
data language supports any number of roles, any of which may
involve either single values or sets of values. Thus one-to-one,
many-to-many, one-to-many-to-many relationships, etc. are
supported.

 3 . 1 . 4 Relationship Classes. Figure 4 shows an
example of a relationship class that provides a general definition
of the relationship between a supervisor and a set of subordi-
nates, annotated with a budget. This relationship class is a top
level class and thus has no parent; in general, however, there
may be superclasses and subclasses for relationship classes just
as there are for (object) classes.

Each relationship has a name, a unique relationship class
identifier (rcid), a set of role-type pairs whose types are defined
as either containing an object of a specific class (as in the su-
pervisor role in the figure) or a set of objects of a specific class
(as in the subordinates role in the figure), and a set of attributes
which are defined exactly like attributes for a class. As with the
classes, subclasses and instances may add or leave unused roles
and/or attributes from a relationship class as needed.

 3 . 2 The Design Representation Language
Section 3.1 introduced the generic components of the data

language. This section presents the design representation lan-
guage, which uses the structure of the data language to represent
engineering designs. Sections 3.2.1 and 3.2.2 briefly describe
the elements of knowledge that are represented using this lan-
guage; Section 3.2.3 discusses further the engineering context
associated with the representation.

 3 . 2 . 1 Artifacts. The central constituent of the design
representation language is the artifact. Every physical object
described in this language (such as the power drill that will be
presented in Section 4) is represented as an artifact. A critical
aspect of the design representation language is the fact that the
subassemblies and components of an artifact are themselves
artifacts. For example, the motor, which is an artifact, is part
of the drill system, which is also an artifact, which is part of
the overall power drill assembly, also an artifact. Thus the
language is truly hierarchical: elements at different levels of the
hierarchy have the same basic content (i.e., form, behavior, and
function) and representational structure. The representation of a
device design is comprised not only of the collection of artifact
objects, but also the other objects, relationships, the connec-
tions between data items, as well as various attributes and their
values.

Using the design representation language, any artifact is an
instance of some type of artifact class. For example, the power
drill artifact is an instance of the Drill_artifact class which is
a subset of the general Artifact class. The general Artifact
class provides two attribute slots for annotating the artifact,
both of type string: a full_name slot for providing a complete
technical name and a description slot for providing a brief
textual description. The Artifact class also includes attributes
that provide the top level division of the artifact into the three
basic elements of form, behavior, and function, and therefore
artifacts instantiated from subclasses of the general class can
contain these elements. Each of the three elements contains a
reference to another object that describes that aspect of the arti-
fact further through references to additional objects.

 3 . 2 . 2 Form , Behavior, and Function. Of the
three elements of representation, the primary focus of this re-
search is on function. Much of the work required in the areas of
functional and behavioral modeling is due to a lack of estab-
lished standards for representation of such information. In con-
trast, representation of form can be achieved using existing
standards, specifically STEP AP 203. Although this standard is
not “complete,” meaning that certain types of CAD information
are not captured by STEP AP 203, STEP compliance is becom-
ing a part of more and more CAD tools. To enable the most
widespread compatibility with existing tools and to avoid dupli-
cation of substantial effort, form in this work utilizes STEP AP
203, thereby eliminating the need for development of a novel
representation to encode form.

5

In this project, work to date for representation of behavior
includes a simplified characterization of behavior that allows the
user to specify a set of one or more inputs and outputs, as well
as relationships, such as being a subbehavior of a composite
behavior (i.e., a behavior that is satisfied by multiple objects).
The representation scheme for this element will be developed
further as subsequent research reveals additional needs.

The long-term goal of this research is to enable large scale
design databases and design repositories to be used to help learn
about requirements for design and redesign of a given type of
artifact. Designers who access a design repository will gener-
ally be searching for designs to perform a given function (often
without specifying how the function is achieved) rather than
searching for designs that behave a certain way. Thus, for the
purposes of this work, function is of significantly greater im-
portance than behavior.

The language for describing function within the overall de-
sign representation language is significantly more mature.
Functions are instantiations of classes of functions. The func-
tion of the motor, for example, is an instance of the Trans-
form_function class which is, in turn, a subclass of the
general Function class. A function has a set of inputs and
outputs, and may have other attributes or relationships that
specify subfunctions and composite functions.

A function in the design representation language describes
an interaction between fluents. More specifically, inputs and
outputs of functions are described in terms of sets of instances
of a subclass of the general Fluent class. The term fluent
comes from (Russel and Norvig, 1995), which uses it in a
slightly broader sense than this research does. In the context of
this work, fluents include both physical and abstract phenomena
that are associated with inputs and outputs to functions, such as
motion, force, heat, liquids, current, and so on. The usage of
fluent in this paper is essentially the same as the notion of a
substance as used in design computing projects such as
(Bylander, 1991), (Chandrasekaran et al., 1993), and (Goel,
Bhatta and Stroulia, 1996). Use of the term substance in this
work has been intentionally avoided because of the common
confusion it creates with the non-technical definition of sub-
stance which refers only to physical substances and would ex-
clude fluents such as motion or force.

The fluent classes all have slots for explicit references to
which artifact the fluent is flowing from and where it is flowing
to, as well as a slot for relevant parameters. It should be noted
that fluents are not a type of top-level design artifact informa-
tion as are form, behavior and function. Rather, the set of
subclasses for the general Function and Fluent classes to-
gether describe the semantics of the functional aspects of this
design modeling language. This concept will be discussed
further in the following section.

 3 . 2 . 3 The Engineering Context. Section 3.1
described the basic building blocks of the data language, which
forms the framework around which the design representation
language is structured. As the personnel database example
illustrated, the data language is quite generic. What distin-
guishes the design representation language from the simple
nature of the data language (and from other generic object-
oriented approaches to information modeling) is the engineering
context that is built into the language. Although a comprehen-
sive description of the engineering context is beyond the scope
of this paper, this section is intended to provide some insight to

the reader since it is this context that gears the design represen-
tation language specifically toward the representation of engi-
neering design knowledge.

The engineering context has several different aspects.
These include taxonomies of functions and fluents (both of
which include a class hierarchy and instances of those classes) as
well as the types of attributes and attribute values associated
with the objects in a design representation4. The function hier-
archy consists of four subclasses of function directly beneath the
main Function class. These are Transform_function,
Convey_function , Supply_function and Control_
function, which are defined as follows:
 • Convey_function: The transfer of a fluent from one

location to another. For example, the function of a wire
may be to convey current from a power source to a motor.

 • Transform_function: The conversion of one fluent into
another. For instance, the function of a motor may be to
transform electricity into rotational motion.

 • Supply_function: The production of a fluent. For
example, the function of a power source might be to sup-
ply electricity to a motor.

 • Control_function: The exertion of a set of effects on
fluents in the system. For instance, the function of a
switch may be to enable rotational force from a motor by
closing a circuit. There is a separate hierarchy of classes of
effects, such as actuation, inhibition, enabling, adjustment
of parameters, etc.
The top-level division within the Fluent class is into the

two main subclasses: Abstract_fluent and Physical_
fluent (Goel, Bhatta and Stroulia, 1996). The abstract fluent
classes specify things like motion and electricity while the
physical fluent classes specify things like gases and liquids. To
illustrate, the function of the drill motor is to convert electrical
energy to rotational motion. Electricity coming into the motor
is of the Direct_current class which is a subclass of the
EM_Fluent (short for electricity and magnetism) class, which
is in turn a subclass of Abstract_fluent, which is in turn a
subclass of Fluent.

These fluents may then be further annotated by parameters
which specify particular quantitative or qualitative traits that a
fluent might have. For example, the output of the motor is
rotational motion; the speed and direction of this motion may
vary depending on the settings of the trigger switch and control
lever and thus are explicitly specified as parameters of this rota-
tional motion which may be affected by those characteristics.
Figures 5(a) and 5(b) illustrate abridged portions of the function
and fluent taxonomies. Currently, all functions are instances of
one of the four main classes shown in Figure 5(a). The incor-
poration of more detailed function taxonomies (e.g., Little et
al., 1997) is an area of future work.

Another essential part of the engineering context is sup-
plied by relationships. Relationships provide the means for
creating a physical or functional decomposition for an artifact
by allowing the representation of subassemblies and subfunc-
tions. Relationships are also uses to describe control structures
by specifying how certain effects are determined by values of
various parameters. In this manner, the effect of the trigger
switch on the drill bit speed can be represented.

4 Equally important is the hierarchy of artifact objects. However this

knowledge is not part of the general engineering context because this hierar-
chy—in essence the decomposition of an artifact into assemblies, subassem-
blies and components—is specific to the design being represented.

6

Convey_
function

Function

Transform_
function

Supply_
function

Control_
function

...

......

...

Fluent

Abstract_
fluent

Physical_
fluent

 Liquid_
fluent

Gaseous_
fluent

EM_
fluent

Kinetic_
fluent

......

Rotational_
motion

Translational_
motion

Rotational_
force

Translational_
force

.........

 (a) functions (b) fluents

Figure 5: The function and fluent taxonomies.

4 IMPLEMENTATION

 4 . 1 The Tool Sui te
The implementation of the research described in this paper

is a tool suite consisting of several different components. The
tool suite itself uses an object-oriented database management
system called ObjectStore™, developed by Object Design, Inc.5

Non-geometric information about a design artifact (e.g., func-
tion, behavior, relationships, etc.) is initially stored in a plain
text file which follows a prescribed format. This information is
then transferred to the object-oriented database through the use
of a design data compiler which acts as an input interface to
allow the transfer of information to the database. A similar
application is available to extract the contents of the database
and save them as a single flat file in a predetermined format.

Artifact information stored in the database is accessed
through an information browser (not to be confused with a web
browser) that provides the user with a point-and-click interface
that is easy to use. The information browser (illustrated in the
next section) allows the user to explore the artifact information
by moving from a given data item to others that are related
through behavior, form, function and relationships. A com-
mand-line interface to the same functionality provided by the
browser can also be used when the use of a graphical interface is
either not desired or not possible.

Within the database, objects corresponding to assemblies,
subassemblies and components contain links to the correspond-
ing geometric data in STEP format. By clicking on a button,
the user can view the geometric model of an object of interest.
The visualization capability utilizes STEP/Works, a 3D visu-
alization tool for AP 203 geometries developed by International

5 The identification this and other software and hardware products in this
paper is intended to provide readers with information regarding the imple-
mentation of the research described; no approval or endorsement of any
product by the National Institute of Standards and Technology is intended or
implied.

TechneGroup, Inc. Aside from ObjectStore™ and STEP/Works
which are commercial products, the tool suite is implemented
using a variety of languages including C++, Flex, Andrew
Bison, and Tcl/Tk, and runs on the Unix platform.

 4 . 2 Example
This section describes the implementation of an artifact da-

tabase utilizing the modeling language presented in this paper.
Figure 6 illustrates the Black & Decker® VP840 power drill that
is used as an example to illustrate the design modeling lan-
guage. The object corresponding to the drill, drill_
artifact_1, is depicted in Figure 7, which shows the informa-
tion browser. Information for some of the fields consists of
text, while other fields contain buttons; clicking on any of
these buttons will bring up the data item associated with that
field. Since drill_artifact_1 is an instance of the Dril l_
artifact class, clicking on the parent button brings up the
Drill_artifact class data item, which in turn has the general
Artifact class as a parent.

Clicking on the has_part_1 button brings up the rela-
tionship shown in Figure 8, which is an instance of the
Has_part relationship class. This relationship describes the
composition of components into the artifact as a whole, divid-
ing the drill into a set of components and subassemblies such as
the drill system or some of the wires that connect the systems
together. Note that there is no explicit distinction made be-
tween objects which are basic components (e.g., white_
wire_1) and those which are themselves complex systems
(e.g., drill_system_1); the only difference in the database is
that complex systems also have additional Has_part relation-
ships describing their decomposition into subsystems and com-
ponents.

Clicking on any of the component buttons will bring up
new objects, some of which may be further decomposed, such
as the drill system consisting of a motor, clutch, chuck, etc.

7

Bit

Chuck Grip

Chuck Head

Chuck Base

Clutch Head

Clutch Base

Motor

Switch Housing

Control Lever

Red Wire 1

White Wire 1

Battery 1

Battery 2

Battery Release

Trigger Switch

Black Wire 3

Black Wire 2

Black Wire 1

Red Wire 2

Figure 6: The Black & Decker® VP840 power drill.

The modeling language does not necessarily require that the
primitive elements be at any specific level of detail. For exam-
ple, several components, such as the motor, are considered to be
OEM (original equipment manufacturer) catalog parts. These
are not decomposed further since detailed artifact information
may not be available or necessary. If they were designed in-
house, more detailed representations of the subcomponents
which form the motor would be included. Clicking on a button
for form brings up a data item associated with the artifact’s
form, and a button there allows the user to view the geometric
model of the artifact by calling the STEP/Works viewer.

The object for the motor, although not shown, looks simi-
lar to the object shown in Figure 7. Clicking on the function
button brings up the function shown in Figure 9. This object
is an instance of the Transform_function class, and has two
attributes that correspond to the fluents on which this function
acts. The objects corresponding to those fluents are shown in
Figures 10 and 11. The three objects shown in Figures 9 – 11
taken together indicate that the function of the motor is to trans-
form direct current, which enters the motor from a black wire,
to rotational motion, which goes from the motor to the base of
the clutch. It can also be seen that the motor function output
(Figure 11) has certain parameters associated with it regarding
the speed and direction of the rotational motion. These parame-
ters relate back to the control system (see Figure 8) since the
speed is controlled by the trigger switch and the direction by the
control lever.

Using the browser, the user can view data items associated
with those parameters and could, with a few clicks, reach the
representation of the trigger switch assembly or return to the
relationship shown in Figure 8 via links through the control
system instead of the drill system. The browser itself provides
an intuitive interface that allows the user to easily browse a
database and rapidly extract information about the various as-
pects of the artifact representation. The overall drill artifact
database contains 28 artifact objects (assemblies, subassemblies
and components) and over 250 additional object and relationship
data items belonging to 64 (object) classes and 6 relationship
classes that describe their form, functions and behaviors. The
data items shown in Figures 7 – 11 illustrate only a few of the
many types of attributes present in the database. Other attrib-
utes include color, material, control function settings (e.g., a
switch position), and other parameters such as the battery volt-
age, output torque, and direction of rotation.

5 AREAS FOR FUTURE RESEARCH
This paper has presented an information modeling frame-

work to support the creation of design artifact databases and
repositories. This modeling language consists of a data lan-
guage and a design representation language, which together
enable the representation of form, behavior and function, in
contrast to traditional representations which focus primarily on
geometry.

8

Figure 7: The drill artifact object.

9

Figure 8: The relationship representing the top-level decomposition into systems and components.

Figure 9: The object for the drill motor function.

10

Figure 10: The object corresponding to the input fluent for the drill motor function
(note: wire output is equivalent to motor input).

There are several areas of ongoing and long-term future
work associated with this work. Current research is focusing on
developing a web-based interface to the engineering artifact
databases. This interface will be similar to the browser illus-
trated in the previous section, but rather than being stand-alone
application, information will be delivered to the user via the
web using a web browser. Because web browsers exist for
many platforms, using a web browser as an interface makes
access to the databases platform-independent, obviating the need
for recreating our browser for multiple platforms. Another
advantage of this approach is the relative ease with which in-
formation contained in multiple (possibly distributed) databases
can be delivered to users who may also be geographically dis-
tributed.

As stated in Section 3, the current representation of behav-
ior is somewhat simplistic. One of the primary objectives for
future work on this project is to develop a clear and powerful
account of artifact behavior which is consistent with both the
representation of function that has been developed and the exist-
ing STEP standard that is used to represent its form. Because
the behavior of an artifact is defined to be the way in which its
form accomplishes its function, the representation of behavior
is clearly heavily dependent on both the representations of form
and function.

The current design modeling language is highly flexible in
its ability to represent knowledge about a design. However, in
order for a design repository to be useful, there is a need to
impose structure onto the data. This is particularly important
for the indexing problem, where terminology issues (such as
terms with multiple meanings, or multiple terms with one
meaning) can serve as barriers to finding data even when it

exists in the database. Long term work will require the investi-
gation and development of ontologies (generic base classes, as
well as domain-specific classes) (see Farquhar et al., 1995).

ACKNOWLEDGMENTS
This work was supported in part by the National Research
Council Postdoctoral Research Associateship Program. Addi-
tional support was provided by the NIST SIMA program and
the DARPA RaDEO program.

REFERENCES
Alberts, L. K. and F. Dikker (1994), “Integrating Standards

and Synthesis Knowledge Using the YMIR Ontology,” Artifi-
cial Intelligence in Design ‘94, J. S. Gero (ed.), Kluwer Aca-
demic Publishers, Boston.

Bliznakov, P. I., J. J. Shah and S. D. Urban (1996),
“Integration Infrastructure to Support Concurrence and Collabo-
ration in Engineering Design,” Proceedings of the 1996 ASME
Design Engineering Technical Conferences and Computers in
Engineering Conference, Paper No. 96-DETC/EIM-1420, Ir-
vine, CA, August.

Bylander, T. (1991), “A Theory of Consolidation for Rea-
soning about Devices,” Man-Machine Studies, 35:467-489.

Chandrasekaran, B., A. Goel and Y. Iwasaki (1993),
“Functional Representation as Design Rationale” IEEE Com-
puter, January, pp 48-56.

de Kleer, J. and J. S. Brown (1983), “Assumptions and
Ambiguities in Mechanistic Mental Models,” Mental Models,
D. Gentner and A. L. Stevens (eds.), Lawrence Erlbaum Associ-
ates.

11

Figure 11: The object corresponding to the output fluent for the drill motor function.

12

Farquhar, A., R, Fikes, W. Pratt and J. Rice (1995),
“Collaborative Ontology Construction for Information Integra-
tion,” Stanford University Technical Report KSL-95-63.

Goel, A., S. Bhatta and E. Stroulia (1996) “Kritik: An
Early Case-Based Design System,” To appear in Issues in Case-
Based Design, M. Maher and P. Pu (eds.), Hillsdale, NJ,
Erlbaum.

Goel, A., A. Gomez, N. Grue, J. W. Murdock, M. Recker
and T. Govindaraj (1996), “Explanatory Interface in Interactive
Design Environments,” Artificial Intelligence in Design ‘96, J.
S. Gero (ed.), Kluwer Academic Publishers, Boston.

Hardwick, M. and D. Loffredo (1995), “Using EXPRESS
to Implement Concurrent Engineering Databases,” “ Proceed-
ings of the 1995 ASME Computers in Engineering Conference
and the Engineering Database Symposium, Boston, MA, Sep-
tember.

Hodges, J. (1997), “Multiple Levels in Mechanical Device
Representation,” Intelligent Systems for Engineering: A
Knowledge-Based Approach, R. D. Sriram (ed.), Springer-
Verlag, in press.

Iwasaki, Y. and B. Chandrasekaran (1992), “Design Verifi-
cation through Function and Behavior-Oriented Representations:
Bridging the Gap between Function and Behavior,” Artificial
Intelligence in Design ‘92, J. S. Gero (ed.), Kluwer Academic
Publishers, Boston.

Kim, G. J., S. R. Gorti, A. Gupta, A. Wong and R. D.
Sriram (1996), “An Object-Oriented Representation for Product

and Design Process”, Submitted to Research in Engineering
Design.

Kim, T. S., S.-H. Han and Y. J. Shin (1996), “Product
Data Management Using AP203 of STEP Standard,” Proceed-
ings of the 1996 ASME Design Engineering Technical Confer-
ences and Computers in Engineering Conference, Paper No. 96-
DETC/DAC-1069, Irvine, CA, August.

Little, A., K. L. Wood and D. McAdams (1997),
“Functional Analysis: A Fundamental Empirical Study for
Reverse Engineering, Benchmarking and Redesign,” Proceedings
of the 9th ASME International Conference on Design Theory
and Methodology, Paper No. DETC97/DTM-3879, Sacramento,
CA, September.

Russel, S. and P. Norvig (1995), Artificial Intelligence: A
Modern Approach, Prentice Hall.

Shah, J. J., D. K. Jeon, S. D. Urban, P. Bliznakov and M.
Rogers (1996), “Database Infrastructure for Supporting Engi-
neering Design Histories,” Computer-Aided Design, 28(5).

Wong, A. and D. Sriram (1993), “Shared Workspaces for
Computer-Aided Collaborative Engineering,” MIT Intelligent
Engineering Systems Laboratory, Document 93-06.

Wood III, W. H. and A. M. Agogino (1996), “Case-Based
Conceptual Design Information Server for Concurrent Engineer-
ing,” Computer-Aided Design, 28(5).

