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1. Introduction

Recently, the ISGGuide to the Expression of Uncer-  bias may arise in situations where applying a correction
tainty in Measuremen(the Guide) [1], and the associ-  for a known measurement bias would be costly, but
ated NIST adaptation [2], have described a unified increasing the measurement uncertainty to allow for the
convention for expressing measurement uncertainty. uncorrected bias would still result in an acceptable
Application of theGuide has extended beyond calibra- uncertainty statement. Initially, it might seem paradoxi-
tion and research laboratories and into the industrial cal to be aware of a measurement bias but fail to correct
domain of manufactured products. At the factory floor for it; however, such situations are rather common. For
level the recommended (and strongly preferred) practice example, the user of an automated instrument may know
of correcting for all known bias effects may not be a bias occurs under certain measurement situations, and
economically possible due to such factors as limited be unable to modify the behavior of the instrument.
instrumentation, operator training, and the large Since “paper and pencil” corrections to each measure-
throughput of measurements. Since Ga@idedoes not ment value can be time consuming and error prone,
deal directly with the situation where a known measure- particularly under high measurement throughput
ment bias is present but is uncorrected, we propose asituations, it may be more economically reasonable to
simple convention to extend thBuidesprocedures to  simply account for this bias by enlarging the uncertainty
address this special case. Uncorrected measurementalue that is attached to every measurement result.
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A few examples of measurements that include uncor- consistent with th&uide, have included the bias as an
rected bias are now presented to illustrate the situation. ordinary uncertainty source which is added in the usual
A manufacturer of a precision positional indicator may root-sum-of-squares (RSS) manner. This has the unde-
know that all the indicators produced read approxi- sirable effect of incorrectly stating the expanded uncer-
mately 0.5 % too high, with only a small variation of tainty, because the bias is added in an RSS manner and
0.1 % (standard deviation) between indicators. This is is multiplied by the coverage factérHence, the rela-
within the required 1 % relative uncertainty specifica- tionship between measurement confidence and the ex-
tion for the indicators and satisfies the customer’s needs. panded uncertainty is broken, as illustrated in detail
It may be expensive and difficult to adjust the manufac- later. Since many parts are accepted or rejected on the
turing process to reduce the 0.5 % bias, or even to apply basis that the measurement results demonstrate confor-

a 0.5 % correction to each unit; consequently, it is easier
to subsume this bias into the uncertainty statement.
Another example may be an automated instrument that
is sensitive to some slowly varying parameter such as
temperature, atmospheric pressure, humidity, etc. The
instrument may lack a sensor to input this parameter and
the user may be “locked out” of the software which

mance with the part specification [3] (see Fig. 1), it is
important not to misstate the uncertainty (or confi-
dence) associated with the measurement.

This document describes a convention to account
explicitly for uncorrected measurement bias in an uncer-
tainty statement. We believe any method to include
measurement bias in the uncertainty statement should

records the measurement results; hence an automatedhave the following desirable properties.

correction cannot be performed to account for this
systematic bias. However, the user may be able to
specify the upper and lower acceptance limits, i.e., the
conformance zone, for the measurement; see Fig. 1. If
this bias is sufficiently small, it may be economically
sensible to subsume it into the uncertainty statement.
Doing so will alter the expanded uncertainty, and hence
modify the conformance zone.

Lower Upper
specification Specification specification
limit N zone limit
ulu Ulu
< :l [————>

Conformance
zone

Non-conformance
zone

Non-conformance
zone

Fig. 1. The functional specification of a part and the corresponding
inspection zoned} is the expanded uncertainty of the measurement.
Parts are accepted if the measurement result is within the confor-
mance zone.

The Guideprimarily addresses the situation in which
all known biases have been corrected, which is the
recommended practice. However, Appendix F of the
Guidedoes briefly discuss the situation of uncorrected
measurement bias. It is our intention to extend this
procedure and to provide examples of its implementa-
tion. Our motivation for this effort includes the observa-
tion that some industrial practitioners, in an effort to be
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1. The final quoted uncertainty must be greater than
or equal to the uncertainty that would be quoted
if the bias was corrected. Underestimating the
uncertainty indicates an invalid uncertainty
statement. Similarly, excessively overestimating
the uncertainty indicates a poorly constructed
uncertainty statement.

The method must reduce to the method given by
the Guidewhen the bias correction is applied.

For any coverage factor and any magnitude of
bias, the level of confidence for the expanded

uncertainty should be at least the level obtained

for the case of corrected bias, e.qg., if the distri-

bution of the values that could reasonably be

assigned to the measurand is Gaussian, then
k=2 should imply at least 95 % confidence.

The method should be transferable so that both
the uncertainty and the bias from one result can
be used as components in another uncertainty
statement.

The method should be simple and inexpensive to
implement.

* An inaccurate method for calculating an expanded uncertainty can
lead to the uncertainty being either overstated or understated, depend-
ing on the values of the bias, combined standard uncertainty, the
coverage factor, and the shape of the distribution. When the uncer-
tainty is overstated (i.e., is too large), the nominal confidence level
claimed will be smaller than it should be to properly describe the given
uncertainty. Conversely, if the uncertainty is understated (i.e., is too
small), the nominal confidence level claimed will be larger than it
should be.
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2. Recommendations for Measurements

. : §>0and U-6>0 §>0and U- 5 <0
Involving Uncorrected Bias o

As described in theGuide, measurement results
should be corrected for bias, and the uncertainty in the
bias correction should be included as a contribution to
the combined standard uncertainty. However, when
correcting for the measurement bias is not practical, it
still should be accounted for explicitly in the uncertainty
statement. In our proposed approach, a complete uncer-
tainty statement includes the combined standard uncer-
tainty (computed as if the measurement result was to be
corrected for the bias), an explicit statement of the
(signed) bias value, and an expanded uncertainty which S<0andU+68> 0 5<0and U+ 8 <0
includes the effect of the bias term.

The usual method of using the expanded uncer-
tainty U, for a measurement resujt which has an
unknown (“true”) value of the measurand, is to
produce an uncertainty interval (with the level of confi-
dence determined by the coverage factor) given by:
y—-U=Y=y+U. Consequently, the measurement
result is often stated ag; = U.

In the case where the result is corrected for a bias )
a similar uncertainty interval can be constructed for the Y Ve y Feor
corrected measurement result, = (y —8) given by:

Yeor— U=Y =y, + U. This is equiva|ent to the un- Fig. 2. Uncorrected measurement resylt having biasé (6 > 0),
certainty interval of:y — (U+38)=Y=y+ (U -9). shown with expanded uncertainties. (black) and U_(dark

ray) (top). The corresponding corrected measurement rgsplts
Consequently, the measurement result could be Stateog\lso shown together with the usual expanded uncertdih@ight

as:y {+ U -96) gray) (bottom). The same situation with< 0.

T l-U+8)

This can lead to the unfortunate possibility that one of
the uncertainty limits may become negative, e.g., if the
bias is positive andd > U then the upper uncertainty
limit will be negative. This may confuse practitioners,
particularly when constructing diagrams such as Fig. 1;
consequently, we propose the additional requirement

o- |

Yeor Y Yeor y

where U, = {U_6 ifU-5>0

0 ifU-6=<0

U+é ifU+6>0

that the uncertainty limits be greater than or equal to and 0 fU+5<0"

zero for all values of8, which always maintains non-
negative uncertainty limits at a cost of a somewhat
wider uncertainty interval.

Hence , for a measurement reguitvhich includes an Note that a large bias may result in a one sided
uncorrected bia®, the value of the measurand is uncertainty interval, e.g., i6 > U thenU_=U + 6 and
estimated by the following uncertainty interval whéfe U.=0. (One could propose a symmetric uncertainty
is the usual expanded uncertainty that would be calcu- interval, with the expanded uncertainty given by the
lated if the measurement had been corrected for bias;larger ofU. or U_, but this further reduces the confor-
see Fig. 2. An uncertainty interval in the presence of mance zone with no additional economic benefit.)

uncorrected bias is given by: When computing an uncertainty statement for cases
where there are several sources of uncorrected bias,

y-U_=sY=y+U, biases are algebraically added together (explicitly

accounting for the sign of the bias). The resulting net

+U. bias is stated together with the combined standard uncer-
-U_ tainty. Occasionally, the case may arise where multiple
sources of uncertainty have bias and these biases are not

or equivalentlyY =y {
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independent. To avoid “double counting” the bias

and simply sums it in an RSS manner with the usual

sources, the degree of overlap of the biases is estimateccombined standard uncertainty; we denote this method

and this amount is subtracted from the bias summation.
The uncertainty in the overlap correction is added in a
RSS manner to the combined standard uncertainty.
Finally, we point out that the expanded uncertainty must

as RS8.. The second method sums the bias in a RSS
manner with the usual expanded uncertainty; we denote
this as RSH. In contrast our proposed method

algebraically sums the signed bias with the expanded

be re-computed if the coverage factor is changed, and inuncertainty (unless the bias is large), so we denote our

particular, thatJ. (k=2)# 2 X U. (k=1).

The proposed approach is recommended for its
simplicity and utilitarian value (see Fig. 3), even though
it can somewhat overestimate the uncertainty. However,
for a given coverage factor the corresponding level of
confidence will be at least as high as would be the case
if the bias had been corrected.

(bias>0)
Lower Uppgr‘ .
specification Specitication specilication
limit _N zone limit

A

<
4+

Conformance
zone

Non-conformance
zone

Non-conformance
zone

(bias < 0)

Upper
specification
limit

Lower

specification
limit _N

Specification
zone

U,

>

+—Pp

A

Conformance
zone

Non-conformance
zone

Non-conformance
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Fig. 3. An example of the functional specification of a part and the
corresponding inspection zones for a measurement result with uncor-
rected biaslJ. andU_ are the expanded uncertainties which include
the effects of measurement bias (top: bias >0, bottom: bias < 0).
Parts are accepted if the measurement result is within the confor-
mance zone.

3. Comparison With Other Methods of
Combining Uncorrected Bias

We compare our proposed method of treating uncor-
rected bias with two other procedures which have been

method as SUM . The three methods are shown below.

RSSu. Method: Y=y * Ugss,
where  Ugsse =K \/uZ + 82
RSSJ Method: Y=y * Ugssy

where Ugssu= y/k?uZ+ 82

+ U,

SUMU Method: Y=y {—U

where U _{kuc—é if kuu—6> 0
710 if kuu—6=<0
_|ku.+6 if kuu+6>0

and U*‘{o if ke +5=0

Figure 4 illustrates some important differences
between the three methods. The three plots display the
actual statistical confidence of the three methods versus
the magnitude of the uncorrected bias for coverage
factors ofk=1, 2, and 3. Gaussian (normal) distribu-
tions are assumed in all cases. For example, ifkth@
case, ideally we would like to maintain a 95 % (strictly
speaking, 95.44 %) confidence for all values of the
uncorrected bias. Our proposed method (SWiinain-
tains this confidence until the ratio of the bias to the
combined standard uncertainty becomes larger than the
coverage factor. For such large bias values, the SUM
method produces uncertainty intervals that are slightly
conservative (larger than necessary to produce valid
95 % confidence levels.) The R8Smethod, on the
other hand, can produce uncertainties that are consider-
ably larger than necessary. For example, with2 and
a bias twice as large as the combined standard uncer-
tainty (6/u. = 2), the actual achieved confidence level
of the interval is nearly 100 %, rather than the nominal
95 % (see Fig. 4.) Although this overstatement of the
uncertainty is not necessarily disastrous, it can come at

proposed to address this problem. The first procedure the significant cost of consuming most of the part toler-
treats the uncorrected bias as another uncertainty sourceance zone, i.e., specification zone, as we will soon
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Fig. 4. Comparison of the actual achieved confidence levels resulting
from three methods of incorporating uncorrected bias in uncertainty
intervals. The methods are the proposed SWMethod (solid line),

the RS$I; method (dotted line) and the RBSnethod (dashed line).

(In the cas&k=1, RSSI. = RS3J.)
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describe. In contrast, the RB3$nethod seriously under-
states the true uncertainty. For example, with a coverage
factor of k=2 and an uncorrected bias twice as large
as the combined standard uncertaind/; = 2), the
uncertainty interval is under-sized to the extent that the
actual achieved confidence is less than 80 %, which falls
significantly short of the nominal 95 % confidence
level.

The three plots in Fig. 5 display the relative sizes of
the expanded uncertainty interval for each of the three
methods as a function of the magnitude of the uncor-
rected bias, for the coverage factérs 1, 2, and 3. The
scale of the ordinate on the left hand side of the plots is
defined as the full width of the uncertainty interval
divided by the combined standard uncertainty, and
hence the ratio would be equal tokXwherek is the
coverage factor) if the bias had been corrected. As seen
in the figure, the SUNJ method consistently produces
the smallest expanded uncertainty interval of any of the
methods for all values of bias and coverage factors.

An example of how the size of the expanded uncer-
tainty interval might impact the user is shown on the
right hand ordinate. This axis describes the percentage
of the specification zone that is consumed by the
expanded uncertainty interval for the somewhat typical
case where the ratio of the specification zone to
expanded uncertainty interval zone (if the bias had been
corrected) is 4:1. (Obviously, the right hand ordinate
axis is numerically correct only for the particular exam-
ple of a gauging ratio of 4:1; other ratios, while having
qualitatively similar behavior, would have different
percentages of the specification zone consumed by the
expanded uncertainty interval.) The plot illustrates
that the SUMU method consumes the smallest percent-
age of the specification zone compared to the other
two methods. For example, in the= 2 case, and for an
uncorrected bias equal to four times the combined
standard uncertaintyé{u. = 4), the SUMJ method
would consume 37.5 % of the specification zone
(compared to 25 % if the bias had been corrected),
while the RS® and RS&. methods consume 56 % and
over 100 %, respectively.

Figures 4 and 5 illustrate that, of the three methods
described, our proposed method (SUM offers a
significant advantage in reducing the impact on the user
of the uncorrected bias when subsumed into the uncer-
tainty statement. This method always maintains an
actual level of confidence equal to or greater than the
nominal confidence corresponding to the coverage
factor in use. While our examples are based on the
Gaussian distribution, the SUMmethod retains this
relationship (betweek and the confidence level) for
any distribution shape because the resulting interval
always contains at least the same interval as would be
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Fig. 5. Comparison of uncertainty interval lengths for three methods
of incorporating uncorrected bias in uncertainty intervals. The

methods are the proposed SUMmethod (solid line), the RS§

method (dotted line) and the RBSnethod (dashed line). The scale
on the right-hand axis of the plots assumes that the value of the

expanded uncertainty represents a gauging ratio of 4:1 in the case of

zero bias § = 0). (In the cas&k =1, RS, = RS3J.)
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covered by the corrected result. Furthermore, of the
three methods discussed, the SUNhethod minimizes
the percentage of the specification zone consumed by
the expanded uncertainty interval. In addition, the
method avoids negative expanded uncertainties, which
could be confusing to the user when determining the
conformance zone (as shown in Fig. 3).

4. Examples of Uncertainty Statements
Containing Uncorrected Bias

The following examples should clarify the procedure
for expressing measurement uncertainty in the presence
of uncorrected bias. We use the same terminology as the
Guidewhen referring to the evaluation of the bias, i.e.,
Type A corresponds to any valid statistical method for
treating the data and Type B corresponds to a bias
evaluated by other means. For each example we give a
worked numerical case to illustrate the procedure; in
these examples all expanded uncertainties are evaluated
with a coverage factor ok =2. These examples are
contrived to illustrate the procedure of accounting for
uncorrected bias and are not designed to describe the
subtleties of creating an uncertainty statement; con-
sequently many uncertainty sources may have been
omitted or simplified.

4.1 Example 1: One Type A bias

Consider a measurement resylthaving a constant
bias of estimated magnitud& . Assume thaté; is
assessed directly by repeated measurements of a refer-
ence standard having a combined standard uncertainty
of uwr. Specifically, suppose; is evaluated as the
average deviation from the reference standard’s
calibrated value found from\; measurements. Let the
experimental standard deviation of tiNy measure-
ments bes; the standard uncertainty of the estimated
bias is thers/Ni’2. The combined standard uncertainty
of the measurement result is given below, whaie
accounts for the combination of all other uncertainty
sources not directly associated with the bias. Note that
u; already includes the repeatability of the measure-
ment, i.e., the standard deviatispsince this source of
uncertainty is always present and is unaffected by the
fixed bias. The combined standard uncertainty is the
same quantity that would be determined if the measure-
ment had been corrected for the bias. Note that the
expanded uncertainty is treated asymmetrically and the
results depend on the sign of the bias. In this example
6, < 0 andku, + 6; > 0.
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AP PRY expansion, gives rise to the corresponding standard
Uc = U1+_+uref . . .
N; uncertaintyuem,. The combined standard uncertainty
and expanded uncertainty are given below, where

Bias =5, would be the combined standard uncertainty for the
U, =Kku.— & measurement if the measurement had been corrected
back to 20°C. (The value ol, includes the uncertain-
U_=ku + 8, ties in the temperature measurements, the uncertainties
in the thermal expansion coefficient, and other effects.)
The uncertainty interval is given by—U_<Y=y+U.. In this exampled, > 0 andku, — &, > 0.
Equivalently the result can be stated with the expanded L
. + U, — (2 2 2
uncertainty asy {_3 . Ue <”2 + ulemp)
Bias =6,

Numerical case: Suppose that a measuring machine
designed to inspect parts of length 100 mm is checked U, = Ki—5,
with a reference standard having a combined standard

uncertainty ofus=1.5um. A total of 15 measure- U_=Ku+5,
ments are recorded having an experimental standard
deviation of 3.0um with the mean result 4.Qm The uncertainty interval is given by—U_=Y=y+U..
smaller than the calibrated value of the reference Equivalently the result can be stated with the expanded
standard, i.e., the bias is negative. From previous work
- . . . + U,
it is known that all other uncertainty sources combined uncertainty asy {_ U
yield a standard uncertainty of 50m, i.e., -
u; =5.0p.m. Therefore: Numerical case: Suppose a measuring machine that
) inspects parts of length 100 mm has= 7.0 pm, and
uc:<5_02 + 3.0 " 1_52>5Mm =5.3.m, the machine’s scale has a thermal expansion coefficient
15 of 9 (um/m)FPC, and the part under inspection has a
Bias=—4.Qum thermal expansion coefficient of 2gih/m)/°C. Then
the differential thermal expansion is 22r6/m)/°C
U, = 2U;— (-4.0)pm = 14.6pm —9 (wm/m)/FC =13 (wm/m)/°C, corresponding to an
average bias of 13(n/m)/CXx5°CXx0.100 m=
U_=2u.+ (-4.0)pm = 6.6 um, 6.5um. The standard uncertainty associated with the

variation in the temperature (modeled as a uniform
and the measurement resylican be stated with the distribution) is given by Uemp=13 wm/m)/FC

) +14.6pum X 0.100 mX 2.9°C= 3.8pm. Therefore:
expanded uncertainty ay:y 6.6um °

1
2

uc:<7.02 + 3.82> pm = 8.0pnm,
4.2 Example 2: One Type B bias Bias =+6.5um

For some measurements, the bias might be estimated U+ =2uUc—6.5um = 9.4pm
rather than directly measured. For example, length U= 2u, + 6.5um = 22.4pm,
measurements made on the factory floor often are not
corrected back to the standard temperature ofQ0  and the measurement resyltcan be stated with the
Hence, the uncorrected thermal expansion represents a
measurement bias. Suppose the factory floor tempera-expanded uncertainty a¥{+ 9.4pm _
ture varies between 2« and 3C°C, about an estimated —22.4pm
mean of 25C. The estimated magnitude of the bias is

given by 6, (8, > 0) which accounts for the length 4.3 Example 3: Combination of independent

deviation due to the 8C mean uncorrected thermal biases
expansion. The variability of the temperature can be
described by a uniform distribution of full width IC, An uncertainty statement consists of two uncertainty

i.e., by a standard uncertainty of 2@ which, when sources given by those of examples 1 and 2, which are
multiplied by the appropriate coefficient of thermal assumed to be independent. The resulting uncertainty
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statement is given below. Note thagis the sum of the  age of 30% and 50 % =40 %G:4) is subtracted

two biases, and that we assudge> 0 andku.—&; > 0; from the bias summation. A standard uncertainty of
Uc; andug, are the combined standard uncertainties from 0.18/V/3, corresponding to a uniform distribution
examples 1 and 2, respectively. (from 0.36 to 0.568 with half width 0.18), accounting
for the uncertainty of the bias overlap is added in an
U= (u 24y %>§ RSS manner to the other standard uncertainties. We
¢ o assume the total net bia% >0 andku.—68,>0, as

Bias =6;= &, + &, shown below.

s?  (0.18)%\3
U =kt — 85 uc=<uc%+uc%+ur%f2+m+( 3)>2
U_:kuc+53_ Bia3:64:61+82+8—0.46:81+62+0.66
The uncertainty interval is given by-U_<Y=y+U.. U. = kuc— 34
Equivalently the result can be stated with the expanded

+ U, U_= ku.+ 6, .

uncertainty asy {_ T

) _ ) ) ) The uncertainty interval is given by—U_=Y=y+U.,.
Numerical case: Using the values given in examples gqialently the result can be stated with the expanded
1 and 2 we find +U,

uncertainty asy {_ U

uC:<5.32 + 8.02>%p,m =9.6um,

Numerical case: The additional biass —2.0pum is
evaluated as the mean of 10 measurements using a refer-
ence standard with combined standard uncertainty
Uez = 1.0pum. Using the values given in the previous
examples, we find

Bias=+2.5um
U,=2U.—2.5pm =16.7um

U_=2u+ 2.5pum = 21.7pm,

3.0 0.22)\;
and the measurement resyltcan be stated with the Uc:<5-32+ 8.0+1.00 +1_0+T>2 m=9.7pm,

+16.7pm

expanded uncertainty asr.{_ 21.7pm -

Bias = + 1.3um

U,=2u.—1.3pm=18.1pm

4.4 Example 4: Combination of independent and

dependent biases U-=2uc+1.3um=20.7pm,

The measuring instrument described by the uncer- and the measurement resyltcan be stated with the
tainty statement of Example 3 is modified by an acces-

sory that does not add variability but produces an addi- expanded uncertainty ay.{+ 18.1pm _

tional bias 8. This bias is assessed by repeated —20.7pm

measurements, i.e., found froly measurements of a

second (independent) reference standard (having a com-

bined standard uncertainty ofsy,). The measurements

collectively have an experimental standard deviason  Acknowledgments

(this is the same standard deviation found in example 1),

and a mean value differing from the calibrated value by This work was supported in part by the U.S. Air Force
6, with §<0ands < §; <0. Itis estimated that between Calibration Coordination Group (CCG) program and by
30 % to 50 % of the bias estimated ldyis already the Advanced Technology Program (ATP). The authors
accounted for iné;. To avoid double counting, 0.8 thank the many individuals who reviewed this and
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