
Volume 102, Number 5, September–October 1997
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.102, 577 (1997)]

Guidelines for Expressing the Uncertainty
of Measurement Results

Containing Uncorrected Bias

Volume 102 Number 5 September–October 1997

Steven D. Phillips and
Keith R. Eberhardt

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-0001

and

Brian Parry

Boeing Corporation,
Seattle, WA 98124-2207

This paper proposes a method to extend the
current ISOGuide to the Expression of
Uncertainty in Measurementto include
the case of known, but uncorrected,
measurement bias. It is strongly recom-
mended that measurement results be
corrected for bias, however in some situa-
tions this may not be practical, hence an
extension of theGuide is proposed to
address this special situation. The
method keeps with the spirit of theGuide
in maintaining the link between uncer-
tainty and statistical confidence. Similarly,
the method maintains the transferability
of one uncertainty statement to be included

as a component in another uncertainty
analysis. The procedure involves modifying
the calculation of the expanded uncer-
tainty, allowing it to become asymmetric
about the measurement value. The
method is compared to other alternative
procedures, and an illustration of how it
affects tolerance zones is presented.
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1. Introduction

Recently, the ISOGuide to the Expression of Uncer-
tainty in Measurement(the Guide) [1], and the associ-
ated NIST adaptation [2], have described a unified
convention for expressing measurement uncertainty.
Application of theGuidehas extended beyond calibra-
tion and research laboratories and into the industrial
domain of manufactured products. At the factory floor
level the recommended (and strongly preferred) practice
of correcting for all known bias effects may not be
economically possible due to such factors as limited
instrumentation, operator training, and the large
throughput of measurements. Since theGuidedoes not
deal directly with the situation where a known measure-
ment bias is present but is uncorrected, we propose a
simple convention to extend theGuide’sprocedures to
address this special case. Uncorrected measurement

bias may arise in situations where applying a correction
for a known measurement bias would be costly, but
increasing the measurement uncertainty to allow for the
uncorrected bias would still result in an acceptable
uncertainty statement. Initially, it might seem paradoxi-
cal to be aware of a measurement bias but fail to correct
for it; however, such situations are rather common. For
example, the user of an automated instrument may know
a bias occurs under certain measurement situations, and
be unable to modify the behavior of the instrument.
Since “paper and pencil” corrections to each measure-
ment value can be time consuming and error prone,
particularly under high measurement throughput
situations, it may be more economically reasonable to
simply account for this bias by enlarging the uncertainty
value that is attached to every measurement result.
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A few examples of measurements that include uncor-
rected bias are now presented to illustrate the situation.
A manufacturer of a precision positional indicator may
know that all the indicators produced read approxi-
mately 0.5 % too high, with only a small variation of
0.1 % (standard deviation) between indicators. This is
within the required 1 % relative uncertainty specifica-
tion for the indicators and satisfies the customer’s needs.
It may be expensive and difficult to adjust the manufac-
turing process to reduce the 0.5 % bias, or even to apply
a 0.5 % correction to each unit; consequently, it is easier
to subsume this bias into the uncertainty statement.
Another example may be an automated instrument that
is sensitive to some slowly varying parameter such as
temperature, atmospheric pressure, humidity, etc. The
instrument may lack a sensor to input this parameter and
the user may be “locked out” of the software which
records the measurement results; hence an automated
correction cannot be performed to account for this
systematic bias. However, the user may be able to
specify the upper and lower acceptance limits, i.e., the
conformance zone, for the measurement; see Fig. 1. If
this bias is sufficiently small, it may be economically
sensible to subsume it into the uncertainty statement.
Doing so will alter the expanded uncertainty, and hence
modify the conformance zone.

TheGuideprimarily addresses the situation in which
all known biases have been corrected, which is the
recommended practice. However, Appendix F of the
Guidedoes briefly discuss the situation of uncorrected
measurement bias. It is our intention to extend this
procedure and to provide examples of its implementa-
tion. Our motivation for this effort includes the observa-
tion that some industrial practitioners, in an effort to be

consistent with theGuide, have included the bias as an
ordinary uncertainty source which is added in the usual
root-sum-of-squares (RSS) manner. This has the unde-
sirable effect of incorrectly stating the expanded uncer-
tainty, because the bias is added in an RSS manner and
is multiplied by the coverage factor.1 Hence, the rela-
tionship between measurement confidence and the ex-
panded uncertainty is broken, as illustrated in detail
later. Since many parts are accepted or rejected on the
basis that the measurement results demonstrate confor-
mance with the part specification [3] (see Fig. 1), it is
important not to misstate the uncertainty (or confi-
dence) associated with the measurement.

This document describes a convention to account
explicitly for uncorrected measurement bias in an uncer-
tainty statement. We believe any method to include
measurement bias in the uncertainty statement should
have the following desirable properties.

1. The final quoted uncertainty must be greater than
or equal to the uncertainty that would be quoted
if the bias was corrected. Underestimating the
uncertainty indicates an invalid uncertainty
statement. Similarly, excessively overestimating
the uncertainty indicates a poorly constructed
uncertainty statement.

2. The method must reduce to the method given by
the Guidewhen the bias correction is applied.

3. For any coverage factor and any magnitude of
bias, the level of confidence for the expanded
uncertainty should be at least the level obtained
for the case of corrected bias, e.g., if the distri-
bution of the values that could reasonably be
assigned to the measurand is Gaussian, then
k = 2 should imply at least 95 % confidence.

4. The method should be transferable so that both
the uncertainty and the bias from one result can
be used as components in another uncertainty
statement.

5. The method should be simple and inexpensive to
implement.

1 An inaccurate method for calculating an expanded uncertainty can
lead to the uncertainty being either overstated or understated, depend-
ing on the values of the bias, combined standard uncertainty, the
coverage factor, and the shape of the distribution. When the uncer-
tainty is overstated (i.e., is too large), the nominal confidence level
claimed will be smaller than it should be to properly describe the given
uncertainty. Conversely, if the uncertainty is understated (i.e., is too
small), the nominal confidence level claimed will be larger than it
should be.

Fig. 1. The functional specification of a part and the corresponding
inspection zones;U is the expanded uncertainty of the measurement.
Parts are accepted if the measurement result is within the confor-
mance zone.
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2. Recommendations for Measurements
Involving Uncorrected Bias

As described in theGuide, measurement results
should be corrected for bias, and the uncertainty in the
bias correction should be included as a contribution to
the combined standard uncertainty. However, when
correcting for the measurement bias is not practical, it
still should be accounted for explicitly in the uncertainty
statement. In our proposed approach, a complete uncer-
tainty statement includes the combined standard uncer-
tainty (computed as if the measurement result was to be
corrected for the bias), an explicit statement of the
(signed) bias value, and an expanded uncertainty which
includes the effect of the bias term.

The usual method of using the expanded uncer-
tainty U , for a measurement resulty which has an
unknown (“true”) value of the measurandY, is to
produce an uncertainty interval (with the level of confi-
dence determined by the coverage factor) given by:
y – U # Y # y + U. Consequently, the measurement
result is often stated as:y 6 U .

In the case where the result is corrected for a biasd ,
a similar uncertainty interval can be constructed for the
corrected measurement resultycor = (y – d ) given by:
ycor – U # Y # ycor + U . This is equivalent to the un-
certainty interval of:y – (U + d ) # Y # y + (U – d ).
Consequently, the measurement result could be stated

as: y H+ (U – d )
– (U + d )

.

This can lead to the unfortunate possibility that one of
the uncertainty limits may become negative, e.g., if the
bias is positive andd > U then the upper uncertainty
limit will be negative. This may confuse practitioners,
particularly when constructing diagrams such as Fig. 1;
consequently, we propose the additional requirement
that the uncertainty limits be greater than or equal to
zero for all values ofd , which always maintains non-
negative uncertainty limits at a cost of a somewhat
wider uncertainty interval.

Hence , for a measurement resulty which includes an
uncorrected biasd , the value of the measurandY is
estimated by the following uncertainty interval whereU
is the usual expanded uncertainty that would be calcu-
lated if the measurement had been corrected for bias;
see Fig. 2. An uncertainty interval in the presence of
uncorrected bias is given by:

y – U– # Y # y + U+

or equivalentlyY = y H+ U+

– U–

where U+ = HU – d if U – d > 0
0 if U – d# 0

and U– = HU + d if U + d > 0
0 if U + d # 0

.

Note that a large bias may result in a one sided
uncertainty interval, e.g., ifd > U thenU– = U + d and
U+ = 0. (One could propose a symmetric uncertainty
interval, with the expanded uncertainty given by the
larger ofU+ or U–, but this further reduces the confor-
mance zone with no additional economic benefit.)

When computing an uncertainty statement for cases
where there are several sources of uncorrected bias,
biases are algebraically added together (explicitly
accounting for the sign of the bias). The resulting net
bias is stated together with the combined standard uncer-
tainty. Occasionally, the case may arise where multiple
sources of uncertainty have bias and these biases are not

Fig. 2. Uncorrected measurement resulty, having biasd (d > 0),
shown with expanded uncertaintiesU+ (black) and U– (dark
gray) (top). The corresponding corrected measurement resultycor, is
also shown together with the usual expanded uncertaintyU (light
gray) (bottom). The same situation withd < 0.
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independent. To avoid “double counting” the bias
sources, the degree of overlap of the biases is estimated
and this amount is subtracted from the bias summation.
The uncertainty in the overlap correction is added in a
RSS manner to the combined standard uncertainty.
Finally, we point out that the expanded uncertainty must
be re-computed if the coverage factor is changed, and in
particular, thatU6 (k = 2) ? 2 3 U6 (k = 1).

The proposed approach is recommended for its
simplicity and utilitarian value (see Fig. 3), even though
it can somewhat overestimate the uncertainty. However,
for a given coverage factor the corresponding level of
confidence will be at least as high as would be the case
if the bias had been corrected.

3. Comparison With Other Methods of
Combining Uncorrected Bias

We compare our proposed method of treating uncor-
rected bias with two other procedures which have been
proposed to address this problem. The first procedure
treats the uncorrected bias as another uncertainty source

and simply sums it in an RSS manner with the usual
combined standard uncertainty; we denote this method
as RSSuc. The second method sums the bias in a RSS
manner with the usual expanded uncertainty; we denote
this as RSSU . In contrast our proposed method
algebraically sums the signed bias with the expanded
uncertainty (unless the bias is large), so we denote our
method as SUMU . The three methods are shown below.

RSSuc Method: Y = y 6 URSSuc

where URSSuc = kÎu 2
c + d 2

RSSU Method: Y = y 6 URSSU

where URSSU= Îk2 u 2
c + d 2

SUMU Method: Y = y H+ U+

– U–

where U+ = Hkuc – d if kuc – d > 0
0 if kuc – d# 0

and U– = Hkuc + d if kuc + d > 0
0 if kuc + d # 0

.

Figure 4 illustrates some important differences
between the three methods. The three plots display the
actual statistical confidence of the three methods versus
the magnitude of the uncorrected bias for coverage
factors ofk = 1, 2, and 3. Gaussian (normal) distribu-
tions are assumed in all cases. For example, in thek = 2
case, ideally we would like to maintain a 95 % (strictly
speaking, 95.44 %) confidence for all values of the
uncorrected bias. Our proposed method (SUMU ) main-
tains this confidence until the ratio of the bias to the
combined standard uncertainty becomes larger than the
coverage factor. For such large bias values, the SUMU
method produces uncertainty intervals that are slightly
conservative (larger than necessary to produce valid
95 % confidence levels.) The RSSuc method, on the
other hand, can produce uncertainties that are consider-
ably larger than necessary. For example, withk = 2 and
a bias twice as large as the combined standard uncer-
tainty (d /uc = 2), the actual achieved confidence level
of the interval is nearly 100 %, rather than the nominal
95 % (see Fig. 4.) Although this overstatement of the
uncertainty is not necessarily disastrous, it can come at
the significant cost of consuming most of the part toler-
ance zone, i.e., specification zone, as we will soon

Fig. 3. An example of the functional specification of a part and the
corresponding inspection zones for a measurement result with uncor-
rected bias;U+ andU– are the expanded uncertainties which include
the effects of measurement bias (top: bias > 0, bottom: bias < 0).
Parts are accepted if the measurement result is within the confor-
mance zone.
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describe. In contrast, the RSSU method seriously under-
states the true uncertainty. For example, with a coverage
factor of k = 2 and an uncorrected bias twice as large
as the combined standard uncertainty (d /uc = 2), the
uncertainty interval is under-sized to the extent that the
actual achieved confidence is less than 80 %, which falls
significantly short of the nominal 95 % confidence
level.

The three plots in Fig. 5 display the relative sizes of
the expanded uncertainty interval for each of the three
methods as a function of the magnitude of the uncor-
rected bias, for the coverage factorsk = 1, 2, and 3. The
scale of the ordinate on the left hand side of the plots is
defined as the full width of the uncertainty interval
divided by the combined standard uncertainty, and
hence the ratio would be equal to 2k (wherek is the
coverage factor) if the bias had been corrected. As seen
in the figure, the SUMU method consistently produces
the smallest expanded uncertainty interval of any of the
methods for all values of bias and coverage factors.

An example of how the size of the expanded uncer-
tainty interval might impact the user is shown on the
right hand ordinate. This axis describes the percentage
of the specification zone that is consumed by the
expanded uncertainty interval for the somewhat typical
case where the ratio of the specification zone to
expanded uncertainty interval zone (if the bias had been
corrected) is 4:1. (Obviously, the right hand ordinate
axis is numerically correct only for the particular exam-
ple of a gauging ratio of 4:1; other ratios, while having
qualitatively similar behavior, would have different
percentages of the specification zone consumed by the
expanded uncertainty interval.) The plot illustrates
that the SUMU method consumes the smallest percent-
age of the specification zone compared to the other
two methods. For example, in thek = 2 case, and for an
uncorrected bias equal to four times the combined
standard uncertainty (d /uc = 4), the SUMU method
would consume 37.5 % of the specification zone
(compared to 25 % if the bias had been corrected),
while the RSSU and RSSuc methods consume 56 % and
over 100 %, respectively.

Figures 4 and 5 illustrate that, of the three methods
described, our proposed method (SUMU ) offers a
significant advantage in reducing the impact on the user
of the uncorrected bias when subsumed into the uncer-
tainty statement. This method always maintains an
actual level of confidence equal to or greater than the
nominal confidence corresponding to the coverage
factor in use. While our examples are based on the
Gaussian distribution, the SUMU method retains this
relationship (betweenk and the confidence level) for
any distribution shape because the resulting interval
always contains at least the same interval as would be

Fig. 4. Comparison of the actual achieved confidence levels resulting
from three methods of incorporating uncorrected bias in uncertainty
intervals. The methods are the proposed SUMU method (solid line),
the RSSuc method (dotted line) and the RSSU method (dashed line).
(In the casek = 1, RSSuc = RSSU .)
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covered by the corrected result. Furthermore, of the
three methods discussed, the SUMU method minimizes
the percentage of the specification zone consumed by
the expanded uncertainty interval. In addition, the
method avoids negative expanded uncertainties, which
could be confusing to the user when determining the
conformance zone (as shown in Fig. 3).

4. Examples of Uncertainty Statements
Containing Uncorrected Bias

The following examples should clarify the procedure
for expressing measurement uncertainty in the presence
of uncorrected bias. We use the same terminology as the
Guidewhen referring to the evaluation of the bias, i.e.,
Type A corresponds to any valid statistical method for
treating the data and Type B corresponds to a bias
evaluated by other means. For each example we give a
worked numerical case to illustrate the procedure; in
these examples all expanded uncertainties are evaluated
with a coverage factor ofk = 2. These examples are
contrived to illustrate the procedure of accounting for
uncorrected bias and are not designed to describe the
subtleties of creating an uncertainty statement; con-
sequently many uncertainty sources may have been
omitted or simplified.

4.1 Example 1: One Type A bias

Consider a measurement resulty, having a constant
bias of estimated magnituded1. Assume thatd1 is
assessed directly by repeated measurements of a refer-
ence standard having a combined standard uncertainty
of uref. Specifically, supposed1 is evaluated as the
average deviation from the reference standard’s
calibrated value found fromN1 measurements. Let the
experimental standard deviation of theN1 measure-
ments bes; the standard uncertainty of the estimated
bias is thens/N1

1/2. The combined standard uncertainty
of the measurement result is given below, whereu1

accounts for the combination of all other uncertainty
sources not directly associated with the bias. Note that
u1 already includes the repeatability of the measure-
ment, i.e., the standard deviations, since this source of
uncertainty is always present and is unaffected by the
fixed bias. The combined standard uncertainty is the
same quantity that would be determined if the measure-
ment had been corrected for the bias. Note that the
expanded uncertainty is treated asymmetrically and the
results depend on the sign of the bias. In this example
d1 < 0 andkuc + d1 > 0.

Fig. 5. Comparison of uncertainty interval lengths for three methods
of incorporating uncorrected bias in uncertainty intervals. The
methods are the proposed SUMU method (solid line), the RSSuc

method (dotted line) and the RSSU method (dashed line). The scale
on the right-hand axis of the plots assumes that the value of the
expanded uncertainty represents a gauging ratio of 4:1 in the case of
zero bias (d = 0). (In the casek = 1, RSSuc = RSSU .)
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uc = Su1
2 +

s2

N1
+ uref

2 D1
2

Bias =d1

U+ = kuc – d1

U– = kuc + d1

The uncertainty interval is given byy–U–#Y#y+U+.
Equivalently the result can be stated with the expanded

uncertainty asy H+ U+

– U–
.

Numerical case: Suppose that a measuring machine
designed to inspect parts of length 100 mm is checked
with a reference standard having a combined standard
uncertainty ofuref = 1.5mm. A total of 15 measure-
ments are recorded having an experimental standard
deviation of 3.0mm with the mean result 4.0mm
smaller than the calibrated value of the reference
standard, i.e., the bias is negative. From previous work
it is known that all other uncertainty sources combined
yield a standard uncertainty of 5.0mm, i.e.,
u1 = 5.0mm. Therefore:

uc=S5.02 +
3.02

15
+ 1.52D1

2mm = 5.3mm,

Bias=–4.0mm

U+ = 2uc – (–4.0)mm = 14.6mm

U– = 2uc + (–4.0)mm = 6.6mm,

and the measurement resulty can be stated with the

expanded uncertainty as:y H+ 14.6mm
– 6.6mm

.

4.2 Example 2: One Type B bias

For some measurements, the bias might be estimated
rather than directly measured. For example, length
measurements made on the factory floor often are not
corrected back to the standard temperature of 208C.
Hence, the uncorrected thermal expansion represents a
measurement bias. Suppose the factory floor tempera-
ture varies between 208C and 308C, about an estimated
mean of 258C. The estimated magnitude of the bias is
given by d2 (d2 > 0) which accounts for the length
deviation due to the 58C mean uncorrected thermal
expansion. The variability of the temperature can be
described by a uniform distribution of full width 108C,
i.e., by a standard uncertainty of 2.98C which, when
multiplied by the appropriate coefficient of thermal

expansion, gives rise to the corresponding standard
uncertaintyutemp. The combined standard uncertainty
and expanded uncertainty are given below, whereu2

would be the combined standard uncertainty for the
measurement if the measurement had been corrected
back to 208C. (The value ofu2 includes the uncertain-
ties in the temperature measurements, the uncertainties
in the thermal expansion coefficient, and other effects.)
In this exampled2 > 0 andkuc – d2 > 0.

uc = Su2
2 + utemp

2 D1
2

Bias =d2

U+ = kuc–d2

U– = kuc+d2

The uncertainty interval is given byy–U–#Y#y+U+.
Equivalently the result can be stated with the expanded

uncertainty asy H+ U+

– U–
.

Numerical case: Suppose a measuring machine that
inspects parts of length 100 mm hasu2 = 7.0mm, and
the machine’s scale has a thermal expansion coefficient
of 9 (mm/m)/8C, and the part under inspection has a
thermal expansion coefficient of 22 (mm/m)/8C. Then
the differential thermal expansion is 22 (mm/m)/8C
– 9 (mm/m)/8C = 13 (mm/m)/8C, corresponding to an
average bias of 13(mm/m)/8C35 8C30.100 m=
6.5mm. The standard uncertainty associated with the
variation in the temperature (modeled as a uniform
distribution) is given by utemp = 13 (mm/m)/8C
3 0.100 m3 2.9 8C= 3.8mm. Therefore:

uc=S7.02 + 3.82D1
2mm = 8.0mm,

Bias = +6.5mm

U+ = 2uc – 6.5mm = 9.4mm

U– = 2uc + 6.5mm = 22.4mm,

and the measurement resulty can be stated with the

expanded uncertainty as:y H+ 9.4mm
– 22.4mm

.

4.3 Example 3: Combination of independent
biases

An uncertainty statement consists of two uncertainty
sources given by those of examples 1 and 2, which are
assumed to be independent. The resulting uncertainty
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statement is given below. Note thatd3 is the sum of the
two biases, and that we assumed3 > 0 andkuc–d3 > 0;
uc1 anduc2 are the combined standard uncertainties from
examples 1 and 2, respectively.

uc = Suc1
2 + uc 2

2D1
2

Bias =d3 = d1 + d2

U+ = kuc – d3

U– = kuc + d3 .

The uncertainty interval is given byy–U–#Y#y+U+.
Equivalently the result can be stated with the expanded

uncertainty asy H+ U+

– U–
.

Numerical case: Using the values given in examples
1 and 2 we find

uc=S5.32 + 8.02D1
2mm = 9.6mm,

Bias=+2.5mm

U+ = 2uc – 2.5mm = 16.7mm

U– = 2uc + 2.5mm = 21.7mm,

and the measurement resulty can be stated with the

expanded uncertainty as:y H+ 16.7mm
– 21.7mm

.

4.4 Example 4: Combination of independent and
dependent biases

The measuring instrument described by the uncer-
tainty statement of Example 3 is modified by an acces-
sory that does not add variability but produces an addi-
tional bias d . This bias is assessed by repeated
measurements, i.e., found fromN4 measurements of a
second (independent) reference standard (having a com-
bined standard uncertainty ofuref2). The measurements
collectively have an experimental standard deviations
(this is the same standard deviation found in example 1),
and a mean value differing from the calibrated value by
d , with d < 0 andd < d1 < 0. It is estimated that between
30 % to 50 % of the bias estimated byd is already
accounted for ind1. To avoid double counting, 0.4d
(which is the best estimate of the overlap, i.e., the aver-

age of 30 % and 50 % = 40 % =0.4) is subtracted
from the bias summation. A standard uncertainty of
0.1d /Ï3, corresponding to a uniform distribution
(from 0.3d to 0.5d with half width 0.1d ), accounting
for the uncertainty of the bias overlap is added in an
RSS manner to the other standard uncertainties. We
assume the total net biasd4 > 0 and kuc – d4 > 0, as
shown below.

uc = Suc1
2 + uc 2

2 + uref2
2 +

s2

N4
+

(0.1d )2

3 D1
2

Bias =d4 = d1 + d2 +d – 0.4d = d1 + d2 + 0.6d

U+ = kuc – d4

U– = kuc + d4 .

The uncertainty interval is given byy–U–#Y#y+U+.
Equivalently the result can be stated with the expanded

uncertainty asy H+ U+

– U–
.

Numerical case: The additional biasd = –2.0mm is
evaluated as the mean of 10 measurements using a refer-
ence standard with combined standard uncertainty
uref2 = 1.0mm. Using the values given in the previous
examples, we find

uc=S5.32 + 8.02 + 1.02 +
3.02

10
+

0.22

3 D1
2mm=9.7mm,

Bias = + 1.3mm

U+ = 2uc – 1.3mm = 18.1mm

U– = 2uc + 1.3mm = 20.7mm,

and the measurement resulty can be stated with the

expanded uncertainty as:y H+ 18.1mm
– 20.7mm

.
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